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Recently, performance profiles in reading, mathematics and science were created 
using the data collectively available in the Trends in International Mathematics 
and Science Study (TIMSS) and the Progress in International Reading Literacy 
Study (PIRLS) 2011. In addition, a classification of children to the end of their 
primary school years was conducted in accordance with these performance types. 
To create performance profiles and classifications, multidimensional item response 
theory and latent profile analysis were used. The focus in this study is on the 
comparison and usability of clustering methods in their application in large-scale 
assessments. In a first step, the cluster solutions of classic approaches such as k-
means, fuzzy c-means and hierarchical procedures are compared to one another and 
assessed in terms of their proximity to the reference typology of latent profile 
analysis. In the second step, the results of the model-supported latent profile 
analysis are compared directly with the findings of the classic model-free cluster 
analyses by means of appropriate measured values. The result is a high consistency 
in the classification of invariant ranked profiles. In the last step, the calculated 
“quantitative” cluster solutions are compared to the “qualitative” typology of the 
pupils derived from the content-based benchmarking of the competency levels in 
mathematics using the TIMSS guidelines. It is evident that, as a cluster solution, 
the benchmarking breakdown of the sample in the five competency levels does not 
show a high goodness of fit with the available data. 

 
 
Introduction: TIMSS and PIRLS Studies 
Every five years, fourth grade students from around the world are compared on their 
performance in reading comprehension through the Progress in International Reading 
Literacy Study (PIRLS; e.g., Bos, Tarelli, Bremerich-Vos, & Schwippert, 2012a). Another 
international test that evaluates student academic performance is the Trends in 
International Mathematics and Science Study (TIMSS; e.g., Bos, Wendt, Köller, & Selter, 
2012b), which assesses fourth and eighth grade students on their performance in 
mathematics and science on a four-year cycle. The International Association for the 
Evaluation of Educational Achievement (IEA) is responsible for conducting both studies 
(www.iea.nl). 
 
Data collection for both studies coincided for the first time in 2011, making it possible to 
connect the two studies. Thus, the focused subject areas of reading, mathematics and 
science could be mutually investigated while considering their interactions. As was the 
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case in 37 other countries and regions, a common random sample of pupils for both 
PIRLS and TIMSS was surveyed in Germany (Martin & Mullis, 2013). This special data 
set opens up new possibilities for analysis and allows for an overarching view of pupils’ 
performances at the end of the fourth grade in reading, mathematics and science (e.g., 
Bos et al., 2012c). 
 
From a methodical viewpoint, these data have particular demands in terms of the 
appropriate handling of the multidimensional structure (Foy & O’Dywer, 2013). 
Multidimensional procedures have thus been increasingly used in recent years to 
address the demands of modeling such complex data. They can provide more realistic 
explanations for observed data and include, in particular, the use of multidimensional 
item response theory (IRT) models, which allows for the determination of measurement 
error controlled correlations between latent dimensions. For the specifics of 
multidimensional IRT, see Reckase (2009) or van der Linden and Hambleton (1997). In 
this study, a general multidimensional IRT model was used to analyze the TIMSS and 
PIRLS data. 
 
In both TIMSS and PIRLS, performances are depicted along a scale that has a mean 
value of 500 and a standard deviation of 100. From the international comparative 
perspective, however, the interpretation of inter-individual differences in the 
dimensions primarily occurs via the achievement of international benchmarks. In other 
words, the achievement of qualitatively set criteria is defined separately for each 
dimension (Martin & Mullis, 2013). In TIMSS and PIRLS, the benchmarks divide the 
performance scales into five performance ranges with a width of 75 points. In Germany, 
reporting specifically refers to the ranges between the benchmarks, called competency 
levels. Test values below 400 points correspond to competency level I; values between 
400 and 475 points represent competency level II; the range of values between 476 and 
550 points is competency level III; competency level IV covers the range of values 
between 551 and 625 points; and values above 625 points comprise competency level V 
(Wendt, Tarelli, Bos, Frey, & Vennemann, 2012, p. 62f.). 
 
In order to allow for a contentual interpretation of the competency levels achieved by 
pupils, the problems or exercises assigned to an individual level are constructed in such 
a way that a student possessing that level of competence can typically solve these 
problems. As an example, the qualitative criteria for the achievement of the third 
competency level (High International Benchmark) for PIRLS 2011 are listed in Table 1. 
 
