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Abstract

Groups and their representations have been studied for a long time. One

can extend the notion of a group by asking the group axioms to hold in

other categories. A group in the category of smooth manifolds is a Lie

group, and a group in the category of algebraic varieties is an algebraic

group. In this paper, we discuss the representation theory of algebraic

groups, in particular complex tori and GL(2,C).

1. Introduction

The theme of this expository paper is to compare and contrast group objects

in the settings of smooth manifolds and algebraic varieties. In particular, we

begin by discussing the representation theory of tori in the smooth setting, and

from our discussion it will become clear that some tools of Lie theory are not

available to us in the algebraic setting. We remedy this by introducing different

tools. One such tool we will introduce is the notion of a Hopf algebra, which

axiomatizes the structure of the coordinate ring of an algebraic group. With a

clear understanding of what is and is not available to us, we then discuss the

representation theory of (C∗)n and GL(2,C) in the algebraic setting.

2. Representations of Tori

2.1. Real tori. In this section, we study the representations of tori in the cat-

egory of smooth manifolds. In particular, this means that the objects we are

considering are smooth manifolds and the morphisms are smooth maps. A real

torus T is a real Lie group which is isomorphic to the product of n circles.

We say that T has rank n.
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Let us first consider the case of T = S1. We want to classify the finite-

dimensional representations of S1. It turns out that all finite-dimensional

representations of S1 are decomposable, i.e., can be written as a direct sum of

irreducible representations.

Proposition 2.1. Let K be a compact Lie group and let ρ : K → GL(V ) be

a finite-dimensional complex representation. Then ρ is completely reducible.

Proof sketch. The idea is to replicate the proof of Maschke’s theorem for finite

groups. Choose any inner product ⟨·, ·⟩ on V and average over the group action

to get a K-invariant inner product on V . In particular, put

⟨v, w⟩avg =
1

|K|

∫
K

⟨ρ(k)v, ρ(k)w⟩dk.

The existence of this inner product allows us to conclude that the orthogonal

complement of a K-invariant subspace is also K-invariant. Inducting on the

dimension of V allows us to completely decompose V into irreducible repre-

sentations. □

We refer the reader to Chapter 9 of [FH91] for more detailed discussion.

Thus, it is enough to just consider the irreducible representations of S1. By

Schur’s lemma (in particular, S1 is abelian), they are all one-dimensional and

therefore are indexed by characters χ : S1 → C∗. Since S1 is compact, its

image in C∗ must also be compact; moreover, it is connected and contains the

identity. Therefore, the image of χ must lie in S1.

Proposition 2.2. All characters of S1 are isomorphic to χn : S1 → S1 given

by z 7→ zn for n ∈ Z.

Proof. Use the universal covering map exp : R → S1. Given a character

χ : S1 → S1, we can lift it to a map χ̃ : S1 → R. Since χ is a group

homomorphism, it carries 1 to 1, and the fiber over 1 under exp is Z. □

Since characters for S1 × · · · × S1 are the same as products of characters for

S1, all characters of T are indexed by Zn. Explicitly, if T has rank n, then

a character χ : T → S1 is given by a tuple of integers (n1, . . . , nk), and the

character is given by

(z1, . . . , zk) 7→ zn1
1 · · · znk

k .

From our discussion above, we have the following classification statement for

representations of real tori as Lie groups.
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Theorem 2.3. Let T be a real torus of rank n. Then every finite-dimensional

representation V of T is isomorphic to a direct sum of one-dimensional irre-

ducible representations with some multiplicities

V ∼=
⊕
χ∈Zn

W
⊕nχ
χ ,

where Wχ denotes the unique one-dimensional irreducible representation for

which T acts by χ.

In particular, we can decompose V into eigenspaces for the action of T

V ∼=
⊕
χ∈Zn

Vχ,

where Vχ = {v ∈ V | t · v = χ(t)v for all v ∈ V and t ∈ T}. This is referred

to as the weight space decomposition of V , and we refer to the χ which

appear in the decomposition as the weights of V . We say that v ∈ Vχ is a

weight vector of weight χ.

2.2. Complex tori. We want an analagous story in algebraic geometry. To

do so, we establish the following framework. Specifically, we are now dealing

with the category of algebraic varieties over C, where the objects are algebraic
varieties and the morphisms are morphisms of algebraic varieties.

Definition 2.4. An algebraic group G over C is an algebraic variety over C
with a group structure so that the multipliation map G × G → G and the

inversion map G → G are morphisms of algebraic varieties.

