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Abstract

The Riemann–Hurwitz formula is generally given as a result from algebraic

geometry that provides a means of constraining branched covers of surfaces via

their Euler characteristic. By restricting to the special case of compact Rie-

mann surfaces, we develop an alternative proof of the formula that draws on

topology and manifold theory as opposed to more advanced algebraic machin-

ery. We first discuss the foundation in manifold theory, defining Riemann

surfaces and providing an example of the complex projective line. We then

discuss the local topological structure of holomorphic maps between Riemann

surfaces, introducing the notion of a branched cover and of branch points.

Next, we discuss triangulations of a topological space and use this to intro-

duce the Euler characteristic of Riemann surfaces. Using these definitions, we

explicate and prove the Riemann–Hurwitz formula on compact Riemann sur-

faces. To conclude, we discuss consequences of this formula for adjacent fields

such as algebraic topology. We provide visual intuition and examples through-

out, drawing primarily on Szameuly’s Galois Groups and Fundamental Groups

(2009), as well as Forster’s Lectures on Riemann Surfaces (1981), Guillemin

and Pollack’s Differential Topology (1974), and a few other supplementary

sources. The main prerequisite for this paper is a background in topology and

covering spaces.

1. Introduction

We begin with a topological problem. Suppose we have two surfaces,

each with certain properties—such as holes, punctures, boundaries, and so

forth—that are invariant under homeomorphism. We call such properties topo-

logical invariants. Can we always obtain a surjective map between these two

surfaces that preserves their local structure? In fact, we cannot: as we will

© 2024 Wadhwa, Mrinalini Sisodia. This is an open access article distributed under the

terms of the Creative Commons BY-NC-ND 4.0 license.

8

https://journals.library.columbia.edu/index.php/cjum/index


A TOPOLOGICAL PROOF OF THE RIEMANN–HURWITZ FORMULA 9

see at the end of this paper, there is no such surjective map from the complex

projective plane (a surface with no holes) to the torus (a surface with one hole).

This prompts a second question: do the topological invariants of these

surfaces tell us something about whether or not we can obtain such a map be-

tween the two surfaces? There is, in fact, an intricate relationship between the

surfaces’ topological invariants and the existence of a surjective map between

them that preserves their structure. This relationship is given by the Rie-

mann–Hurwitz formula, first proposed by Bernard Riemann (1826–66) in his

1857 Theorie der Abel’schen Functionen [Theory of Abelian Functions] [Rie57,

§7]. We give a preliminary statement of the formula below and will define the

terms used in the formula statement carefully in subsequent sections of the

paper.

Theorem 1.1 (Riemann–Hurwitz Formula). Let φ : Y → X be a holo-

morphic map of compact Riemann surfaces with degree d as a branched cover.

The Euler characteristics χ(X) and χ(Y ) of X and Y are related by the for-

mula

χ(Y ) = d · χ(X)−
∑
y

(ey − 1),

where the sum is over the branch points of φ and ey is the ramification index

corresponding to each branch point y ∈ Y .

A branched cover is a particularly well-structured surjective map between

Y and X, and the ramification index corresponds to “sheets” of the cover inter-

secting with one another. As seen in the above statement, Riemann was looking

at a specific class of surfaces and maps between them—namely, Riemann sur-

faces and holomorphic maps, concepts he had introduced in his 1851 doctoral

dissertation that now serve as the foundation for the field of complex analy-

sis. He appears to have died without offering a proof of this formula [Oor16,

p.568–69]. The first proof was likely Adolf Hurwitz’s (1858–1919) argument in

his 1891 paper, Über Riemann’sche Fläche mit gegebenen Verzweigungspunkten

[On Riemann surfaces with Given Branch Points] [Hur91, p.375–76].

This formula has subsequently been generalized to an algebraic-geometric

version that takes X and Y to be smooth curves (rather than Riemann sur-

faces) and φ to be a morphism between them (rather than a holomorphic map)

[Oor16, p.573–74]. It is in this abstract form—within the context of algebraic

geometry—that most students now encounter the Riemann–Hurwitz formula.