In addition to Figure 1, we can report that 1.5% of the pupils achieved competency level 
V in all three areas and 0.6% of the pupils achieved competency level I in all areas. 10.5% 
of pupils achieved competency levels IV-V in three domains, excluding the 
performances with three domains all at either competency level IV or V. 11.4% achieved 
competency level IV in three domains. 32.5% achieved competency levels III-V in three 
domains. 13.1% achieved competency level III in three domains. 19.2% performed at 
competency levels I-III in three domains. The remaining 11.2% are distributed across 
smaller intermediate stages. 55.9% of the pupils were able to achieve at least competency 
level III and a higher level in one domain. Only 2.9% showed “savantism” or “learning 
disabilities” in one domain. These were operationalized by pupils who were indexed at 
one competency level of I or II in two domains and a competency level of IV or V in one 
domain, or at one competency level of IV or V in two domains and one competency level 
of I or II in one domain. 
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Table 1: PIRLS 2011 High International Benchmark of reading achievement 

 
Source: IEA’s Progress in International Reading Literacy Study – PIRLS 2011 
 
In Germany, the achievement of competency levels across the domains was distributed 
as shown in Figure 1. 
 
Figure 1: Distribution of competency levels achieved by pupils 

 
Source: Bos et al., 2012a, p. 231 
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As mentioned earlier, since data collection for TIMSS and PIRLS coincided for the first 
time in 2011, a joint study of all dimensions is possible and allows for the interpretation 
of interactions. However, a consolidation has to first occur in the scale. It also makes 
sense to scrutinize the classification that is used in the benchmarks. 
 
Classification Within the Multidimensionality – Motivation 
The reliable determination of a valid performance typology is essential. On the one 
hand, benchmarks and competency levels offer an improvement of the interpretation 
ability of the IRT scale results; on the other hand, they are the actual parameters for 
communication purposes, such as for educational policy (e.g., Bos et al., 2009). 
 
In international reports, countries are measured and compared using the respective 
percent shares of pupils in the individual competency levels. An example of this can be 
found in the well-known Programme for International Student Assessment (PISA) study 
conducted by the Organisation for Economic Cooperation and Development (OECD, 
2010). The formation of “intrinsically homogeneous” and “amongst themselves 
heterogeneous” competency groups contributes to the interpretation and significance of 
IRT estimated numerical values. This is especially true if the categorizing performance 
types are described in accordance with background characteristics, which are relevant 
and theoretically important from an educational science perspective. These background 
characteristics include factors such as cultural and socioeconomic characteristics, 
migration background and family language, learning disabilities or physical frailties, or 
subject-related attitudes and self-concepts. 
 
In the context of multidimensionality, however, the approach in terms of benchmarks 
and competency levels used to date presents a problem. This is because incorporating 
the complex data structure and taking into consideration the high interdependence of 
the observed constructs in the classification are possible only in a limited manner. In 
previous works, the multidimensional IRT scaled performance values are solely 
included in studies if multidimensional modeling is considered at all. This is to be 
differentiated from the actual objective of this paper. We aim to develop and examine 
multivariate data-analytical procedures for the “automated” joint discretization of all 
competency dimensions while considering their interdependences. To date, the 
discretization of the dimensions in large-scale assessments is conducted through the 
qualitative setting of so-called “cut-off points” separately for each individual dimension. 
 
A way in which to bypass this problem is the derivation of latent profiles that are 
calculated across all the jointly scaled content areas, where the latency rests in the class 
affiliation and is thus discrete. An example of this can be found in Bos et al. (2012c) who 
used the TIMSS/PIRLS 2011 data set for Germany containing 3,928 pupils for the 
consolidation of multidimensionality and classification process. Performance test values 
and performance profiles across the competency areas were regarded using latent 
profile analysis. 
 
In line with Bos et al. (2012c), we carried out calculations based on the estimated 
performance results using the Latent GOLD software (Vermunt & Magidson, 2005). 
Solutions with 1 to 20 profiles were compared using information criteria and log 
likelihood comparison tests via bootstrapping. A 7-profile solution proved to be the best. 
There were distinct performance clusters in a strict invariant parallel structure (Figure 
2). This structure corresponds to an invariant arrangement or ranking of the 
performance types across the three dimensions (cf. Croon, 1990). For the present study 
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the results were reconstructed with congruent outcomes. 
 
Figure 2: Parallel plot of the latent profile analysis of performance values of pupils in 
Germany 

 
Note: In order to rule out confusion with the international scale, a national scale with a mean 
value of 300 and a standard deviation of 100 was used for the analysis. 
 
The performance types can be described as shown in Table 2. In addition, the 
performance profiles can be clearly distinguished by the distribution of background 
characteristics between the profiles (for specifics, see Bos et al., 2012c). 
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Table 2: Description of the performance profiles 

 
 
Research Questions and the Contents of this Study 
The latent profile analysis is based on model assumptions, and the estimation of its 
parameters under these assumptions is based on maximum likelihood methodology. In 
this sense, latent profile analysis, as a model-based, inference-theoretical approach 
(probabilistic formulation), can be compared with the classic cluster analysis as a 
“model-free”, computational approach (descriptive distance calculation). 
 