Definition 2.5. A morphism of algebraic groups G → H is a morphism of

algebraic varieties that is also a group homomorphism.

Definition 2.6. Let G be an algebraic group. A rational representation of

G is a morphism of algebraic groups G → GL(V ) for some vector space V .

(For us, V will always be finite-dimensional over C.)

We will consider complex algebraic tori T = C∗×· · ·×C∗. This is an algebraic

group because T is the zero locus of the polynomial equations

T = SpecC[x±1
1 , . . . , x±1

n ]

:= Spec
(
C[x1, . . . , xn, y1, . . . , yn]/(x1y1 − 1, . . . , xnyn − 1)

)
.

This is a group in the familiar way, and it is clear that the group law is indeed

a morphism of algebraic varieties. The rest of this section will discuss the

finite-dimensional rational representations of T as an algebraic group.

Remark 2.7. Why do we consider real tori as Lie groups and complex algebraic

tori as algebraic groups? One good reason is that the real tori are not complex
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algebraic varieties. For example, there are no polynomials over C which define

S1 × S1 as a complex algebraic variety. Moreover, as Lie groups, the complex

torus is the complexification of the real torus.

Example 2.8. GL(n,C) is a familiar group which can be endowed with the

structure of an algebraic group. GL(n,C) is the zero locus of the polynomial

equations

GL(n,C) = Spec
(
C[xij ,det−1]

)
:= Spec

(
C[xij , t]/(det(xij)t− 1)

)
.

This variety becomes a group in the familiar way, and it is clear that the group

law is indeed a morphism of algebraic varieties. ♢

The following theorem classifies the finite-dimensional rational representations

of T as an algebraic group. The story is precisely that of the smooth manifold

setting, but we introduce the language of Hopf algebras to demonstrate this.

Theorem 2.9. Let T be a complex torus of rank n. Then every finite-dimensional

rational representation of T is isomorphic to a direct sum of one-dimensional

irreducible representations with some multiplicities

V ∼=
⊕
χ∈Zn

W
⊕nχ
χ ,

where Wχ denotes the unique one-dimensional irreducible representation for

which T acts by χ.

We will give an proof of this theorem after we introduce the language of Hopf

algebras.

2.3. Hopf algebras. The notion of a Hopf algebra axiomatizes the structure of

the ring of regular functions on an algebraic group. In particular, let G be an

algebraic group andO(G) its ring of regular functions. Then the multiplication,

inversion, and identity maps

µ : G×G → G

ι : G → G

e : SpecC → G

induce maps on the coordinate rings

∆ : O(G) → O(G)⊗O(G)

ϵ : O(G) → C
S : O(G) → O(G),

where we made the identification O(G×G) ∼= O(G)⊗O(G). Because the group

axioms hold, these maps satisfy the following conditions and equip O(G) with

the structure of a Hopf algebra.
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Definition 2.10. Let A be a C-algebra. Then we say A is a Hopf algebra if

there are maps

comultiplication ∆ : A → A⊗A

counit (augmentation) ϵ : A → C
coinverse (antipode) S : A → A

so that the following diagrams commute:

A A⊗A

A⊗A A⊗A⊗A

∆

∆ ∆⊗ id

id⊗∆

A A⊗A

A C⊗A

∆

id ϵ⊗ id

∼=

A A⊗A

C A

∆

ϵ S⊗ id .

Remark 2.11. These maps can be worked out very explicitly. In particular, the

points of G are in correspondence with the elements of HomkAlg(O(G),C). The
correspondence can be written down explicitly as g 7→ evg, where evg : O(G) → C
is the evaluation map. The key idea is as follows. Let G be an arbitrary al-

gebraic group G with x, y points of G, and write fx, fy : O(G) → C for the

corresponding morphisms of C-algebras. Then the composition (fx ⊗ fy) ◦∆
is again a map O(G) → O(G) ⊗ O(G) → C, and so we can ask if it is the

map fz corresponding to some z ∈ G. The condition that we require from

comultiplication is precisely that the composition (fx ⊗ fy) ◦∆ corresponds to

the product xy ∈ G. In particular, the group law on G uniquely determines

the comultiplication map on O(G).

Example 2.12. Recall that

O(Ga(C)) = C[x],

where Ga(C) is the additive group of C. Let f, g ∈ HomkAlg(O(G),C) with

f(x) = a and g(x) = b. We want to find a map

∆ : O(Ga(C)) → O(Ga(C))⊗O(Ga(C))
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so that

((f ⊗ g) ◦∆) (X) = (a+ b).