The usual proof of this version of the formula, given in [Sta18, Tag 0C1B], re-

lies upon spectral sequences and other abstract-algebraic machinery. To avoid

getting lost in the thickets of algebraic geometry, we will restrict to original

case of Riemann surfaces and holomorphic maps between them. From this,

we can develop a proof of the Riemann–Hurwitz formula that uses topology
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and manifold theory, providing the elusive topological and geometric intuition

for the formula that draws us back to our motivating problem—how to un-

derstand the relationship between a surjective map between two surfaces and

their topological invariants. The goal of this paper is to offer such a proof,

following [Sza09, §3.6].
We proceed in four sections. Section 2 provides a foundation in manifold

theory, defining Riemann surfaces and discussing the complex projective line

as an example. Section 3 discusses holomorphic maps between Riemann sur-

faces and their local topological structure, introducing the notion of branch

points and a branched cover. Section 4 discusses triangulation and the Euler

characteristic of Riemann surfaces. Finally, Section 5 completes the proof of

the Riemann–Hurwitz formula and discusses some interesting corollaries for

algebraic topology.

This paper assumes a background in topology—specifically point-set topol-

ogy and covering spaces. The reader does not need an extensive background in

manifold theory or complex analysis. Rather, the relevant concepts from these

fields—specifically holomorphisms and complex manifolds—are explained in

the Section 2 with reference to the real case, identifying R2 with C. It should
also be noted that because complex analysis is not the main focus of this paper,

we either assume or sketch complex-analytic results as needed to complete the

major proofs in this paper, particularly in Section 4. Wherever possible, we

provide pictures and visual intuition for definitions and proofs.

2. Riemann surfaces

This section grounds this paper in the relevant manifold theory, drawing

on [For07, p.1–12] and [Sza09, §3.1–3.2]. We build up to a definition of Riemann

surfaces and discuss some examples.

We begin by defining a holomorphic map between subsets of Cn and a

complex atlas on a manifold.

Definition 2.1. Let U ⊂ Cn and V ⊂ Cm. A map f : U → V is holomor-

phic if, for every x ∈ U , there exists a neighborhood Ux ⊂ U of x such that f

is complex-differentiable everywhere in Ux.

This is the complex analogue of a smooth map in real analysis, although

being holomorphic is a vastly stronger condition: a complex-differentiable map

is both infinitely differentiable and analytic (unlike in the real case, where C1

maps are not necessarily C∞, and where C∞ maps are not necessarily analytic).

Definition 2.2. Let X be a topological 2-manifold. A complex chart on

X is a pair (Ui ⊂ X, fi : Ui → fi(Ui) ⊂ C) such that Ui is an open subset of X

and fi is a homeomorphic mapping from Ui onto its image f(Ui) ⊂ C.
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We say a chart (Ui, fi) is centered at x ∈ Ui if fi(x) = 0. Two charts

(U, f), (V, g) are holomorphically compatible if their transition maps f◦g−1

and g ◦ f−1 are holomorphic where defined. This is illustrated in Figure 1.

Figure 1. Two charts (U, f) and (V, g), with transition map

f ◦ g−1 defined on g(U ∩ V ) and g ◦ f−1 defined on f(U ∩ V ),

based on the illustration of the real case in [Tu07, §5.2, Fig 5.2].

Definition 2.3. A complex atlas U on X is a collection of holomorphi-

cally compatible charts (Ui, fi) such that the {Ui} form an open cover of X.

We say two atlases (Ui, fi), (Vj , gj) on X are equivalent if their union,

defined by taking all Ui and Vj as a covering of X and all complex charts, is

also a complex atlas on X. In particular, this implies that fi ◦g−1
j and gj ◦f−1

i

are holomorphic on their respective domains for all i, j. We now proceed to

define a Riemann surface by placing a complex structure on X, in a manner

analogous to how [Tu07, §2.5] discusses placing a smooth structure in the real

case.

Definition 2.4. A Riemann surface is a topological 2-manifold X with

an equivalence class of complex atlases (which we call a complex structure

on X).

As a trivial example, consider any open subset U ⊂ C. Then U is a

Riemann surface with the complex atlas (U, i : U ↪→ C), where i is the inclusion
map. We consider one nontrivial example, the complex projective line, which

we return to in subsequent sections of this paper.

Example 2.5 (Complex projective line CP1). Let CP1 = C ∪ {∞}, where
∞ is an extra point not included in C. We topologize CP1 as follows: the open

sets are the usual open sets U ⊂ C and sets of the form V ∪{∞}, where V ⊂ C
is the complement of a compact set K ⊂ C. We call CP1 with this topology

the complex projective line, and we see that it is homeomorphic to the

2-sphere S2 ⊂ R3 with antipodal points identified with 0 and ∞, as shown in

Figure 2.
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Figure 2. CP1 homeomorphic to S2.