In order to conduct a computational cluster analysis on a data set, a variety of standards 
have to be defined (e.g., with regard to the algorithm used and the similarity or 
dissimilarity metric) that are not possible or necessary in the flexible manner under the 
maximum likelihood approach. The question arises whether alternative computational 
clustering methods, without such additional model assumptions and estimation 
procedures, can be conducted. That is, one may ask if comparable results can be 
achieved and if similar profiles can be derived with more “simple” methods, when 
classification occurs in the measurement error controlled, estimated performance values 
(not raw data). This gives rise to the following research questions that we would like to 
examine in this study: 
 

Q1. How do empirically derived, multidimensional latent classifications 
look in comparison to classically derived clusters? 
Q2. How do empirically derived classifications across all dimensions, 
whether latent or computational, look in comparison to the groups 
obtained from the international benchmarking? 
 

More specifically, in this study we would like to test if, and to what degree, profiles can 
be derived more simply on the basis of the model-free classic clustering methods (k-
means, fuzzy c-means and hierarchical cluster analysis). For this purpose, a national, 
multidimensional IRT scale is performed, profiles are constructed using latent profile 
analysis, and the results of the classic clustering methods are compared to the results of 
the latent profile analysis based on measures of quality and agreement. In doing so, the 
cluster number is set to the number of the latent profiles (reference typology) in one case 
and freely estimated in the other. The exemplary comparison to one individual content 
area occurs as well to the benchmarking typology in the domain of mathematics. We 
expect that computational clustering methods, as compared with qualitative 
classification of pupil performances based on predefined competency levels, will lead to 
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more homogeneous groups. This paper will conclude with a discussion of future 
research directions, as well as a recommendation for using computational analyses as 
classic methodologies to complement the model-based approach. 
 
Clustering Methods 
We review some basic concepts of cluster formation, which is the derivation of groups 
with similar properties (e.g., Ester & Sander, 2000; Everitt, 2011). 
 
For a data set with N objects in C groups, the number of the grouping possibilities, i.e., 
the number of the C-element partitions of the N-element set is a Stirling number of the 
second kind: 
 

 
 
Thus, where N = 20 and C = 3, there are over 550 million possible combinations. The 
identification of the contentually significant clusters is important. A large number of 
heuristic methods have been developed for this purpose. In principle, all cluster 
analytical methods are algorithms to sort individual empirical observations. The 
selection of the appropriate cluster solution is conducted by way of intuition and 
theoretical considerations based on preliminary results, as well as the statistical 
comparison thereof. All methods attempt to create homogeneous groups that are 
heterogeneous to one another, whereby the similarity or dissimilarity distance measures 
used assume great significance. If the distances, or reciprocally the similarities, are 
combined in pairs, a distance matrix D = (dmn) or a similarity matrix S = (smn) is 
obtained. There are no uniform results for the “correct” selection of the distance measure 
(Everitt, 2011). When cases are clustered, a distance measure that takes into account the 
measurement level of the data can be used as a basis, such as the Euclidean distance in 
the case of metric data. 
 
Classic cluster analytical methods are computational and exploratory. Freedom in the 
selection of the computational components provides flexibility (comparable to the 
rotation freedom/problem of factor analysis models). Due to the high degree of 
interpretive freedom, however, general skepticism toward the uncovered structure is 
appropriate as well. This should be viewed with caution. The applied methods will be 
presented briefly in the following sections; specifics can be found in the respective 
accompanying references. Possible evaluation criteria are explained as they are used in 
the course of this study. 
 
Latent Profile Analysis 
The method that was used to obtain the performance profiles is latent profile analysis 
(LPA), e.g., see Gibson (1966) or Lazarsfeld and Henry (1968). The local stochastic 
independence is presupposed. It is assumed that the answers of the objects of a given 
class, in this case the pupils in one class or profile, are random. If the latent class was 
introduced as a control variable, systematic variations between the answers would 
disappear. Each class continues to be characterized by their specific conditional answer 
probabilities. The formal structure, discretized here for simplification (sum instead of 
integral), is shown as follows: 
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Whereby !c  describes the relative class size of a class c from 1 to C, and P(Xi = xi|c) 
stands for the conditional probability of a (continuous) realization Xi = xi  in a variable i 
from 1 to I in the (discrete) class c. The LPA model parameters are estimated from the 
data using the maximum likelihood method. The estimation can be carried out via 
expectation-maximization or EM (e.g., Bacher, Pöge, & Wenzig, 2010, p. 360; see also 
Dempster, Laird, & Rubin, 1977). The cluster number in LPA is selected using statistics 
for model quality (e.g., information criteria). Bootstrapping methods are also 
recommended for significance testing (Bacher et al., 2010, p. 365). 
 
