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The Gauss–Bonnet theorem

By Bonnie Yang

1. Introduction

The Gauss–Bonnet theorem is a crowning result of surface theory that

gives a fundamental connection between geometry and topology. Roughly

speaking, geometry refers to the “local” properties—lengths, angles, curvature—

of some fixed object, while topology seeks to identify the “global” properties

that are unchanged by a continuous deformation, such as stretching or twist-

ing. The theorem formalizes an intuitive idea: continuous changes to curvature

on one region of a surface will be balanced out elsewhere, so the total curvature

of the surface stays the same.

Explicitly, the Gauss–Bonnet theorem says that a surface’s total curva-

ture, defined using its local Gaussian curvature, is directly proportional to

the number of holes in the surface, which comes from an invariant quantity

called its Euler characteristic. The Euler characteristic is a way of classifying

which surfaces can be continuously deformed into one another; as an informal

example, the classic joke that “a topologist is a person who cannot tell the

difference between a coffee mug and a doughnut” comes from the fact that the

objects each have one hole. Even though a coffee mug and a doughnut have

visibly different geometric shapes, according to the Gauss–Bonnet theorem,

both objects will have the same total curvature.

Our goal is to show ∫
S
KdA = 2πχ(S),

where S is a closed surface in R3, K is the Gaussian curvature, dA is the area

element, and χ(S) is the Euler characteristic. The proof itself is delightfully

systematic: we first find the total curvature of a curve on a plane, extend that

result to curves on three-dimensional surfaces, extend that result to “polygons”

on surfaces, and finally the entire surface.

In Section 2, we prove Hopf’s Umlaufsatz for the total curvature of a

simple closed curve in R2. Sections 3, 4, and 5 introduce concepts from differ-

ential geometry to define Gaussian curvature. In Section 6, we prove the local
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Gauss–Bonnet theorem for the total curvature of a surface polygon. At last,

in Section 7, we prove the global Gauss–Bonnet theorem for compact surfaces

by covering the surface with polygons and applying the local Gauss–Bonnet

theorem to each one.

Our discussion focuses on exposition, and references will be given in place

of tedious computations when reasonable. This paper assumes a somewhat

rigorous understanding of multivariable calculus and linear algebra, as well as

some elementary group theory.

2. Plane curves and Hopf’s Umlaufsatz

Hopf’s Umlaufsatz1 asserts that the total signed curvature of any simple

closed curve in R2 is equal to ±2π, with sign depending on the curve’s orien-

tation. Although the theorem is about the curvature of a line and not a region

with area, the Umlaufsatz does much of the heavy lifting for our later proof in

R3. We begin with some preliminary theory of paths and curves.

Definition 2.1. A (parametric) path in Rn is a continuous function

γ : I → Rn, where I is any interval of R. The image of a path is called a

parametrized curve in Rn.

If γ is differentiable, the differential2 γ̇(t) is called the tangent vector of

γ at the point γ(t). We say γ is regular if γ̇(t) is nonzero for all t ∈ I.

Remark 2.2. A particular curve can be the image of infinitely many paths.

To see this, suppose γ1 and γ2 are two paths defined on the intervals I1 and

I2, respectively. Since these are intervals of R, we can define a bijection ϕ :

I1 → I2 between their domains. Then if γ1 and γ2 are both injective with the

same image curve, we can always reparametrize one path as the other by a

composition γ2 = γ1 ◦ ϕ.
In practice, the terms path and curve are used interchangeably to mean

either a continuous function γ : [a, b] → Rn or its image. The correct interpre-

tation should be clear from context.

Unless otherwise specified, all curves discussed in this paper are

assumed to be regular and smooth, meaning there exist continuous

partial derivatives of all orders.

1 From German umlauf (rotation) and satz (theorem)—sometimes translated, unsurpris-

ingly, to “rotation angle theorem.”
2 The “overdot” notation is conventially used for a derivative taken with respect to time

(i.e., γ̇ = dγ/dt and γ̈ = d2γ/dt).



THE GAUSS–BONNET THEOREM 45

Definition 2.3. If γ : [a, b] → Rn is a parametrized curve, then for any

a ≤ t ≤ b, the arc length of γ from a to t is given by the function

s(t) =

∫ t

a

∥γ̇t∥dt.

A regular curve γ is unit-speed if for all t, we have ∥γ̇(t)∥ = 1. In this case, the

arc length is s(t) = t, so γ is also said to be an arc length parametrization.

Remark 2.4. Every regular curve can be reparametrized to unit speed.

Hopf’s Umlaufsatz involves an integral over the curvature of a plane curve,

so we now focus our discussion on some geometric properties that are specific

to curves in R2. For plane curves, which have two choices of unit normal vector

for each tangent vector γ̇(s), we fix the signed unit normal n to be the vector

obtained by rotating γ̇ counterclockwise by π/2.

Proposition 2.5. Given a unit-speed plane curve γ, there exists a scalar

κ called the signed curvature of γ such that

γ̈ = κn,

where n is the signed unit normal of γ. Note that κ can be positive, negative,

or zero for each point of the curve γ.

Proof. Recall that ⟨γ̇, γ̇⟩ = 1, so we can differentiate to obtain ⟨γ̈, γ̇⟩ +
⟨γ̇, γ̈⟩ = 0. Thus, the vectors γ̇ and γ̈ are perpendicular, so γ̈ must be a scalar

multiple of n. □

(a) κ > 0 (b) κ < 0

This formulation of curvature is strictly local, since it arises from the

behavior of a curve at a specific point: if γ(s) is a point on a unit-speed curve,

then ∥n(s)∥ = 1 and we have precisely |κ(s)| = ∥γ̈(s)∥. To see how Hopf’s

Umlaufsatz relates local curvature to a curve’s topology, we must next get a

sense of what global properties a curve has.

We start with a geometric interpretation of the tangent vector for plane

curves. When γ : [a, b] → R2 is unit-speed, the direction of each vector γ̇(s)
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is determined by the angle θ(s) for which γ̇(s) = eiθ(s). It is straightforward

to show that our choice of θ(s) is smooth: briefly, if γ̇ is indeed defined on the

complex unit circle, then the chain rule implies

γ̈(s) = iθ̇(s) · eiθ(s) = θ̇(s);

one can recover θ̇ as the scalar in this expression, and then the continuous map

θ by taking an antiderivative.