Now we define a complex atlas on CP1. Let U1 := CP1 \ {∞} = C, and
let f1 be the identity map z on U1. Then, let U2 := CP1 \ {0}, and define the

map f2 as follows:

f2(z) =

{
1
z z ∈ U2 \ {∞}
0 z = ∞.

Then both f1 and f2 are well-defined homeomorphisms onto their images.

The charts (U1, f1), (U2, f2) cover CP1 and are holomorphically compatible, as

their transition maps

f1 ◦ f−1
2 = f2 ◦ f−1

1 : U1 ∩ U2 = C \ {0} → U1 ∩ U2 = C \ {0}

are given by z 7→ 1
z . Thus, they form a complex atlas on CP1.

If we consider CP1 under the homeomorphism to S2, then the maps f1
and f2 correspond to the stereographic projection from R2×{0} and R2×{1},
respectively, as shown in Figure 3.

♢

3. Holomorphic maps and branched covers

We now define holomorphic maps between Riemann surfaces, discuss their

local topological structure, and introduce the notion of a branched cover.

Definition 3.1. Let X and Y be Riemann surfaces. A continuous map

φ : Y → X is holomorphic if for every pair of charts (U, f) on Y and (V, g)

on X such that φ(U) ⊂ V , the map g ◦ φ ◦ f−1 : f(U) ⊂ C → g(V ) ⊂ C is

holomorphic in the usual sense (i.e., the sense of Definition 2.1).

This definition is visualized in Figure 4. Note that this corresponds to

our definition of a smooth map between smooth manifolds in the real case in

[Tu07, §2.6].
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(a) The chart (U1, f1) on CP1.

(b) The chart (U2, f2) on CP1.

Figure 3. A complex atlas on CP1, visualized under homeomor-

phism to S2.

Henceforth, to avoid the trivial case, we assume that all holomorphic

maps between Riemann surfaces in this paper are nonconstant on all connected

components—i.e., that they do not map an entire connected component to a

single point. We remarked after Definition 2.1 that being holomorphic is a

stronger condition than being smooth, as holomorphic maps are both infinitely

differentiable and analytic on subsets of Cn. As we shall see, this means that

we actually know a great deal more about the local structure of holomorphic

maps than we do about smooth maps in the real case. This is summarized in

the below proposition, which tells us that locally, every holomorphic map is

just exponentiation.

Proposition 3.2. Let φ : Y → X be a holomorphic map of Riemann

surfaces and y ∈ Y with image φ(y) = x in X . Then there exist open neigh-

borhoods Vy ⊂ Y and Ux ⊂ X of y and x respectively satisfying φ(Vy) ⊂ Ux,
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Figure 4. A holomorphic map φ : Y → X with charts (U, f) on

Y and (V, g) on X, based on the illustration of the real case in

[Tu07, §2.6, Figure 6.3].

as well as homeomorphisms gy : Vy → gy(Vy) ⊂ C and fx : Ux → fx(Ux) ⊂ C
satisfying fx(x) = gy(y) = 0 such that the diagram

Vy Ux

C C

φ

fx

z 7→zey

gy

commutes for an appropriate positive integer ey chosen with respect to y that

does not depend upon the choice of gy or fx.

Figure 5 provides a geometric visualization of the commutative diagram.

We proceed to sketch its proof, drawing on some results from complex analysis.

Proof sketch of Proposition 3.2. First, by selecting and shrinking neigh-

borhoods Ux and Vy as necessary and performing linear transformations in

C, we can find charts (Vy, g
′
y) and (Ux, fx) centered at y and x, respectively.

We will now modify these in order for the diagram to commute. As φ is a

holomorphism from Y to X, we know by Definition 3.1 that fx ◦ φ ◦ g′−1
y is

holomorphic in a neighborhood of 0 and vanishes at 0. As holomorphic maps

are necessarily analytic, complex analysis tells us that fx ◦φ ◦ g′−1
y must be of

the form z 7→ zeyH(z), where H is a holomorphic function such that H(0) ̸= 0.