We write down the map ∆ explicitly as

∆(X) = X ⊗ 1 + 1⊗X

and notice that it does the job. We see that ∆ then must be the comultipli-

cation map for Ga(C) because such a map is unique (see the above remark),

given the prescribed group law on Ga(C). ♢

Example 2.13. By the same token, we can work out the Hopf algebra structure

for C∗ to be

∆(x) = x⊗ x

ϵ(x) = 1

S(x) = x−1.

♢

Example 2.14. Consider the example of GL(2,C) as an algebraic group. The

Hopf algebra structure is given by

∆(xij) =
2∑

k=1

xik ⊗ xkj

ϵ(xij) = δij

S(xij) = Mij ,

where

M =

ñ
x11 x12
x21 x22

ô−1

=
1

det(M)

ñ
x22 −x12
−x21 x11

ô
.

♢

Now we want to translate the representation theory of algebraic groups G into

the language of comodules over Hopf algebras.

Theorem 2.15. Let G be an algebraic group. Then rational representations

V of G correspond to linear maps ρ : V → V ⊗ O(G) so that the following

diagrams commute:

V V ⊗O(G)

V ⊗O(G) V ⊗O(G)⊗O(G)

ρ

ρ ρ⊗ id

id⊗∆
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V V ⊗O(G)

V V ⊗ C

ρ

id id⊗ ϵ

∼=

.

Proof sketch. The first diagram says that the action of G on V is associative

and the second diagram says that e ∈ G acts by the identity transformation

on V . These are precisely the conditions that say that V is a representation

of G. □

We refer the reader to [Wat79] for a more detailed discussion of this theorem.

Definition 2.16. We call ρ a comodule structure on V .

Example 2.17. Consider the action of C∗ on C2 given by

t · (a, b) = (ta, t−1b).

This is a rational representation of C∗ which we can write as

τ : C∗ → GL(2,C)

t 7→
ñ
t 0

0 t−1

ô
.

This induces a comodule structure on C2 given by the map ρ : C2 → C2⊗O(C∗)

ρ(a) = a⊗ x

ρ(b) = b⊗ x−1,

where x is the coordinate function on C∗. ♢

2.4. Weight space decomposition. We are now ready to give a proof of Theorem

2.9 using the language of Hopf algebras.

Proof of 2.9. Let V be a finite-dimensional rational representation of T and

let ρ : V → V ⊗O(T ) be the corresponding comodule structure. Recall that

O(T ) ∼= C[x1, . . . , xn, x1−1, . . . , xn
−1].

We write as a vector space decomposition

V ⊗O(T ) ∼=
⊕
m∈Zn

V ⊗ C · xm.
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Expanding ρ(v) in terms of this basis, we find that

ρ(v) =
∑
m∈Zn

vm ⊗ xm finitely many nonzero vm

=⇒ (id⊗∆)(ρ(v)) =
∑
m∈Zn

vm ⊗ xm ⊗ xm

=⇒ (ρ⊗ id)(ρ(v)) =
∑
m∈Zn

ρ(vm)⊗ xm

=⇒ ρ(vm) = vm ⊗ xm for those nonzero vm.

The second step comes from our computation that ∆(xi) = xi ⊗ xi and the

fact that ∆ is a coalgebra homomorphism. The claim that ∆ is a morphism of

coalgebras is not immediate, but it ultimately reduces to the statement that if

B is a k-algebra, then the multiplication map B⊗B → B is a morphism of k-

algebras if and only ifB is commutative. We are working with (co)commutative

(co)algebras, so this is not an issue. The fourth step comes from equating the

second and third left-hand sides.

Finally, we apply the second diagram in 2.10 to get

(id⊗ ϵ)(ρ(v)) = v =
∑
m∈Zn

vmϵ(xm) =
∑
m∈Zn

vm.

Thus we see that the comodule V decomposes as a direct sum of subcomodules

V =
⊕
m∈Zn

Vm,

where Vm := {v ∈ V | ρ(v) = v ⊗ xm}. This is precisely saying that T acts on

Vm by the character χm : T → C∗ given by t 7→ tm. Moreover, picking a basis

for each Vm gives a decomposition of V into a direct sum of one-dimensional

irreducible representations

V ∼=
⊕
m∈Zn

W⊕nm
m ,

where Wm is the unique one-dimensional irreducible representation for which

T acts by χm. □

3. Representations of GL(2,C)

3.1. Reducibility. We saw in Section 2 that every rational representation of

T decomposes into a direct sum of irreducible representations and that the

irreducible representations are indexed by Zn.