Definition 2.6. Let f : [a, b] → S1 be any path in the unit circle, and let

p : R → S1 be defined by p(t) = eit. An angle function for f is a smooth

map θ : [a, b] → R which satisfies

f(s) = p ◦ θ = eiθ(s).

If f = γ̇ for some unit-speed plane curve γ, then θ is called a tangent angle

function for γ.

Proposition 2.7. Given a unit-speed curve γ : [a, b] → R2 with a tangent

angle function θ, the signed curvature of γ is defined by

κ = θ̇,

the rate at which the tangent vector γ̇ rotates. (See [Pre10, Proposition 2.2.1]

for a proof.)

The upshot of this discussion is that we can express the tangent γ̇ of any

plane curve γ as a path in the unit circle! This is useful because every path in

S1 has a fixed degree, which counts how many times the curve “goes around”

the circle counterclockwise. Defining a path γ̇ : [a, b] → S1 this way allows us

to treat the degree of the tangent as a topological property of γ itself. Later,

we will see that the proof of the Umlaufsatz is essentially an argument about

the degree of γ̇ in a specific case: when γ is a simple closed curve.

A tangent angle function θ takes each point γ̇(s) on the circle to a number

on the “unfolded” real line, which we call a lift of γ̇ to R. Notice that a

tangent curve γ̇ which winds around the circle n times will have its tangent

angle function increase by n. Using the fact that each corresponding angle θ(s)

is unique up to an integer multiple of 2π, we can recover the degree of γ̇ from

this unfolding process.

[a, b] S1

R

γ̇

θ p
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Relationship between domains for the tangent curve γ̇, tangent angle

function θ, and the unit circle S1.

Proposition 2.8. Let f : [a, b] → S1 be a path in the circle and θ, ϕ :

[a, b] → R be any two angle functions for f . Then we have

θ(b)− θ(a) = ϕ(b)− ϕ(a).

Equivalently, for a chosen tangent angle θ(s0) with s0 ∈ [a, b], there exists a

unique angle function θ0 such that f(s0) = eiθ0(s0).

Proof. We will show that for eiθ(s) and eiϕ(s) to agree, the values θ(s) and

ϕ(s) must differ by an integer multiple of 2π, and by continuity, the integer

must be the same for all s.

First, since both expressions for γ̇(s) are points in S1, the angles θ(s)

and γ(s) clearly differ by full rotations about unit circle. Formally, this means

there exists some integer n(s) such that for all s ∈ [a, b], we have

ϕ(s)− θ(s) = 2πn(s).

Because θ and ϕ are continuous functions, n is continuous on the domain [a, b]

as well, and we apply the intermediate value theorem to conclude that n is a

constant that does not depend on s. Thus, the integer term cancels, and we

see

ϕ(b)− ϕ(a) = θ(b) + 2πn(s)− θ(a)− 2πn(s) = θ(b)− θ(a)

as desired. □

Definition 2.9. Let f : [a, b] → S1 be a path in the circle and let θ :

[a, b] → R be a tangent angle function of γ. The degree of f is defined as

θ(b)− θ(a)

2π
.

If γ : [a, b] → R2 is a unit-speed plane curve, then the degree of its tangent γ̇

is called the rotation index of γ and denoted ind(γ).

Definition 2.10. Given a compact interval [a, b] ⊂ R, we say γ : [a, b] → Rn

is a closed curve of period b− a if γ(a) = γ(b). If γ is injective on the open

interval (a, b), then γ is called simple.

Simple and closed Simple, not closed Not simple, closed Not simple and not closed
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The Jordan curve theorem from topology tells us that any simple closed

curve on a plane has an “interior” and an “exterior.” Precisely, if γ is a simple

closed curve in R2, then the complement of its image is the union of two subsets

of R2, denoted int(γ) and ext(γ), which satisfy the following:

• int(γ) and ext(γ) are disjoint, so int(γ) ∩ ext(γ) = ∅;
• int(γ) is bounded and ext(γ) is unbounded;

• Both int(γ) and ext(γ) are connected, so any two points in the same

subset can be joined by a curve contained entirely in that subset.

This gives us a way to distinguish between two possible orientations of γ

using geometry: we say γ is positively-oriented if the signed unit normal n

points into int(γ) at every point in the curve.

Now, when we claim that a property like the rotation index is global, we

mean that it is invariant under a “continuous deformation.” The following

definition formalizes this notion for closed curves in R2.

Definition 2.11. An isotopy of simple closed plane curves of period ℓ is

a family of curves γt : R → R2 such that

(i) Each curve γt is period ℓ;

(ii) For all 0 ≤ t ≤ 1, the map h : R× [0, 1] → R2 defined by h(s, t) = γt(s)

is also a regular, smooth, and closed plane curve of period ℓ;

(iii) We have h(s, 0) = γ0(s) and h(s, 1) = γ1(s).

If such a family exists, we say that γ0 is isotopic to γ1.

Example 2.12. We have already seen an example of such a family: the

reparametrizations discussed at the beginning of this section are given by iso-

topies of the form h(s, t) = γ(s+ s0t), where s0 ∈ R is a constant. ♢

Example 2.13. A translation of a plane curve is an isotopy of the form

h(s, t) = γ(s) + tx⃗

for some point x⃗ ∈ R2. ♢

Lemma 2.14. If γ0 and γ1 are closed plane curves connected by an isotopy,

then I(γ0) = I(γ1).

Proof. Similar to the proof of Proposition 2.8, we show that the rotation

index is an integer constant by continuity. First, notice that the rotation index

for a closed curve is indeed an integer. Now let h be an isotopy from γ0 to γ1,

and fix γt(s) = h(s, t). Then the map from s to I(γs) given by the equation in

Definition 2.9 is a continuous function [0, 1] → Z, so we apply the intermediate

value theorem to conclude that I(γs) is constant. □
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Theorem 2.15 (Hopf’s Umlaufsatz). Let γ : [a, b] → R2 be a unit-speed,

simple closed curve on a plane. Then the total signed curvature is given by

∫
γ

κds = ±2π.