In our application, the IRT scaled performance test values (“plausible values”, see below 
in Section Multidimensional Scale) in the domains of reading, mathematics and science 
correspond to the variables (I = 3), and the classes are represented by the uncovered 
performance profiles (C = 7). The corresponding solution of the specific LPA calculations 
can be found in Figure 2 or Table 2.  
 
Hierarchical Cluster Analysis 
The family of hierarchical clustering methods (e.g., Everitt, 2011; Kaufman & 
Rousseeuw, 1990) consists of various agglomerative (“bottom up”) or divisive (“top 
down”) algorithms. For exemplification we use a popular agglomerative method 
(Ward’s algorithm; see the following paragraph). Other agglomerative or divisive 
methods are conceivable if necessary. The clusters are constructed around cluster centers 
based on the mean values of the cluster objects. In a first step, each object forms its own 
cluster. In each subsequent step, a cluster pair for which a given distance criterion (see 
the following paragraph) is minimal is sought and merged. Additionally, the value of 
the cluster center is recalculated for the newly formed cluster. These steps are repeated 
until all clusters have merged into one. The cluster number is not specified; but rather 
the possible solutions, portrayable as the structural order of a dendrogram, are tested 
against one another. Thus, a deterministic allocation of the objects is given on every 
possible sectional plane of the dendrogram.  
 
Ward’s (1963) algorithm was used in our study. This method consolidates those clusters 
whose resulting clusters minimize the growth of the sum of the average errors within 
the clusters. The squared Euclidean distance is the basis for the dissimilarity calculation. 
In general, the method generates relatively homogeneous clusters, but it is sensitive with 
regard to outliers (see Everitt, 2011). 
 
k-Means 
One of the most common clustering methods is the k-means analysis (Forgy, 1965; 
MacQueen, 1967). It is based on the Euclidean distance. The algorithms of this method 
allocate objects to the arithmetic means, medians or medoids as the cluster centers 
(Kaufman & Rousseeuw, 1990). The goal is to subdivide the objects into clusters in such 
a way that the sum of the squared deviations from the cluster centers is minimal. The 
sum of squares within the clusters can be interpreted as a type of “error scatter”. 
 
The method essentially differentiates four iterative steps: random allocation of the 
objects into a predefined number of clusters; recalculation of the cluster centers; 
reallocation of the objects via minimal squared Euclidean distance; test to see if the 
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minimization of the sum of squares of the scatter changes with the allocation. If this is 
not the case, or a stop criterion is reached, the algorithm terminates itself. The cluster 
number is determined in corresponding indices based on selected threshold values via 
comparisons of repeated applications of the method with a variety of numbers of 
clusters, each with multiple start values. 
 
Fuzzy Methods 
The fuzzy cluster analysis has a “blurred” nature. It describes the uncertainty that an 
object g belongs to a class c, and thus it distinguishes itself from the previously 
presented “deterministic” methods (see Bacher et al., 2010; Everitt, 2011). In essence this 
method can be understood as a generalization of k-means. 
 
The c-means algorithm for continuous data was used for the fuzzy analysis (Bezdek, 
1981, 1983). One criterion based on the weighted sum of the distance squares is used for 
data vectors xi of N objects in C clusters:  
 

 
 
Whereby mt is the center of cluster t, and the weights (degrees of belonging) uit add up 
to 1 for all i = 1, …, N. In addition, d(xi, mt) is the Euclidean distance between data point 
and cluster center, and v is referred to as the “fuzzification”, in other words the 
“fadedness”. The degrees uit of the group membership are unknown and must be 
determined using the data. The cluster number can be selected via a comparison of the 
number of iterative steps to convergence (e.g., convergence under minimal iteration). 
 
Methodical Approach 
In the first step of the sequential approach, a three-dimensional scale is taken as a basis 
for the common TIMSS and PIRLS 2011 sample data. Classifications based on the three-
dimensional scale for this sample, by means of latent profile analysis and the 
international benchmarking method, are used as comparison values or reference 
typologies in the second step. Every other partitioning could equally well be used as a 
reference typology if it seems useful. Examples are typologies that are derived from 
substantive theories or those that are based purely on (other) statistical methods. The 
elaborations presented can then be applied by analogy. In the present study, latent 
profile analysis and the international benchmarking method are used as our reference 
typologies. 
 
In the second step in the sequential processing, the population estimators are classified 
using hierarchical cluster analysis (HCA), k-means, and fuzzy methods. First, a 
comparison is conducted with cluster numbers fixed in accordance with the result of the 
LPA. Then, a comparison is made with specific optimal cluster numbers. Finally, a 
comparison is made of the optimal solutions to the performance levels defined in the 
international benchmarking in the domain mathematics. 
 