It turns out that rational representations of GL(2,C) also decompose into a

direct sum of irreducible representations. This is because we can apply Weyl’s
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unitary trick again. We consider U(2) ⊂ GL(2,C), the subgroup of unitary

matrices. This is a compact subgroup that is also Zariski dense in GL(2,C).
We can then apply the same averaging trick to obtain an inner product on

V that will actually be GL(2,C) invariant, because U(2) is Zariski dense in

GL(2,C).

We refer the reader to Chapter 9 of [FH91] for more detailed discussion.

3.2. Highest weight vectors. To completely classify the rational representations

of GL(2,C), we need to introduce highest weight vectors. Let T ⊂ GL(2,C)
be the subgroup of diagonal matrices and B ⊂ GL(2,C) be the subgroup of

upper triangular matrices. These ad hoc definitions will work for us, but in

general T is a maximal torus and B is a Borel subgroup of GL(2,C).

Definition 3.1. Let V be a finite-dimensional rational representation of GL(2,C).
A highest weight vector v ∈ V is a weight vector so that B · v = C∗ · v. A

highest weight is a weight which corresponds to a highest weight vector.

Example 3.2. The group GL(2,C) has a standard representation on C2 given

by the matrix multiplication map. This action is transitive on the nonzero

vectors, so C2 is irreducible. Considering the torus action T ⊂ GL(2,C), we
see that C2 decomposes into a direct sum of weight spaces

C2 ∼= C · e1 ⊕ C · e2,

where e1 and e2 are the standard basis vectors with weights (1, 0) and (0, 1),

respectively. Then (1, 0) is the unique highest weight, and the corresponding

weight space is one-dimensional. The standard representation of GL(2,C) is

irreducible. ♢

Example 3.3. Since GL(2,C) acts on C2, it also acts on (C2)⊗n for n ∈ Z≥0

via

g · (v1 ⊗ · · · ⊗ vn) = (gv1 ⊗ · · · ⊗ gvn).

This is known as the tensor product representation of GL(2,C). We can

further quotient by the submodule generated by vectors of the form

v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn − v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn

for 1 ≤ i ≤ n− 1. This is known as the symmetric power representation

of GL(2,C), denoted SymnC2. Choosing a basis e1, e2 for C2 gives a basis for

SymnC2 given by

{ek1en−k
2 | 0 ≤ k ≤ n},
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and the action of GL(2,C) on SymnC2 is given by

g · ek1en−k
2 = (ge1)

k(ge2)
n−k.

Setting g ∈ T , we see that ek1e
n−k
2 is a weight vector with weight (k, n − k).

One can quickly check that SymnC2 is irreducible for all n ∈ Z≥0. One can

also check that the highest weight vector is en1 and that it has highest weight

(n, 0). ♢

Example 3.4. We have a familiar one-dimensional representation of GL(2,C)
given by the determinant map. The determinant of a diagonal matrix is the

product of its diagonal entries, and so this representation has weight (1, 1).

We will denote the kth power of the determinant map by detk for k ∈ Z. This
is a one-dimensional representation with weight (k, k). ♢

We are now ready to state the classification theorem for finite-dimensional

rational irreducible representations of GL(2,C).

Theorem 3.5. Every finite-dimensional rational irreducible representation of

GL(2,C) is isomorphic to

SymnC2 ⊗ det k

for some n ∈ Z≥0 and k ∈ Z.

We will prove this theorem by considering the weights that appear in the weight

space decomposition of V |T , where T ⊂ GL(2,C) is the subgroup of diagonal

matrices.

In particular, we appeal to the following facts from representation theory, col-

lectively referred to as the theorems of the highest weight.

Theorem 3.6.

(1) A finite-dimensional rational representation V of GL(2,C) is irreducible
if and only if it has a unique highest weight vector. In this case, it

makes sense to talk about the highest weight of V , defined as the weight

corresponding to the highest weight vector.

(2) Two finite-dimensional rational irreducible representations of GL(2,C)
are isomorphic if and only if they have the same highest weight.

(3) Let V be a finite-dimensional irreducible rational representation of

GL(2,C) with highest weight vector v. Then the highest weight of V is

contained in the set

{(a, b) ∈ Z2 | a ≥ b}.