We denote by log a fixed branch of the logarithm function in a neighbor-

hood of H(0). Now we apply complex analysis results to conclude: we shrink

the neighborhood Vy as necessary so that h := exp((1/ey) logH) defines a

holomorphic function h on g′y(Vy) such that hey = H, and then we define gy to

be the composition of g′y with the map z 7→ zh(z). This yields charts (Vy, gy)

and (Ux, fx) centered at y and x respectively such that the diagram commutes.
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Figure 5. A geometric visualization of the local structure on

holomorphic maps.

We observe moreover that ey, defined in relation to an invertible holomorphic

map, is necessarily a positive integer independent of the choice of gy, fx. □

Having established this local structure, we introduce the notions of rami-

fication index, branch points, and branched cover, following [Sza09, §3.2].

Definition 3.3. The positive integer ey in Proposition 3.2 is called the

ramification index of φ at y. The points y ∈ Y such that ey > 1 are called

the branch points of φ. We denote the set of branch points of φ by Sφ.

Remark 3.4. Note that Sφ is a discrete closed subset of Y . This follows

from Proposition 3.2: given any y ∈ Y , there exists a punctured open neigh-

borhood Vy of y that contains no branch points where φ has finitely many

points in its preimage (due to the local structure of the map z 7→ zey).

From this observation, we proceed to introduce the notion of a branched

cover and relate it to this local structure on holomorphic maps. First we must

define a proper map.

Definition 3.5. A continuous map of locally compact topological spaces

φ : N → M is proper if the preimage of each compact subset of M under φ

is compact in N .
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(a) A finite branched cover φ.

(b) Restricting φ to obtain

a covering space.

Figure 6. Visualization of a branched cover.

Definition 3.6. Given locally compact Hausdorff spacesN andM , a proper

surjective map φ : N →M is a finite branched cover if it restricts to a finite

cover (of M) outside a discrete closed subset (of N).

Its degree is defined to be the degree of the finite cover obtained by its

restriction.

We can think of a finite branched cover as essentially a covering space at

all but a small number of points (namely, the branch points, which lie within

the discrete closed subset). At the branch points, we can visualize the sheets

of the cover merging together, so that the sheets of the cover “branch out”

from them. Thus, when we remove these points, we obtain a covering space in

its regular topological sense, as shown in Figure 6.

Finally, we relate this notion of a branched cover to holomorphic maps

between Riemann surfaces with the following rather wonderful result.
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Theorem 3.7. Let X be a connected Riemann surface, and let φ : Y → X

be a proper holomorphic map. Then φ is a finite branched cover.

Proof of Theorem 3.7. This result follows from Proposition 3.2 and Re-

mark 3.4.

First, by definition, X and Y are locally compact Hausdorff spaces because

they are Riemann surfaces.

Second, we claim φ is surjective because it is holomorphic and proper.

Proposition 3.2 implies that as a holomorphic map between Riemann surfaces,

φ is in fact an open map, since the map z 7→ zey is open and fx, gy are home-

omorphisms and therefore open maps. Thus φ(Y ) is open in X. Moreover,

because φ is proper and X,Y are Hausdorff and locally compact, φ is a closed

map, because in a locally compact Hausdorff space a subset is closed if and only

if its intersection with every compact subset is closed. Thus φ(Y ) is closed in

X. Then φ(Y ) is a nonempty clopen subset of X, so we must have φ(Y ) = X

as X is connected, proving that φ is surjective.

Third, we have from Remark 3.4 that Sφ is a discrete closed subset of Y .

To conclude, we claim that the restriction of the map φ to Y \φ−1(φ(Sφ))

is a finite topological cover of X \ φ(Sφ). This follows again from Proposition

3.2: given x ∈ X \ φ(Sφ), each of the finitely many points in the preimage

φ−1(x) has an open neighborhood that maps homeomorphically onto an open

neighborhood of x. The intersection of these open neighborhoods is an open

neighborhood of x that satisfies the definition of a finite topological cover

(demonstrated in Figure 6). □

In light of this result, we will now take as a given that a holomorphic map

φ as above yields a finite branched cover in subsequent sections of this paper.

4. Triangulation of Riemann surfaces

This section completes the setup for our topological proof of the Rie-

mann–Hurwitz formula, carefully defining and providing geometric intuition

for the various terms used in the formula statement. We define triangula-

tion on a compact topological 2-manifold (and thus on any Riemann surface),

prove that every compact Riemann surface has a triangulation, and introduce

the concept of the Euler characteristic of a compact Riemann surface.