Data Set 
The entire sample for Germany comprises 4,229 pupils in 197 primary schools. The joint 
test of PIRLS and TIMSS was administered to the sample for a duration of two 
consecutive days. In the first day, approximately 50% of the sample took TIMSS while 
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the other half took PIRLS. The two groups switched tests on the second day (Wendt et 
al., 2012). The sample size of complete cases includes 3,928 pupils and 197 schools. Each 
student in the sample was administered tests to measure performance in all three 
competency areas: reading comprehension (PIRLS), mathematics and science (TIMSS). 
 
Multidimensional Scale 
To allow a competency domain accounting for the full range of performance test values 
in the first step of the sequential approach, the survey data were jointly scaled in a 
multidimensional IRT model. The mixed-coefficients multinomial logit model of Adams 
et al. (1997) was used with the ConQuest software (Wu et al., 2007). This model is a 
generalization of the Rasch model (Fischer & Molenaar, 1995; Rasch, 1960). A national 
background model that includes information from the pupil and parent questionnaires, 
as well as from the school questionnaires and the parameters to the cognitive abilities 
was incorporated using latent regressions. Population describing person parameters 
(“plausible values”, PV) were calculated in this manner (see Mislevy, 1991; cf. also von 
Davier, Gonzalez, & Mislevy, 2009). 
 
A three-dimensional model based on the three primary competency domains was used, 
even though an eight-dimensional model based on the sub-domains would be 
conceivable (see Bos et al., 2012c). Both models are preferable to a one-dimensional 
model. The reading, mathematics, and science competency domains represent the three 
dimensions of the preferred IRT model. As shown in Table 3, there are strong 
correlations between the areas. 
 
Table 3: Latent correlations for the three-dimensional domain-related mixed-
coefficients multinomial logit model 

 
 
Results 
The calculations were primarily conducted in the open-source software R (R Core Team, 
2014, www.R-project.org). The hierarchical and k-means cluster analyses were calculated 
with the R package cluster (Maechler et al., 2014), the fuzzy cluster analyses with the R 
package e1071 (Meyer et al., 2014) and the cluster statistics with the R packages fpc 
(Hennig, 2014) and mclust (Fraley et al., 2014). 
 
In general, it can be noted that no clusters with sizes n < 100 were observed. In every 
analysis, larger clusters basically form in the center of the performance continuum, with 
smaller clusters forming on the edges. To allow a comparison, the mode for the fuzzy 
soft clustering was formed from the degrees of class allocation for hard coding. 
 
LPA Reference Typology and Fixed Cluster Number 
In order to conduct a comparison of the cluster solutions based on different evaluation 
criteria, the results and the specified indices are plotted in Figure 3. 
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Figure 3: Absolute quality criteria (top panel) and relative measures of agreement 
(bottom panel) for cluster solutions with a fixed number of clusters k = 7 compared to 
the latent profile analysis as reference 

 
 

 
Note: Since the reference typology of the latent profile analysis is assumed, only the absolute 
quality criteria Pearson Gamma and average silhouette width are useful and plotted here for the 
latent profile analysis. 
 
The classification error indicates the relative number of misclassifications out of a 
fourfold table, where the reference typology of the latent profile analysis is assumed. 
Generally, smaller values in this measure are interpreted as a better match to the reference 
solution. Here, the classifications organized according to the latent profile analysis fall 
between 56.9% (k-means method) and 75.8% (hierarchical cluster analysis). 
 
The Rand index (Rand, 1971) is a measure of the similarity of two cluster solutions or 
partitions (Everitt, 2011; Kaufman & Rousseeuw, 1990). It measures the share of the 
similar allocations. The adjusted Rand index of Hubert and Arabie (1985) is aligned for 
accidentally correct allocations under a null hypothesis. This adjusted index is the 
normalized difference of the Rand index and its expected value under the null 
hypothesis of a generalized hypergeometrical distribution for the confusion matrix / 
contingency table, which is defined for two cluster solutions Cli and Clj as: 
 

 
 
The recommended threshold values are 0.22 for a good solution and -0.14 for an 
accidental correlation. Generally, higher values of this index represent better similarity of 
partition pairs. All cluster solutions in our analyses lie clearly above the threshold value, 
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and therefore the similarities are to be labeled as “good”. Rand* for the k-means cluster 
analysis lies at 0.40, the hierarchical cluster analysis at 0.54 and the fuzzy cluster analysis 
at 0.54. Though they all can be considered as good solutions conditional to the latent 
profile analysis, the hierarchical and the fuzzy cluster analysis emerge as particularly 
good solutions (as was the case previously in the classification error). 
 