As promised, this reduces to a claim about the rotation index! Since κ = θ̇

for any curve by Proposition 2.7, the total signed curvature can be computed

as ∫
γ

κds =

∫ b

a

θ̇(s)ds = θ(b)− θ(a) = 2π · ind(γ).

Thus, the point of the Umlaufsatz is that for simple closed curves, we have

ind(γ) = ±1.

Proof of Theorem 2.15. Our strategy is to replace γ̇ : [a, b] → S1 with

another map to the circle, the secant line between two points on a curve.

Crucially, the degree of the secant line is straightforward to compute, so we

will use it to obtain ind(γ) indirectly.

Both the secant line and its angle function take two parameter inputs.

When the two parameters are equal, the secant is precisely the tangent line, and

the secant angle function is continuously extended to the tangent angle function

of γ at a single point. The domain of this secant map can be interpreted

geometrically as a triangle formed by the points (a, a), (a, b), and (b, b), and

the restriction of the secant map to the diagonal is exactly the tangent map γ̇.

A continuous deformation of the diagonal to the other two sides of the triangle

preserves the endpoints (a, a) and (b, b), so the total change of the secant angle

function is the same along this deformed path. Then to find I(γ), it suffices

to compute the degree of the secant map coming from the non-diagonal sides.

We begin by assuming, without loss of generality, that γ(a) is the lowest

point on the curve and is located at the origin (0, 0). Since γ is assumed to

be continuous, the projection of γ to its y-coordinate is continuous on [a, b] as

well, so we know there exists a t0 ∈ [a, b] such that the y-coordinate of γ(t0)

is minimal. The remaining assumptions follow because the rotation index

is invariant under isotopy, including the reparametrizations and translations

given as examples of Definition 2.11. Finally, because γ is unit-speed, we also

have γ̇(a) = ±e1, the first standard basis vector of R2.

Now we are ready to define the secant map. Let

△ = {(t1, t2) | a ≤ t1 ≤ t2 ≤ b},
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and define the continuous function ψ : △ → S1 by

ψ(t1, t2) =


γ̇(t1) t1 = t2

−γ̇(a) (t1, t2) = (a, b)
γ(t2)− γ(t1)

∥γ(t2)− γ(t1)∥
otherwise.

This is a smooth function (see [Ben17, pages 22-24]), and the first two cases

are straightforward to visualize. For parameters (t1, t2) which satisfy the third

case, the vector ψ(t1, t2) is precisely the unit vector with origin γ(t1) and

pointing towards γ(t2). In particular, if (t1, t2) lies on a non-diagonal side of

the triangle △, then γ(t1) is fixed as γ(t2) travels along the curve (see [Kni06]

for nice animations).

γ(t1)

γ(t2)ψ(t1, t2)

γ(a)
(a, a)

(b, b)(a, b)

By applying Proposition 2.8 in each coordinate, we see that there exists a

smooth function θ̃ : R2 → S1 which gives the angle θ̃(t1, t2) between ψ(t1, t2)

and the horizontal. Because we defined ψ = γ̇ along the diagonal, by Proposi-

tion 2.8, we know that

2π · ind(γ) = θ(b)− θ(a) = θ̃(b, b)− θ̃(a, a),

so ind(γ) is equal to the degree of ψ! Further, it is visually clear that we

can compute the total change of θ̃ the diagonal by computing the change from

(a, a) to (a, b) and (a, b) to (b, b) separately, then taking a sum. Thus, we have

2π · ind(γ) = θ̃(b, b)− θ̃(a, a) =
Ä
θ̃(a, b)− θ̃(a, a)

ä
+
Ä
θ̃(b, b)− θ̃(a, b)

ä
.

The last step is to compute the degree of ψ over the two non-diagonal

segments. We will suppose γ is positively-oriented, so γ̇(a) = e1 and the secant

angle is θ̃(a, a) = 0 (an analogous argument holds for the opposite orientation,

where θ̃(a, a) = π). For the segment from (a, a) to (a, b), we know that the

corresponding line ψ(a, t) lies in the upper half-plane for all t ∈ [a, b], so we

must have 0 ≤ θ̃(a, t) ≤ π. Thus, we find θ̃(a, b) = π. Meanwhile, on the

segment from (a, b) to (b, b), we have the corresponding line ψ(t, b) = −ψ(a, t),
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which implies θ̃(b, b)− θ̃(a, b) = π as well. The degree of ψ is therefore

(θ̃(a, b)− θ̃(a, a)) + (θ̃(b, b)− θ̃(a, b))

2π
=
π + π

2π
= 1

and −1 if the orientation of ψ is reversed. This shows ind(γ) = ±1 as desired.

Altogether, we conclude that if θ is any tangent angle function for γ, then∫ b

a

κds = θ(b)− θ(a) = 2π · ind(γ) = ±2π,

which completes the proof. □

3. Regular surfaces and tangent planes

In the previous section, we showed that the two-dimensional circle can be

locally unfolded to the one-dimensional real line using the function eit, which

gives a continuous deformation on sufficiently small intervals. Similarly, we

interpret surfaces as three-dimensional objects which can be “flattened” to R2.

Definition 3.1. Given any subsets X ⊂ Rn and Y ⊂ Rm, a invertible map

f : X → Y is called a homeomorphism if both f and its inverse f−1 : Y → X

are continuous. If such a map exists, we say X and Y are homeomorphic.

Remark 3.2. The paths defined in Section 2 are homeomorphisms from

an interval of R to a curve in Rn. In general, isotopies, which we only defined

for simple closed plane curves, are continuous families of homeomorphisms.

Definition 3.3. A regular surface is a subset S ⊂ R3 where for each

point p ∈ S, there exists an open neighborhood V ⊂ R3 containing p, an open

subset U ⊂ R2, and a map σ : U → V ∩ S with the following properties:

(i) σ is a smooth function on U ;

(ii) σ is a homeomorphism;

(iii) For all q ∈ U , the differential dσq is injective.

In this case, the map σ is called a surface patch or local parametrization

of the coordinate neighborhood V ∩ S. We will also only consider connected

surfaces, meaning any two points in S can be joined by a curve lying entirely

in S.

Unless otherwise specified, all surfaces discussed in this paper

are assumed to be regular.