Intuitively, a triangulation divides up a space into smaller “triangles”—closed

subsets of the space that map homeomorphically onto unit triangles in R2—that

are glued together at edges or vertices. We formalize this notion below.

Definition 4.1. Let X be a compact topological 2-manifold. A triangu-

lation of X consists of a finite system T = {T1, . . . , Tn} of closed subsets of
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X whose union is the whole of X, and homeomorphisms φi : ∆ → Ti, where ∆

is the unit triangle in R2.

We say that the Ti are the faces of the triangulation, and that the images

of the vertices (respectively edges) under φi of ∆ are the vertices (respectively

edges) of the triangulation. These must satisfy the following conditions:

(1) Each vertex (respectively edge) of T contained in a face Ti should be

the image of a vertex (respectively edge) of ∆ under φi;

(2) Any two different faces must either be disjoint, or intersect at a single

vertex, or intersect at a single edge.

As an example, we consider a triangulation on the 2-sphere S2, the un-

derlying topological structure for the complex projective line CP1 discussed in

Example 2.5.

Example 4.2 (Triangulation on the 2-sphere). By cutting S2 along the

equator and two meridians, we obtain a triangulation T with 6 vertices, 8

faces, and 12 edges. Figure 7 provides a visualization of T and the homeomor-

phic map from the unit triangle to one of its closed subsets T1. Since S2 is

homeomorphic to CP1, this implies that there is a corresponding triangulation

of CP1.

♢

Proposition 4.3 (Refinement of a triangulation). Given a particular tri-

angulation T of a compact topological space X and a point x ∈ X that is not

a vertex of T , we can refine T to include x as a vertex.

Proof of Proposition 4.3. There are two cases: either x lies in the interior

of a face of T or it lies on an edge of T .

Case 1: Take the face φi(∆) that contains x, and consider the natural

subdivision of ∆ that arises from joining φ−1
i (x) to the vertices and replace φi

with its restrictions to the smaller triangles ∆1,∆2 and ∆3 that arise from the

subdivision (where each ∆i is homeomorphic to the unit triangle ∆ in R2).

Case 2: Take the two faces φi(∆) and φj(∆) that meet at the edge on

which x lies, and repeat the same process, considering the natural subdivision

of ∆ that arises from joining φ−1
i (x) = φ−1

j (x) to the vertices and replace

φi and φj with their restrictions to the smaller triangles ∆1,∆2,∆3 and ∆4

(where, likewise, each ∆i is homeomorphic to the unit triangle ∆ in R2).

This process is illustrated in Figure 8.

□

We will now prove an important result, following [Sza09, §3.6], which will

set up our definition of the Euler characteristic.
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(a) A triangulation

T of S2.

(b) Homeomorphic mapping of the unit triangle ∆ to T1 ∈ T .

Figure 7. Illustration of Example 4.2.

Theorem 4.4. Every compact Riemann surface has a triangulation.

To prove this theorem, we begin with an arbitrary compact Riemann

surface, and use results from complex analysis and topology to reduce this

to the case of CP1, for which we know there is a triangulation by Example

4.2. We proceed in three steps. First, we show that a triangulation can be

canonically lifted via a finite branched cover. Second, we sketch a proof using

complex analysis that any compact Riemann surface yields a finite branched

cover of CP1. Finally, we relate these findings and Example 4.2 to conclude.

Lemma 4.5. Let φ : Y → X be a finite branched cover of compact Rie-

mann surfaces Y and X (in particular, following Theorem 3.7, consider the
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(a) Case 1, where x does not lie on an

edge of T .

(b) Case 2, where x lies on an edge of T .

Figure 8. Two possible cases for refining a triangulation.

case where X is connected and φ is a proper surjective holomorphic map

Y → X). Then every triangulation of X can be lifted canonically to a tri-

angulation of Y .

Proof of Lemma 4.5. Take some triangulation T on X with faces {Ti}
and homeomorphisms ψi : ∆ → Ti, and let S0 be the set of all vertices of T .

Following the process described in Proposition 4.3, we can refine T as necessary

so that S0 contains all images of branch points, i.e., for every x ∈ X such that

x = φ(y) for some y ∈ Sφ, we have x ∈ S0. Then the definition of a finite

branched cover implies that the restriction of φ to X \ φ−1(S0) is a cover.