As an information theoretic measure of similarity between two cluster solutions or 
partitions, Meilǎ’s (2007) variation of information criterion measures the quantity of lost 
and obtained information during the change of a cluster solution Cli into a different Clj. 
Formally it is represented as follows: 

 

 
 
Whereby H(Cl.) is the respective entropy associated with the clustering and H(Cli, Clj) is 
the joined or common entropy of the two cluster solutions. It can be written as the sum 
of the two conditional entropies H(Cli|Clj) (information loss about cluster solution i 
during the change) and H(Clj|Cli) (information gain about cluster solution j during the 
change) and can be interpreted as the information quantity that differentiates the two 
cluster solutions from one another. At Cli = Clj, and only then, the measure takes the 
value 0. Also, VI is a metric. Thus, higher values generally indicate that two cluster 
solutions differ more strongly in their information content. The highest value here is 
achieved with k-means (VI = 1.40), while the hierarchical cluster analysis (VI = 1.09) and 
the fuzzy method (VI = 1.14) take on lower, that is more advantageous, values. This is in 
agreement with the findings that we obtained before in the other two criteria as well. 
 
In summary, the following ranking among the three clustering methods, which is 
consistent across all three criteria, can be recorded. When the cluster numbers are fixed, 
with LPA as the reference typology, HCA delivers the best match to the LPA solution. 
HCA is followed closely by the next best match of the fuzzy method, while the k-means 
method shows significantly poorer agreement with LPA. 
 
These parameters are relative measures of agreement in the sense that they compare the 
agreement between two given classifications or partitions of an object set without falling 
back on the data. In contrast, it is also possible to consider measures of absolute quality that 
quantify the “match” or “quality” in the data for a given classification of an object set. 
The Pearson Gamma (Halkidi et al., 2001) is one such measure. For a cluster solution, it 
describes the correlation between the paired dissimilarities or distances and a binary 0/1 
vector (0 for the same cluster and 1 for a different cluster) for object pairs, which is 
interpreted in the same way as the Bravais-Pearson correlation coefficient. This measure 
emphasizes the approximation of the dissimilarity structure by a clustering in the sense 
that observations in different clusters have a high correlation with greater dissimilarity 
or distance values. As a measure of quality, it quantifies the separation of the clusters of 
a solution and is generally interpreted as “the greater the value, the better”. All values take 
on characteristics between 0.42 and 0.48, whereby k-means and fuzzy take on 
comparable values, as do HCA and LPA. 
 
The average silhouette width is a further measure of quality (Rousseeuw, 1987), and 
based on dissimilarity measures across all clusters of a solution, it describes on average 
the tightness of the connection between formed groups. This measure emphasizes the 
separation of clusters with their neighboring clusters. Smaller values of this index are 
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generally interpreted as poorer quality. According to Kaufman and Rousseeuw (1990), a 
value less than 0.25, as a suggested ad-hoc rule of thumb, is considered to be a “weak 
split”. Under this criterion, the k-means solution (0.27) and the solution of the latent 
profile analysis (0.26) are of better quality, in which all values lie close to one another 
above the 0.25 heuristic threshold. However, the solutions of the fuzzy method and 
HCA are considered “weak splits” as they yield similar values below the suggested 
threshold value. 
 
In summary, it can be noted that only LPA consistently takes on the greater values 
across the two quality criteria. All three computational methods each fall below the 
quality values of LPA in at least one of the two criteria. 
 
LPA Reference Typology and Free Cluster Number 
In the second step, optimized cluster numbers for the different methods were 
determined. The comparisons were then repeated. The optimal cluster numbers and the 
criterion used to select the cluster number are shown in Table 4. 
 
Table 4: Optimal cluster numbers 

 
 
The variance ratio (VR) criterion, also referred to as the Caliński-Harabasz index 
(Caliński & Harabasz, 1974), is calculated like the F statistic. Formally this is described 
as follows: 

 

 
 
SSB is the total variation between the C clusters and SSW is the variation within the 
clusters, for a sample size of N clustered objects. The comparisons of the free cluster 
solutions and the classification from the LPA are shown in Figure 4, with the courses of 
their profile lines in the top panel and the measures of agreement in the bottom panel 
(the corresponding absolute measures of quality in the data will be summarized later in 
Figure 5). 
 
The k-means method again yields a higher error rate of 43.1%, while the hierarchical and 
fuzzy cluster solutions are pegged as better solutions with error rates of 30.5% and 
31.4%, respectively.  
 