(4) Every such weight above is a highest weight for some irreducible repre-

sentation of GL(2,C).
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We will give a short discussion of the proof of these theorems in the case of

GL(n,C).

Remark 3.7. This theorem holds in great generality. Analagous statements

are true for other algebraic groups such as SL(n,C) and SO(n), as well as

representations of complex semisimple Lie algebras, but in order to make sense

of such a theorem, one has to find the right notion of Borel subgroups and

highest weight vector.

The proof in full generality is quite technical and we refer the reader to [Mil17]

for a more detailed discussion.

The theorems of the highest weight immediately imply the classification theo-

rem for finite-dimensional rational irreducible representations of GL(2,C). In

particular, let V be a finite-dimensional rational irreducible representation of

GL(2,C) with highest weight (a, b). Then by looking at the highest weights

(observe that if v is a weight vector for V with weight µ and w is a weight

vector for W with weight ν, then v ⊗ w is a weight vector for V ⊗ W with

weight µ+ ν), we see that V ∼= Syma−bC2 ⊗ det b.

4. Theorems of the highest weight

In this section, we will discuss some aspects of Theorem 3.6 in the case of

GL(2,C), in both the smooth setting and the algebraic setting.

4.1. The smooth setting. The exposition in this section follows Chapter 8 of

[Ful97]. One of the main ingredients in the proof of 3.6 is considering the

induced action of gl(2,C) on V , where gl(2,C) is the Lie algebra of GL(2,C).
Recall that

gl(2,C) = Mat(2,C)

is a vector space equipped with a bracket operation given by the commutator.

The Lie algebra gl(2,C) can be identified with the tangent space of GL(2,C)
at the identity matrix. We can then consider the action of gl(2,C) on V given

by

X · v =
d

dt

∣∣∣∣
t=0

exp(tX) · v,

where exp : gl(2,C) → GL(2,C) is the exponential map. In particular, this

map is the differential of the action of GL(2,C) on V .

Studying the action of gl(2,C) on V is equivalent to studying the action of

GL(2,C) on V because GL(2,C) is simply connected. This is a general principle

which reflects the fact that any map of Lie groups G → H with G simply
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connected is determined by its differential at the identity. Then one can show

the following lemma.

Lemma 4.1. A subspace W of a representation of GL(2,C) is a subrepresen-

tation if and only if W is stable under the action of gl(2,C).

We refer the reader to Chapter 3 of [Bou89] for a proof of this lemma. This

discussion justifies our passing from the study of GL(2,C) to the study of

gl(2,C).

Just as we obtained a decomposition of V as a GL(2,C) into eigenspaces for

the action of T , there is an analagous decomposition for the action of gl(2,C).
The object which replaces our maximal torus T ⊂ GL(2,C) is the Cartan

subalgebra h ⊂ gl(2,C). For us, h will be the subspace of diagonal matrices

in gl(2,C). In general, h is a maximal abelian subalgebra of gl(2,C).

We can obtain a decomposition of V into eigenspaces for the action of h

V =
⊕
χ∈h∗

Vχ,

where Vχ = {v ∈ V | X · v = χ(X)v for all X ∈ h}. Moreover gl(2,C) acts

on itself via the bracket (adjoint representation) and we can decompose this

action as

gl(2,C) ∼= h⊕ gα ⊕ g−α

∼= h⊕ Ce⊕ Cf,

where α

Çñ
d1 0

0 d2

ôå
= d1 − d2 and

e =

ñ
0 1

0 0

ô
f =

ñ
0 0

1 0

ô
.

One can check that for all h ∈ h we have

[h, e] = α(h)e

[h, f ] = −α(h)f.

The weights which appear in the adjoint representation of gl(2,C) are called

the roots. We will say α is a positive root and −α is a negative root, and

call Ce and Cf the corresponding positive and negative root spaces. Then

a weight vector v ∈ V is a highest weight vector if and only if e · v = 0.
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We care about roots of the adjoint representation for the following reason. Let

V be a finite-dimensional rational representation of gl(2,C). Decompose V

into eigenspaces for the action of h as before:

V =
⊕
χ∈h∗

Vχ.

Knowing how h acts on V , we now need to investigate the actions of e and

f . As it turns out, e and f are operators which translate between the weight

spaces. Specifically, let v be an weight vector for the action of h with weight

χ. Then e · v is a weight vector with weight χ+ α. Indeed—recalling that the

action of the Lie algebra respects brackets—for X ∈ h we have

X · ev = e ·Xv + [X, e] · v
= χ(X)ev + α(X)ev.