Let ∆′ be the subset of ∆ obtained by omitting all vertices. We observe

that ∆′ is simply connected because it is contractible: as the triangle is filled-in

and convex, we can take the straight-line homotopy to contract it to its center
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point. Then the fundamental group of ∆′ is trivial and thus the restriction of

the branched cover φ : Y → X above each of ψi(∆
′) is trivial. This implies

that we can canonically lift the restriction of each ψi to ∆′ to each sheet of the

cover X \ φ−1(S0). We can also canonically lift all vertices of ψi(∆) that are

not the images of branch points. This demonstrates that the triangulation of

X gives rise to a triangulation of Y away from the branch points.

It remains to show that we also have a triangulation of Y at the branch

points. We revisit Proposition 3.2 regarding the local structure of holomorphic

maps to consider the behaviour of φ near branch points. For any branch point

y ∈ Y , Proposition 3.2 implies that there is a neighborhood of y on which φ

locally looks like the continuous open map z 7→ zey . Then we can apply the

process outlined in Proposition 4.3 to refine the triangulation again, adding

each branch point y as a vertex. This yields the desired triangulation of Y .

□

This process of lifting a triangulation is illustrated in Figure 9, where we

lift a triangle from X to Y via a branched cover of degree 3. We shall revisit

this process and diagram in Section 5 while proving the Riemann–Hurwitz

theorem.

Figure 9. A triangulation of X lifts canonically to a triangula-

tion of Y when φ : Y → X is a finite branched cover.

We move on to the second step of the proof of Theorem 4.4.

Lemma 4.6. Given a connected compact Riemann surface Y , there exists

a nonconstant holomorphic map Y → CP1.
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The proof of this lemma utilizes two results from complex analysis that

we will state below but not prove. Full proofs are given in [For07, Corollary

14.13, Theorem 1.8].

Lemma 4.7 (Riemann’s existence theorem). Let X be a compact Riemann

surface, x1, . . . , xn ∈ X a finite set of points, and a1, . . . , an a sequence of com-

plex numbers. Then there exists a function f on X that satisfies the following

conditions :

(1) f is holomorphic everywhere on X\S, where S ⊂ X is a discrete closed

subset, and for all complex charts (U,φ : U → C), the complex function

f ◦φ−1 is holomorphic everywhere except on a discrete closed subset of

the domain1;

(2) f is holomorphic at all the xi, with f(xi) = ai for all i from 1 to n.

□

Lemma 4.8 (Riemann’s removable singularities theorem). Let U be an

open subset of a Riemann surface X , let a ∈ U , and let f be some function

that is holomorphic on U \ {a}. Suppose f is bounded in some neighborhood

of a. Then f can be extended uniquely to a function f ′ that is holomorphic on

U . □

Proof sketch of Lemma 4.6. Since Y is a compact Riemann surface, Lemma

4.7 gives a nonconstant function f : Y → C that satisfies conditions (1) and (2)

in its statement. We now define a map φf : Y → CP1 = C ∪ {∞} as follows:

φf (y) =

{
f(y) y ̸= 0,∞
∞ y = 0,∞.

We know f is holomorphic on all but a discrete set of points by condition

(1), so given some y ∈ Y , we can choose a chart (U, g : U → C) centered around

y such that f is holomorphic on U \ {y} (shrinking U as necessary). Recall

from Example 2.5 that the two standard complex charts on CP1 are given by

z and 1
z on CP1 \ {∞} = C and CP1 \ {0}, respectively. Now there are two

cases. If f is holomorphic at y, then z ◦ φf ◦ g−1 is holomorphic on g(U). If f

is not holomorphic at y, we apply Lemma 4.8: (1z ) ◦ φf ◦ g−1 maps g(U \ {y})
to a bounded open subset of C and thus extends to a holomorphic function on

g(U). We conclude that φf is holomorphic. Moreover, since f is nonconstant,

φ is also nonconstant by construction. □

1 This is equivalent to f being a meromorphic function on X, which [Sza09, §3.3]
discusses formally. We eschew further discussion of meromorphic functions here to avoid

losing sight of the goal of this section: proving Theorem 4.4.
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We finally piece together these results to complete the proof of Theorem

4.4.