Remark 3.4. Like paths, multiple surface patches may have the same im-

age. Suppose the surface patches σ1 and σ2 are defined on the open sub-

sets U1, U2 ⊂ R2 respectively. We say that two surface patches σ1, σ2 are

reparametrizations of one another if there exists a homeomorphism

Φ : U1 → U2 such that σ2 = σ1 ◦ Φ. In this case, the bijection Φ is called a
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reparametrization map. The upshot is that we can define any geometric

property of a smooth surface by defining it up to reparametrization!

Condition (i) is basic for doing calculus on surfaces, like understanding

what it means for a function on a surface to be differentiable. Condition (ii)

ensures that the inverse σ−1 : V ∩ σ(U) → U is continuous, so the surface has

no self-intersections and the tangent to each point is unique. Condition (iii),

sometimes called the regularity condition, allows us to apply the immersion

theorem to conclude that σ is indeed “locally invertible” when the codomain

is restricted to V ∩ σ(U).

Example 3.5. A surface is often the image of multiple surface patches.

Given the unit sphere S2, which has radius 1, we can define the smooth maps

σ1, σ2 : U → S2 by

σ1

Ç
u

v

å
=

Ñ
cos(u) cos(v)

cos(u) sin(v)

sin(u)

é
σ2

Ç
u

v

å
=

Ñ
− cos(u) cos(v)

sin(u)

− cos(u) sin(u)

é
,

where u and v are angles corresponding to something like latitude and longi-

tude, respectively. That is, if p is a point on the sphere, then we can draw a

line through p which is parallel to the z-axis and intersects the xy-plane at a

point q. Then u is the angle between p and q, while v is the angle between q

and the positive x-axis.

To ensure σ1 and σ2 are homeomorphisms, we take the domain to be the

open set U = (−π/2, π/2)× (0, 2π) ⊂ R2. Notice that neither σ1 nor σ2 cover

all of S2 when restricting the domain to U : the image of σ1 misses points of

the form (x, 0, z) with x ≥ 0, while the image of σ2 misses points of the form

(x, y, 0) with x ≤ 0. However, we have S2 = σ1(U)∪ σ2(U), so S2 satisfies the

definition of a surface.

Thus, the construction of a surface can be somewhat ad hoc. Our strategy

also happens to be unnecessarily complicated for the sphere, which has a neat

geometric origin we will introduce in the next example. ♢

Example 3.6. A surface of revolution is obtained by rotating a simple

plane curve, called the profile curve, around a straight line in the plane. Typ-

ically, the axis of revolution is the z-axis, and we define a path γ : I → R3

on the xz-plane by γ(u) = (f(u), 0, g(u)). The surface obtained by rotating γ

about the z-axis is parametrized with σ : I × [0, 2π) → R3 given by

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where v is the angle of rotation. To check for Definition 3.3 (iii), notice

σu × σv = f(u)(−ġ(u) cos v, −ġ(u) sin v, ḟ(u)),
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so σu × σv is nonzero if and only if f(u) ̸= 0 and ḟ , ġ are not both zero; the

nonzero vector product implies that σu and σv are linearly independent, which

we will show is crucial for doing calculus on surfaces in the following discussion

of tangent planes. Thus, the surface of revolution is indeed a surface when γ

does not intersect the z-axis and is indeed regular. In practice, we assume

f(u) > 0 so that f(u) is the distance between σ(u, v) and the axis of rotation.

♢

Example 3.7. The unit sphere S2 in latitude-longitude coordinates, as

in the first example, is a surface of revolution with profile curve functions

f(u) = cos(u) and g(u) = sin(u). ♢

Example 3.8. A torus is formed by rotating a circle in the xz-plane with

center (R, 0, 0) and radius r about the z-axis, with R > r > 0. This is a surface

of revolution with profile curve

γ(θ) = (R+ r cos θ, 0, r sin θ),

and the parametrization is σ : [0, 2π)× [0, 2π) → R3 defined by

σ

Ç
u

v

å
=

Ñ
(R+ r cos(u)) cos(v)

(R+ r cos(u)) sin(v)

r sin(v)

é
,

where u is the angle in γ and v is the angle about the z-axis. ♢

Example 3.9 (Non-example). Consider a line passing through the origin

that forms an angle α with the xy-plane, such that the length of the line above

the plane is the same as the length below. Rotating this line about the z-axis

generates a circular cone with vertex at the origin. For example, if α = π/4,

the cone is parametrized by

S = {(x, y, z) ∈ R3 | x2 + y2 = z2}.

We give an abridged argument for why this is not a regular surface (for full

explanation and diagrams, see [Pre10, Example 4.1.5]). Let U ⊂ R2 be an open

ball and σ : U → V ∩ S be a surface patch that contains the vertex (0, 0, 0).

Further, let a⃗ ∈ U be the point at the center of U such that σ(a) = (0, 0, 0).

The open set V ∩S must contain a point p⃗ in the upper half of the cone where

z > 0, as well as a point q⃗ in the lower half where z < 0; let a⃗, b⃗ ∈ U be the

points with σ(⃗a) = p⃗ and σ(⃗b) = q⃗. We can find a curve β : I → U that passes

through b⃗ and c⃗, but not a⃗; this implies the existence of a continuous curve

γ = σ ◦ β that passes through p⃗ and q⃗ but not (0, 0, 0), which contradicts the

definition of a surface patch σ. ♢

Now, condition (iii) of Definition 3.3 is also precisely what allows us to

find the tangent plane to a point. It implies that the partials σu and σv are
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Sphere with

latitude-longitude

grid [Com07].

Torus generated by

rotating a circle in the

xz-plane about the

z-axis. A circular cone is

not a regular surface

[Com06].

linearly independent, so their span must be a two-dimensional linear subspace.

We begin defining the tangent by considering smooth curves on the surface.

Definition 3.10. Let p be any point on a surface S ⊂ R3. If γ : (−ϵ, ϵ) → S
is a path with γ(0) = p, then tangent vector to S at p is precisely γ̇(0), the

tangent vector to γ at p. The tangent space of S at p, denoted TpS, is the

set of all vectors tangent to S at p.