A priori, we know nothing about the weights of V . Now we know that all of

the weights of V are translates of each other by the roots of gl(2,C). Now

let µ be any weight which appears in the decomposition of V . Then we can

consider the translates

µ+ Zα

and since V is finite-dimensional, only finitely many of the weight spaces of

V corresponding to these weights are nonzero. Recall we picked a positive

system, so now it makes to talk about the highest weight (it is the weight χ

so that all of the weights χ+ Nα correspond to empty weight spaces).

If V is an irreducible representation then a highest weight vector must span

its root space. This is because if v is a highest weight vector, then one can

show that the subspace generated by v, f · v, f2 · v, . . . is a subrepresentation.

It follows that an irreducible representation can have only one highest weight

vector (up to scale).

4.2. The algebraic setting. In order to justify the passage from GL(2,C) to

gl(2,C), we made use of the exponential map. This is not available in the

category of varieties. However we can still make sense of the Lie algebra of an

algebraic group and the induced action of the Lie algebra on a vector space.

To do so, we need to pass to the Zariski tangent space of a variety.

Definition 4.2. Let A be a local ring and m its maximal ideal. The residue

field k of A is the field A/m and the Zariski cotangent space of A is the

k-vector space m/m2. The Zariski tangent space of A is the dual vector

space Homk(m/m2, k). If X is a variety and p ∈ X, then we define the Zariski

tangent space of X at p to be the Zariski tangent space of OX,p.
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To make sense of this definition, we need to borrow a little motivation from the

theory of differentiable manifolds. If M is a smooth manifold, tangent vectors

at a point p ∈ M are in one-to-one correspondence with derivations of the ring

of germs of smooth functions at p, i.e., R-linear maps OM,p → R which satisfy

the Leibniz rule

D(fg) = f(p)Dg + g(p)Df

for all f, g ∈ OM,p. We refer to Chapter 3 of [Lee03] for a more detailed

discussion of this point of view.

Proposition 4.3. Let X be a variety over a field k and let p ∈ X . Consider

the local ring OX,x and its maximal ideal m. Let k(p) be the residue field of

OX,p. It coincides with k. There is an isomorphism

Homk(m/m2, k) ∼= Derk(OX,p, k(x)).

Proof. A derivation is precisely the data of a k-linear mapm → k which satisfies

the Leibniz rule. This extends to a k-linear map OX,p → k by precomposing

with f 7→ f − f(p). Moreover, m2 maps to zero because if f(p) = g(p) = 0,

then

D(fg) = f(p)Dg + g(p)Df = 0.

Therefore, a derivation induces an element of the tangent space of X at p.

Conversely, if we have a k-linear map m/m2 → k, precompose with the quo-

tient map to get D : m → k. Then we have to show that D satisfies the

Leibniz rule. This is a straightforward computation. Let f, g ∈ OX,p. Then

(f − f(p))(g − g(p)) ∈ m2 and so

0 = D((f − f(p))(g − g(p))) = D(fg − f(p)g − fg(p) + f(p)g(p))

=⇒ D(fg) = f(p)Dg + g(p)Df,

since constants derive to zero and so D is a derivation. It is clear that these

two maps are inverses of each other. □

Now we can make sense of the Lie algebra of an algebraic group.

Definition 4.4. Let G be an algebraic group. The Lie algebra of G, denoted

g, is the Zariski tangent space of G at the identity.

Note that if α : G → W is a morphism of varieties, then there is an induced

map O(W ) → O(G) on coordinate rings, and this map is local in the sense that

OW,α(p) → OG,p is a local ring homomorphism for all p ∈ G. Geometrically,

this is saying that if a regular function on W vanishes at a point α(p), then its

pullback to G vanishes at p.
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In particular, we see that a morphism of varieties α has a differential dα which

takes a derivation D : OW,α(p) → k to a derivation dα(D) : OG,p → k. Letting

W = GL(V ), we see that the differential of the action of G on V gives us a Lie

algebra representation (in the sense that it respects the bracket) of g on V .

Then again one proves that Lemma 4.1 holds in the algebraic setting and so

we have reduced to the study of the action of g on V . A reference for this

proof can be found in Chapter 1 of [Bor91]. We can then proceed as in the

smooth setting to prove Theorem 3.6.
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