Proof of Theorem 4.4. Take any compact Riemann surface Y , and con-

sider its components (necessarily finitely many as Y is compact), which are

connected compact Riemann surfaces Y1, . . . , Yn. By Lemma 4.6, there exist

nonconstant holomorphic maps φ1, . . . , φn such that each φi maps Yi into CP1.

By Example 4.2, there is a triangulation on CP1. By Lemma 4.5, since each φi

is a holomorphic map from a compact connected Riemann surface Yi to CP1,

another compact connected Riemann surface, we have that φi is a branched

cover and that our triangulation of CP1 from Example 4.2 lifts to a triangula-

tion of Yi, say Ti. We can then piece together these triangulations by taking

their union to obtain a triangulation T on all of Y , completing the proof. □

Finally, we introduce the notion of an Euler characteristic, following the

definition given in [Sza09, §3.6].

Definition 4.9. Given a triangulation T of a compact Riemann surface X,

denote by S0, S1, and S2 the set of vertices, edges, and faces of T , respectively.

Let s0, s1, and s2 be their respective cardinalities. Then we define the Euler

characteristic of X to be χ(X) := s0 − s1 + s2.

This is the classical definition of the Euler characteristic. It is in fact equiv-

alent to the definition based on intersection theory in [GP78, p.116], though

proving this equivalence casts beyond this paper’s scope. Intuitively, this def-

inition offers us a means of classifying compact Riemann surfaces based on

their triangulations.

Note that we need Theorem 4.4 to ensure that the Euler characteristic

is defined for all compact Riemann surfaces, as any compact Riemann surface

must have a triangulation by Theorem 4.4 and therefore its Euler characteristic

can be computed using the given formula. Moreover, the Euler characteristic

is well-defined independent of the choice of triangulation on a given compact

Riemann surface. To see this, notice that the Euler characteristic remains un-

changed under the process of refining a triangulation described in Proposition

4.3 and illustrated in Figure 8. In both Case 1 (where we added x as a vertex

when x was not on an edge) and Case 2 (where we added x as a vertex when

x was on an edge), the Euler characteristic with the refined triangulation is

(s0+1)−(s1+3)+(s2+2) = s0−s1+s2, the same as the original. Then, given

any two triangulations of a compact Riemann surface, we can take their com-

mon refinement and thereby obtain the same value for its Euler characteristic

throughout.

As an example, we return to the case of S2, homeomorphic to CP1 as

discussed in Examples 2.5 and 4.2.
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Example 4.10. The triangulation T given in Example 4.2 and illustrated

in Figure 7 has 8 faces, 6 vertices, and 12 edges, which implies that χ(S2) =

6 − 12 + 8 = 2. Indeed, any other triangulation of S2 yields the same cal-

culation for the Euler characteristic. For example, Figure 10 shows another

triangulation T ′ of S2 obtained by cutting along the equator and twice in the

upper hemisphere. This triangulation has 4 faces, 4 vertices, and 6 edges, so

again we compute χ(S2) = 4− 6 + 4 = 2.

Figure 10. Another triangulation T ′ of S2.

♢

5. Proof of Riemann–Hurwitz formula

Finally, we move to prove the Riemann–Hurwitz formula, given as The-

orem 1.1 in the introduction, which we restate for convenience. Let φ : Y →
X be a holomorphic map of compact Riemann surfaces with degree d as a

branched cover. The Euler characteristics χ(X) and χ(Y ) of X and Y are

related by the formula

χ(Y ) = d · χ(X)−
∑
y

(ey − 1),

where the sum is over the branch points of φ and ey is the ramification index

corresponding to each branch point y ∈ Y .

The proof follows from closely revisiting the process of lifting a triangu-

lation via a branched cover discussed in Lemma 4.5 and illustrated in Figure

9.

Proof of Theorem 1.1 (The Riemann–Hurwitz formula). Take any trian-

gulation on X, and let s0, s1 and s2 be the number of vertices, faces, and

edges, respectively. Consider its canonical lifting to a triangulation of Y via
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the finite branched cover φ, given by the process outlined in the proof of Lemma

4.5. Notice that, by construction, all branch points y ∈ Y of φ correspond to

vertices of the lifted triangulation and therefore do not lie on edges or faces.

Thus, edges and faces are lifted canonically on the cover of degree d,

so the number of edges and the number of faces of the lifted triangulation

are equal to ds1 and ds2, respectively. For vertices on the lifted triangula-

tion, there are two cases. Vertices that do not correspond to the images of

branch points have d preimages as well, as the covering space is of degree d.