Proposition 3.11. Let p be a point on a surface S ⊂ R3, and suppose

σ : U → R3 is a surface patch whose image contains p, say p = σ(u0, v0). Then

the tangent space of S at p is the vector subspace

TpS = span(σu, σv),

where σu, σv are the partial derivatives evaluated at p.

Proof. We will prove these two spaces are equal using double containment.

First, if γ is a path in the image of a surface patch σ, then we have

γ(t) = σ(u(t), v(t))

for some smooth functions u(t) and v(t). The existence of such smooth func-

tions follows from properties (i)–(iii) of a surface, which imply σ−1 is smooth.

Differentiating with the chain rule, we have

γ̇ = σudu+ σvdv,

so every tangent vector of S can be written as a linear combination of the

partials σu and σv. Thus, we have TpS ⊂ span(σu, σv).

On the other hand, we can write every vector v⃗ ∈ span(σu, σv) as a linear

combination v⃗ = a1σu + a2σv for some coefficients a1, a2 ∈ R. Then we can

define a curve

γ(t) = σ(u0 + a1t, v0 + a2t).
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At the point p = γ(0) ∈ S, we have

γ̇(0) = a1σu + a2σv = v⃗,

so every vector in the span is the tangent vector of S at some point p. This

shows span(σu, σv) ⊂ TpS, so we must have exactly span(σu, σv) = TpS. □

4. The first fundamental form and surface area

To describe the local geometry of a surface, we need a way to make local

measurements like lengths, angles, and areas. The first fundamental form

allows us to compute the length of a curve on a surface using tangent vectors.

Definition 4.1. Let p ∈ S be any point of a surface. The first funda-

mental form of S at p is given by

Ip(v⃗, w⃗) = ⟨v⃗, w⃗⟩,

where v⃗, w⃗ ∈ TpS are tangent vectors. That is, the first fundamental form Ip
is the standard inner product on R3 restricted to the tangent space TpS.

In practice, this form is expressed in terms of surface patches. Suppose

p = σ(u0, v0) for some surface patch σ so that partial derivatives {σu, σv}
evaluated at p form a basis for the tangent plane TpS. Then any tangent vector

v⃗ ∈ TpS is tangent to a curve γ in the image of σ given by γ(t) = σ(u(t), v(t)).

As shown in the proof of Proposition 3.11, we can express the tangent vector

as a linear combination v⃗ = γ̇(0) = σudu+ σvdv.

We use the fact that the inner product is symmetric bilinear to expand Ip
as the quadratic form

Ip(v⃗, v⃗) = ⟨σudu+ σvdv, σudu+ σvdv⟩

= ⟨σu, σu⟩(du)2 + 2⟨σu, σv⟩dudv + ⟨σv, σv⟩(dv)2.

Traditionally, the inner product components of this form are denoted

E = ⟨σu, σu⟩ F = ⟨σu, σv⟩ G = ⟨σv, σv⟩,

and the expression Edu2+2Fdudv+Gdv2 is called the first fundamental form

of the surface patch σ(u, v). Note that the linear maps du, dv and metric

coefficients E,F,G depend on choice of parametrization σ, but the form itself

only depends on S and point p.

Finally, when γ is a curve in the image of a patch σ, we can substitute

the first fundamental form of σ in the arc length formula to compute∫
∥γ̇(t)∥dt =

∫ »
⟨γ̇, γ̇⟩dt =

∫ √
Edu2 + 2Fdudv +Gdv2dt.
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Example 4.2. For a surface of revolution with unit-speed profile curve

u 7→ (f(u), 0, g(u)), we have

σu = (ḟ cos v, ḟ sin v, ġ) σv = (−f sin v, f cos v, 0).

Using the fact that ḟ2 + ġ2 = 1 for the unit-speed curve, we compute the

coefficients E = 1, F = 0, and G = f2. Thus, the first fundamental form is

du2 + f(u2)dv2. ♢

Example 4.3. For the parametrization of S2 as a surface of revolution, we

have f(u) = cos(u) and g(u) = sin(u). The corresponding first fundamental

form is du2 + cos2(u)dv2. ♢

Since the Gauss–Bonnet theorem involves integrating over a surface, we

will briefly discuss areas of surface regions.

Definition 4.4. Given a surface patch σ : U → R3 and a subset R ⊆ U ,

the area Aσ(R) of the surface region σ(R) is

Aσ(R) =

∫
R

∥σu × σv∥dudv.

Using the first fundamental form to compute ∥σu ×σv∥ =
√
EG− F 2, we

can further write

dA =
√
EG− F 2dudv.

Importantly, since the value EG− F 2 = det(Ip) does not depend on choice of

basis, the area of a surface region does not depend on choice of patch σ. This

agrees with the remark about reparametrizations and geometric properties at

the beginning of Section 3.

Example 4.5. Recall that a general surface of revolution has parametriza-

tion σ : I × [0, 2π) for some interval I ⊂ R, so the surface area is computed

by

A(S) =
∫
S
1dA =

∫
I×[0,2π)

√
G− 0dudv =

∫ 2π

0

∫
I

f(u)dudv.

♢

Example 4.6. The surface area of the unit sphere is

A(S2) =

∫
S2

1dA =

∫ 2π

0

∫ π/2

−π/2

cos(u)dudv = 4π.

♢

5. The second fundamental form and surface curvature

In the same way that a plane curve’s signed curvature κ = dθ/ds is a ratio

defined by associating an infinitesimal change γ̇ with an infinitesimal angle θ̇
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on the unit circle, the curvature of a surface in R3 is defined by associating an

infinitesimal area element dA = dudv with another infinitesimal area element

dσ on the unit sphere. The Gaussian curvature is precisely the ratio K =

dA/dσ.

In practice, we can measure curvature by considering how the the unit

normal N varies as we move around the surface. For the tangent plane TpS,
Proposition 3.11 makes a choice of normal vector straightforward: if σ : U →
R3 is a surface patch which contains p, then the unit vector

Nσ =
σu × σv

∥σu × σv∥

is perpendicular to every linear combination of σu and σv. We call Nσ the

standard unit normal of the patch σ at point p.