For each solution, an adjusted Rand index that lies significantly above the threshold 
value for a classification is a good cluster solution in the LPA reference model. The 
hierarchical cluster solution (0.48) and the fuzzy cluster solution (0.56) have the most 
favorable values. The variation of information for the k-means solution (1.40) is less 
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favorable than the variation of information for the hierarchical solution (1.21) and the 
fuzzy solution (1.11). 
 
Figure 4: Parallel plots of the different optimal cluster solutions of performance 
values of pupils in Germany (top panel) and measures of agreement (bottom panel) of 
these cluster solutions with freely determined number of clusters compared to the 
latent profile analysis 

  
 

 
 
Based on the three measures of agreement, it can be noted that compared with the LPA 
reference typology, the allocations in the free fuzzy analysis are only minimally 
changing with just one more cluster. The HCA, in comparison, is getting slightly worse 
with one less cluster. In a free estimation of the clusters, the k-means method yields the 
previously 7 fixed clusters, which according to the LPA specification is optimal. In 
comparison with the hierarchical and fuzzy analyses, however, the k-means method 
comes off worse in terms of the measures of agreement. All in all, the optimal cluster 
numbers of the three model-free methods are around 7. Given these findings, fuzzy 
emerges as the best solution, followed by HCA and the k- means method. 
 
The ranking of these methods is reflected in the courses of the profile lines in the top 
panel of Figure 4. Evidently, the invariant ranking of the clusters, which yields a parallel 
structure, is maintained almost completely for each of the methods. As shown, the k-
means method with the worst match to the reference typology exhibits crisscrossing. It is 
also worth noting that plotted aggregated mean value profiles provide no differentiated 
information on the variation within a cluster. Variation bands, for example, could be 
computed, or the individual cases could be plotted and observed separately by means of 
interactive graphics. These and other strategies for “diagnostic post-analysis” of 
competing cluster solutions in the presented comparative education context are to be 
examined in further research. 
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Benchmarking Reference Typology 
A comparison of the cluster solutions obtained in Section LPA Reference Typology and Free 
Cluster Number with the classification resulting from the benchmarking specification 
within the domain mathematics is presented here. The competency level allocations for 
mathematics from the TIMSS study are used to represent the presumed reference 
typology (see Section Introduction: TIMSS and PIRLS Studies and Figure 1). The 
corresponding results are shown in Figure 5. 
 
Figure 5: Quality criteria (top panel) and measures of agreement (bottom panel) for 
cluster solutions with freely determined number of clusters (including LPA) 
compared to the benchmarking performance levels within the domain mathematics as 
the reference typology 

 
 

 
Note: Only the absolute quality criteria are useful and plotted here for the typology of the 
mathematics performance levels. 
 
The measures were calculated for LPA, HCA, k-means and fuzzy based on the specified 
groupings of the pupils by using all three domains and the corresponding estimated test 
values. For the reference typology, the computations were based on the qualitative level 
groups, separately specified in the domain mathematics. In the latter case, the 
determined mathematics performance value was used as the only characteristic variable. 
The absolute measures of quality (“standardized” with values in [-1, 1]) were calculated 
accordingly in all three domains either at the same time for the candidate methods or 
only in the domain mathematics for the benchmarking reference. The relative measures 
of agreement compare the respective partitions that are all based on the same object set, 
i.e., the same sample of pupils. 
 
The results are revealing. The first striking finding is that the benchmarking partitioning 
of the student sample into the five TIMSS competency levels, according to the reference 
typology defined above, does not have high quality as a cluster solution in absolute 
terms (top panel of Figure 5). The measures of quality, Pearson Gamma and average 
silhouette width take on very small values. From a computational data-analytical 
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perspective, the clusters specified by the benchmarking within the domain mathematics 
exhibit a small amount of separation to one another. In terms of the Pearson Gamma, 
this means either that quite a few pupils with comparable mathematics performances in 
the test are categorized in different competency levels (first situation) or that pupils with 
different mathematical abilities are classified into the same level (second situation). As 
can be seen on the average silhouette width criterion, neighboring competency groups in 
the first situation are also not being separated sufficiently well. Quite a few cases come 
to lie in the boundary regions between two levels. With respect to the distribution of the 
pupils’ performance test values, larger gaps between the “congested areas” within 
individual levels will appear in the second situation. In both cases, from a substantive 
perspective, further research should examine if it would be possible to realize 
differentiated partitions or contentual interpretations of the competency levels. 
 