However, at any branch point y, we have to account for the ey sheets of the

branched cover merging together, and thus the number of preimages is instead

d − (ey − 1). Thus the number of vertices of the lifted triangulation can be

written as ds0 −
∑

y∈Sφ
(ey − 1), and we can compute the Euler characteristic

as follows:

χ(Y ) =

Ñ
ds0 −

∑
y∈Sφ

(ey − 1)

é
− ds1 + ds2

= d(s0 − s1 + s2)−
∑
y∈Sφ

(ey − 1)

= d · χ(X)−
∑
y∈Sφ

(ey − 1).

□

This is visually illustrated in the lifting of a triangle in Figure 9, where

φ is a branched cover of degree 3. We notice that the 3 edges of the triangle

in X are each lifted to 3 edges (for a total of 9 edges) in Y , and likewise that

the 1 face of the triangle in X is lifted to 3 faces in Y . The 2 vertices in X

that do not correspond to branch points are each lifted to 3 vertices in Y , but

the vertex that corresponds to a branch point (with ramification index 3, as 3

sheets merge) is only lifted to 1 = 3 · 1− (3− 1) vertex in Y . This gives a total

of 7 = 3 · 3 − (3 − 1) vertices in the lifted triangle, providing visual intuition

for the proof.

This gives us the major result of this paper, and we conclude with a brief

discussion of its implications. Because we are working with compact Riemann

surfaces (instead of smooth curves in the algebraic geometry setting), we can

apply some results from algebraic topology to restate the statement of Theorem

1.1 in more specific terms. In particular, any compact Riemann surface X is

homeomorphic to a torus with g holes. The proof of this result, given in [Ful95,

Theorem 17.4], utilizes the fact that compact Riemann surfaces are orientable

topological 2-manifolds and a method of “cutting and pasting.” We call g

the genus of X, and can thus classify compact Riemann surfaces in terms of
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their genera, as depicted in Figure 11: compact Riemann surfaces of genus 0

are homeomorphic to S2 and CP1, those of genus 1 are homeomorphic to the

torus, those of genus 2 are homeomorphic to the 2-torus, and so forth.

Figure 11. Tori with genera 0, 1, and 2, respectively.

Moreover, the genus of a compact Riemann surface gives us information

about its Euler characteristic: a compact Riemann surface of genus g has Euler

characteristic 2− 2g. This algebraic topology result, proven in [Ful95, p.244],

follows by taking g = 0 and g = 1 as base cases and inducting on the genus.

Note that we have already shown the g = 0 case in Example 4.10, since we

computed the Euler characteristic of CP1 to be 2 = 2− 2 · 0, where gCP1 = 0.

By restating Theorem 1.1 in these terms, we obtain the following corollary.

Corollary 5.1. Let φ : Y → X be a holomorphic map of compact Rie-

mann surfaces with degree d as a branched cover. Then

2gY − 2 = d(2gX − 2) +
∑
y

(ey − 1),

where the sum is over the branch points of φ, ey is the ramification index

corresponding to each branch point y ∈ Y , and gX and gY are the genera of X

and Y , respectively. □

This restatement of the Riemann–Hurwitz formula has a number of im-

plications, one of which is discussed below, relating to our previous discussion

of the case of CP1 in Examples 2.5 and 4.2.

Corollary 5.2. If X is a compact Riemann surface of genus g > 0, then

there are no nonconstant holomorphic maps CP1 → X .

Proof of Corollary 5.2. Suppose to the contrary that φ is a nonconstant

holomorphic map CP1 → X. By Theorem 3.7, φ induces a branched cover, so

by Corollary 5.1,

2gCP1 − 2 = d(2g − 2) +
∑
y

(ey − 1).
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As gCP1 = 0, the left-hand side equals 2 · 0− 2 = −2. But the right-hand side

must be a positive value, as g > 0 by assumption, so

d(2g − 2) +
∑
y

(ey − 1) > 0.

This gives us a contradiction, so no such φ can exist. □

This result is particularly interesting, as it reveals that the reverse of

Lemma 4.6 does not hold: while, for any connected compact Riemann surface

Y , we can have a nonconstant holomorphic map from Y into CP1, we cannot

necessarily have a nonconstant holomorphic map out of CP1 into Y .
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