While ±N does not depend on choice of surface patch σ, the parametriza-

tion determines the sign. In order for the integration of functions to be well-

defined, we will only consider surfaces which are orientable, meaning we have

a smooth choice of normal N. Informally, an orientable surface has two sides;

the typical example of a non-orientable surface is the Mobius strip (see [Pre10,

Example 4.5.3]). Importantly, working with orientable surfaces means we as-

sume that all surface patches discussed in the paper will have a

standard unit normal that is the same as the chosen normal N.

The values of N are given by the Gauss map G : S → S2, which sends

each point p ∈ S to its standard unit normal Np in the unit sphere. Since we

are interested in the rate of change of N, we need to define the derivative dGp

at each point. In general, given a map f between two surfaces S1 and S2, the

derivative of f is the linear map dfp : TpS1 → Tf(p)S2 which “pushes forward”

the tangent vector to the curve p = γ(0) in S1 to the tangent at (f ◦ γ)(0) in
S2. Thus, the derivative of the Gauss map is a function

dGp : TpS → TG(p)S
2.

Now by definition, TNpS
2 is the plane through the origin perpendicular to

the point G(p) = Np, which is precisely TpS, so the derivative dGp is actually

a map from TpS to itself.

Definition 5.1. Let S be an orientable surface with Gauss map G. For

each p ∈ S, the Weingarten map of S at p is the linear map W : TpS → TpS
is given by

Wp = −dGp.

Definition 5.2. If Wp is the Weingarten map at a point p ∈ S, the Gauss-

ian curvature K of S at p is given by

K = det(Wp).
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Remark 5.3. The Gaussian curvature does not depend on orientation of

the tangent plane, as the determinant of the 2×2 matrix Wp is the same when

every entry changes sign.

Example 5.4. The Gaussian curvature of S2 is 1 everywhere, because the

Gauss map at every point in S2 is the precisely the identity map. Thus, the

Weingarten map at every point is also the identity, and so K = det(I) = 1. ♢

Unfortunately, most Weingarten maps are not so obvious. To get an

explicit formula for K, we need to define a metric for curvature on a surface

patch σ.

Definition 5.5. The second fundamental form of S at p is the bilinear

map IIp : TpS → R defined by

IIp = ⟨Wp(v⃗), w⃗⟩

for some tangent vectors v⃗, w⃗ ∈ TpS.

Unlike with the form Ip, it is not immediately clear that IIp has a corre-

sponding quadratic function.

Proposition 5.6. The second fundamental form is symmetric bilinear.

That is, for all tangent vectors v⃗, w⃗ ∈ TpS , we have IIp(v⃗, w⃗) = IIp(w⃗, v⃗).

Proof. First, let p ∈ S be a point in the image of a surface patch σ.

Suppose γ(t) = σ(u(t), v(t)) is a curve in the patch with γ(0) = p, so

γ̇(0) = σudu(0) + σvdv(0)

is tangent to S at p. Then

Wp(γ̇(0)) = −dGp(σudu(0) + σvdv(0))

= − d

dt
G(u(t), v(t))

∣∣∣∣
t=0

= − (Gudu(0) +Gvdv(0)) .

In particular, since

du(σu) = dv(σv) = 1 du(σv) = dv(σu) = 0,

we have Wp(σu) = −Gu and Wp(σv) = −Gv.

Since {σu, σv} is a basis for TpS, we can write our tangent vectors as linear

combinations v⃗ = a1σu + a2σv and w⃗ = b1σu + b2σv for some a1, a2, b1, b2 ∈ R.
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Using the fact that a bilinear form on Rn is linear in both inputs, we compute

IIp(v⃗, w⃗) = ⟨Wp(v⃗), w⃗⟩ = ⟨−a1Gu − a2Gv, b1σu + b2σv⟩
= −a1b1⟨Gu, σu⟩ − a1b2⟨Gu, σv⟩ − a2b1⟨Gv, σu⟩ − a2b2⟨Gv, σv⟩
= ⟨−b1Gu − b2Gv, a1σu + a2σv⟩
= ⟨Wp(w⃗), v⃗⟩ = IIp(w⃗, v⃗),

which shows the desired equality. □

We now obtain a quadratic form: given a tangent vector v⃗ = σudu+σvdv,

we have

IIp(v⃗, v⃗) = −⟨Gu, σu⟩(du)2 − 2⟨Gu, σv⟩dudv − ⟨Gv, σv⟩(dv)2,

where the middle term uses the fact that ⟨Gu, σv⟩ = ⟨Gv, σu⟩.
The metric coefficients are traditionally denoted

L = −⟨Gu, σu⟩ M = −⟨Gu, σv⟩ N = −⟨Gv, σv⟩,

and we say Ldu2 + 2Mdudv + Ndv2 is the second fundamental form of the

surface patch σ(u, v).

Together with the first fundamental form, the second fundamental form

gives us a very useful formula for Gaussian curvature. If we write −Gu and

−Gv in terms of the basis {σu, σv}, then the explicit matrix for the Weingarten

map with respect to this basis isÇ
E F

F G

å−1Ç
L M

M N

å
(for the full derivation, see [Pre10, Proposition 8.1.2]). Thus, we have

K =
LM −M2

EG− F 2
.

Example 5.7. A sphere of radius c has Gaussian curvature 1/c2 every-

where. This is because when a surface is scaled by some constant c, the coeffi-

cients E,F,G are multiplied by a factor of c2 and the coefficients L,M,N are

multiplied by a factor of c, so K changes by a factor of 1/c2.

Further, since the surface area changes by a factor of c2, we find the total

curvature of any sphere S is∫
S
KdA =

1

a2
· 4πa2 = 4π.

♢
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Example 5.8. Using the parametrization of the torus from Section 3, we

compute the partials

σu =

Ñ
−r sin(u) cos(v)
−r sin(u) sin(v)

r cos(v)

é
σv =

Ñ
−(R+ r cos(u) sin(v)

(R+ r cos(u)) cos(v)

0

é
.

The coefficients for the first fundamental form are E = r2, F = 0, and

G = (R+ r cos(u))2, and the coefficients for the second are L = r, M = 0, and

N = (R+ r cos θ) cos θ. The Gaussian curvature is then

K =
cos(u)

r(R+ r cos(u))
.