In comparison, the two quality measures take on noticeably high values for all statistical 
methods. For distance-based methods and LPA, the Pearson Gamma lies between 0.40 
and 0.47, with the highest value of 0.46 associated with the LPA solution. Thus, the LPA 
stands out, even if only relatively (weak split), in the average silhouette width as well. 
The fact that the TIMSS benchmarking solution cannot be clearly retrieved in the data is 
obvious from the computed comparison or agreement values, which are consistently 
worse (bottom panel of Figure 5). The benchmarking partitioning of the pupil sample 
and the partitions derived from data analysis differ markedly. In comparison to the 
other methods, LPA stands out again with regard to its distance to the benchmarking 
specification. The quality of the classification specified by the LPA is the best developed 
across both quality measures and – presumably for this reason – it deviates the most in 
its agreement with the benchmark solution with regard to relative comparative criteria.  
 
In light of these findings, it can be noted that the quality of the benchmarking clustering 
can and should be improved by accompanying statistical considerations, such as the 
additional optimization of the cluster criteria. Further research is necessary – for 
example, based on specific restricted latent class models and other large-scale 
assessment studies and data – to make reliable assertions or create valid benchmarking 
specifications. This can be important from an educational policy perspective. 
 
Discussion and Summary 
The subject of the present study is the testing of different cluster methods for the 
identification and acquisition of discrete performance profiles in large-scale school 
performance comparison studies, illustrated here by using the large-scale assessment 
studies of TIMSS and PIRLS 2011. The probabilistic model-based latent profile analysis, 
the distance-based computational k-means, hierarchical and fuzzy c-means cluster 
analyses were used on performance test values determined through plausible value 
generation within the framework of a three-dimensional IRT scale. The solutions 
obtained via the model-free computational methods were compared to the results of the 
latent profile analysis. In addition, the pupils grouped via the competency levels in 
mathematics using the official TIMSS benchmarking were compared with the groupings 
suggested by the cluster methods. 
 
The classic k-means, hierarchical and fuzzy cluster analyses, based on the measurement 
error controlled performance data, yielded results comparable to the model-supported 
latent profile analysis. With the appropriate framework parameters, the fuzzy cluster 
and the hierarchical cluster analyses have yielded the best results compared with the 
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latent profile analysis (reference typology) across the board of a number of comparison 
indices. Since there are no model assumptions or complex estimation routines, the 
classic cluster methods appear to be practicable, easy access alternatives for the handling 
of complex large-scale assessment data. The presented comparison of the cluster 
methods is not only useful from a methodical perspective; but it is also important from a 
substantive, practical point of view. The results of the comparison of the quantitative 
cluster methods to the qualitative benchmarking specification of the large-scale 
assessment study have shown that the data-analytical methods lead to significantly 
more homogeneous groupings that exhibit better quality in the data. 
 
Conclusion 
We conclude with observations on possible future research directions in this field. Of 
course, the data analysis demonstrated here can be applied to other studies as well, for 
example PISA. Different large-scale assessment studies often survey similar 
competencies and traditionally are compared based on the latent correlations among 
their continuous performance dimensions. As a supplement to this common approach, 
the comparison between different large-scale assessment studies using their respective 
cluster partitions of the pupil sample would be interesting. We suspect this study will 
make it possible to comparatively investigate different large-scale assessments in terms 
of their similarities and differences in a more sophisticated, substantially expanded way.  
 
Indeed, more than three dimensions, such as the sub-facets of the respective primary 
domains, can be clustered as well. We expect that higher dimensional solutions will 
yield more in-depth insights. This is because the primary dimensions of reading, 
mathematics and science could be assessed at a more granular level, for example based 
on the content-related sub-domains of their comprehension processes (PIRLS) and 
cognitive requirements (TIMSS). As in our study, analytical models that use more than 
three dimensions can be expanded with continuing or comparative cluster analyses. 
 
As is evident from the average silhouette width, which is low throughout, the specific 
cluster number is hard to determine. This can be ascribed particularly to the structure of 
the data. In other words, the highly developed test methods allow a “tight knit” 
multidimensional normality. The calculated criteria for the cluster numbers often lie in 
tight proximity. Thus, a low number of clusters appear to be empirically plausible for 
the TIMSS/PIRLS 2011 data. Depending on the focus of the research, if it is theoretically 
well-founded, an increase of the cluster number can be appropriate. For this reason, it 
will be of great interest in the future to examine how much further the granularity of the 
clusters can be refined to identify small sub-groups or extreme groups such as “savants” 
or “learning disabled” in a targeted or empirically appropriate manner. The examination 
of such relatively rare cases could possibly piggy-back on statistical error analyses in 
model-supported reference typologies, and thus also allow differentiated assertions 
about misallocations in the partitioning. 
 
In conclusion, we would like to note that these methods as “data analysis” have their 
weaknesses. Therefore, it is important to regard and understand the different 
methodical approaches, be they computational or model-based, as perspectives that 
complement one another. Although the model-based approach is the centerpiece, its 
utility and importance can easily be expanded with accompanying and supplementary 
computational analyses, as shown in the current study. 
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