Interestingly, the torus has both positive and negative curvature: we have

K ≥ 0 when π/2 ≤ u ≤ π/2, and K ≤ 0 when π/2 ≤ v ≤ 3π/2. ♢

6. The local Gauss–Bonnet theorem

The most basic version of the Gauss–Bonnet theorem applies to simple

closed curves on a surface. In Section 2, we considered the particular case

where the surface is a plane, where the Gaussian curvature is 0. Our next step

is to extend the Umlaufsatz to curved surfaces.

Definition 6.1. Given an open subset U ⊂ R2 and a local parametrization

σ : U → S, we say γ : [a, b] → R3 is a simple closed curve in the patch

σ(U) if there exists a simple closed plane curve β(t) = (u(t), v(t)) such that

γ = σ ◦ β.
In this case, γ is positively-oriented if the signed unit normal n of β

points into int(β) ⊂ R2 at every point of β. Finally, int(γ) ⊂ R3 is defined as

the image of int(β) under the map σ.

Lemma 6.2. In the situation above, we have∫
γ

θ̇(s)ds = ±2π.

Proof. Briefly, we can find an isotopy between γ and any another simple

closed curve γ̃ that is completely contained in int(γ). We choose γ̃ to be the

image under surface patch σ of a very small circle in int(β), so the interior of

γ̃ is essentially a subset of the plane in R2. Then using Lemma 2.14, we can

replace γ with γ̃ in the above integral, and the equality follows from Hopf’s

Umlaufsatz.

For the first isotopy, let p = σ(u0, v0) be a point in int(γ) = σ(int(β)). By

property (iii) of regular surfaces, we can scale the axes of R3 to obtain a patch

σ̃(V ) ⊂ σ(U) containing p with

σ̃(x, y) = (x, y, f(x, y))
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for some smooth map f . By the same property, we may translate the surface

so that p = σ̃(u0, v0). Then σ−1(σ̃(V )) is an open subset of U ⊂ R2, so there

exists an ϵ > 0 such that σ(Bϵ(p)) ⊂ σ̃(V ).

Now, consider the isotopy of curves given by

h1(s, t) = σ(t · u(s), t · v(s)).

By choosing sufficiently small t, such as t = ϵ/2, we can find an isotopy between

our original curve γ = h1(s, 1) and a curve in σ̃(V ). Note that such a curve has

the form γϵ/2(s) = (x(s), y(s), f (x(s), y(s))) for some smooth functions x(s)

and y(s).

Using this, we define a second isotopy of curves in σ̃(V ) by

h2(s, t) = (x(s), y(s), t · f(x(s), y(s))).

This gives an isotopy between γϵ/2 = h1(s, ϵ/2) = h2(s, 1) and the simple plane

curve γ̃ = h2(s, 0). Then by Lemma 2.14, we have∫
γ

θ̇ds =

∫
γϵ/2

θ̇ds =

∫
γ̃

θ̇ds,

and the final integral is equal to ±2π by Theorem 2.15. □

Remark 6.3. A more sophisticated version of this proof will define the

relative index of a curve with respect to an orthonormal basis, then use the

Gram–Schmidt process to produce a smooth family of bases for curves in σ̃(V ).

After obtaining the plane curve γ̃, the final step is to show that the relative

index of γ̃ coincides with the formula for I(γ̃) (see [Swa, Theorem 6.6]).

Our definition of a curve’s curvature also requires adjustment. Notice that

given any curve γ on a surface S, the set {γ̇,N,N× γ̇} is an orthonormal basis

for R3. Recall that when γ is unit-speed, its absolute curvature is given by

κ = ∥γ̈∥. There is a particular term for the projection of κ on the the tangent

plane of S.

Definition 6.4. If γ is a unit-speed curve on an surface S, then the geo-

desic curvature of γ is defined by

κg = γ̈ · (N× γ̇).

Remark 6.5. Informally, κg measures how far the curve is from being the

shortest path between two points on a surface. When the surface is a plane,

the shortest path is a straight line, so a plane curve in R3 has κg = κ up to a

sign. In general, the sign of the geodesic curvature κg of a curve depends on

the orientation of both the surface and the curve itself.

We are now ready to prove the Gauss–Bonnet theorem for simple closed

curves.
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Theorem 6.6. Let γ be a unit-speed simple closed curve on a surface

patch σ, and suppose γ is positively-oriented. Then∫
γ

κgds = 2π −
∫
int(γ)

KdA,

where κg is the geodesic curvature of γ, K is the Gaussian curvature of σ, and

dA is the area element of σ. The integral over the area element is called the

total curvature of the region int(γ).

Proof. The argument is entirely computational. First, we will use a basis

of the tangent plane to find an orthonormal basis for R3, then expand γ̇ and

γ̈ in terms of this basis. We then use this to compute κg, which allows us to

rewrite the integral of κg over the curve γ as the difference of two integrals.

Finally, we evaluate the integrals separately to obtain the expression on the

right; the 2π term will come from a direct application of Hopf’s Umlaufsatz

for surface curves, while the area integral uses both fundamental forms of the

surface patch σ.

Let {e1, e2} be a smooth3 orthonormal basis for the tangent plane at each

point in the image of σ; one such choice is e1 = σu/∥σu∥ and e2 = N × e1.

Then {e1, e2,N} is an orthonormal basis for R3. Note that since we can always

swap values of e1 and e2 if necessary, we assume N = e1 × e2 without loss of

generality.

Now, let θ(s) be the oriented angle between the tangent vector γ̇(s) and

the basis vector e1. This is the angle by which e1 must be rotated to be parallel

to γ̇, when viewing the side of the surface which N points away from. That

is, from this side, θ(s) is precisely the tangent angle from Definition 2.6 taken

with respect to e1 instead of the standard basis. Thus, we have

γ̇ = cos θe1 + sin θe2

γ̈ = cos θė1 + sin θė2 + θ̇(− sin θe1 + cos θe2),

where the expression for γ̈ uses the chain rule. Substituting these expressions

and N = e1 × e2 into the formula for geodesic curvature, we find that

κg = θ̇ − e1 · ė2

(for full computations, see [Pre10, Theorem 13.1.2]). We can therefore compute

the left side of the claimed equality as∫
γ

κgds =

∫
γ

θ̇ds−
∫
γ

e1 · ė2ds.

3 Here, “smooth” means that e1, e2 are smooth functions of the surface parameters (u, v).
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First, we know know from Lemma 6.2 that the integral of θ̇ around γ is

equal to ±2π; since γ is positively-oriented, this is exactly 2π. It remains to

show that ∫
γ

e1 · ė2ds =
∫
int(γ)

KdA.

Differentiating e2, we have∫
γ

e1 · ė2 ds =
∫
γ

e1 · ((e2)uu̇+ (e2)vv̇) ds =

∫
β

(e1 · (e2)u)du+ (e1 · (e2)v)dv

=

∫
int(β)

[(e1 · (e2)v)u − (e1 · (e2)u)v] dudv,

where the last equality uses Green’s theorem (see [Shi, Appendix 2, Theorem

2.6]). Now given the first and second fundamental forms of σ,

Edu2 + 2Fdudv +Gdv2 Ldu2 + 2Mdudv +Ndv2,

we can write the partial derivatives of e1 and e2 in terms of the basis {e1, e2,N}
to see that

(e1)u · (e2)v − (e1)v · (e2)u =
LN −M2

(EG− F 2)1/2

(for full computations with coefficients, see [Pre10, Lemma 13.1.3]). Then

applying the formulas for dA and K, this integral becomes∫
γ

e1 · ė2ds =
∫
int(β)

LN −M2

(EG− F 2)1/2
dudv =

∫
int(γ)

LN −M2

EG− F 2
dA =

∫
int(γ)

KdA,

where β is the simple closed plane curve specified in Definition 6.1. This

completes the proof. □

For the remainder of this paper, our discussion will be in terms of regions

on surfaces rather than curves. By region, we mean a compact, simply con-

nected subset △ of a surface S. We will only consider regions with piecewise

smooth boundaries, which means the boundary ∂△ looks like a polygon with

curved sides, or possibly a simple closed curve with no vertices.

Definition 6.7. The boundary ∂△ is positively-oriented if, for all t such

that γi(t) is not a vertex, the signed unit normal n obtained by rotating γ̇i
counterclockwise by π/2 points into △.

The next version of the Gauss–Bonnet theorem accounts for boundary

vertices, where a single oriented angle is undefined, by using exterior angles.

Given a vertex υ of the polygon, we have one curved edge γi traveling towards

υ and another edge γj traveling away. As in the beginning of the proof of

Theorem 6.6, take {e1, e2,N} to be a smooth orthonormal basis of R3, and let

θi and θj be the oriented angles of γ̇i and γ̇j at υ, respectively. The exterior
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angle at υ is given by δ = θj−θi. Since this is only well-defined up to multiples

of 2π, we assume −π < δ < π.

Theorem 6.8 (Local Gauss–Bonnet). Let R be a simply connected region

with piecewise smooth boundary in a surface path σ. If the boundary ∂△ is

positively-oriented, then we have

∫
∂△

κgds = 2π −
n∑

i=1

δi −
∫
△
KdA,

where δi is the exterior angle for some vertex i = 1, . . . , n.

Proof. This is essentially a generalization of Theorem 6.6 to curves with

“corners.” Applying the same argument as before, we find∫
∂△

κgds =

∫
∂△

θ̇ds−
∫
△
KdA.

It remains to show that ∫
∂△

θ̇ds = 2π −
n∑

i=1

δi.

The strategy is to approximate ∂△ with a smooth curve γ which rounds

off the corners. We know by Lemma 6.2 that the total turning angle going

once around γ is exactly 2π. Now notice that since ∂△ is piecewise smooth,

the integral on the left-hand side of the equality is really the sum of n integrals

along the edges of the polygon, with the turning angle at each vertex excluded

from the total. We therefore take γ to be a close-enough approximation such

that the difference between 2π and
∫
∂△ θ̇ is only due to these vertex angles,

and the equality follows (for a more rigorous argument, see [Pre10, Theorem

13.2.2]). □

Example 6.9. Consider an n-gon on the plane with straight edges. In this

case, we have K = 0 and κg = 0 for each side of the polygon. An internal

angle of the polygon is given by αi = π − δi for i = 1, . . . , n and 0 < αi < 2π.

Then Theorem 6.8 implies

n∑
i=1

αi = (n− 2)π,

a well-known formula from elementary geometry. ♢
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7. The global Gauss–Bonnet theorem

The most general version of the Gauss–Bonnet theorem applies to com-

pact, oriented surfaces with piecewise smooth boundary. We will take com-

pact to mean closed and bounded, although compactness is technically a gener-

alization of these properties to higher-dimensional Euclidian subsets. Roughly

speaking, any such surface may be covered with a specific arrangement of

finitely many “polygons,” and we can find the entire surface’s curvature by ap-

plying the local Gauss–Bonnet theorem to each polygon and taking the sum.

Definition 7.1. A surface S ⊂ R3 can be triangulated if it is possible to

write S =
⋃F

λ=1△λ, where

(i) Each △λ is the image of a triangle under a local parametrization σ;

(ii) For all λ ̸= µ, the intersection △λ∩△µ is either empty, a single vertex,

or a single edge;

(iii) When△λ∩△µ is a single edge, the orientations of the edge are opposite

in △λ and △µ;

(iv) For all λ, at most one edge △λ is contained in ∂S.

In this case, each region △λ is called a face, and a collection of such faces is

called a triangulation of S.

Remark 7.2. The choice of compatible orientation in (iii) gives us an orien-

tation on the boundary of S, which comes from the normal N and orientation

of S itself. However, we do not need to worry about boundary orientation when

integrating κg in the theorem. If we have instead −N, then the orientation on

∂S swaps while N× γ̇ is unchanged, so the sign of κg on ∂S does not depend

on choice of orientation on S.

Theorem 7.3. Every compact surface has a triangulation with finitely

many faces.

The proof of this theorem, which comes from algebraic topology, has a rel-

atively simple idea. For every point p ∈ S, we can find a small disc containing

p, and we know S can be covered by a finite collection of these discs because

the surface is compact. We can triangulate the interior of each disc, then paste

them together to make a surface homeomorphic to S. The challenge with a

formal proof is adjusting for how the discs may overlap (see [DM68]).

We now define the topological invariant of interest in the final Gauss–Bonnet

theorem.

Definition 7.4. For any triangulation of a surface S, the Euler charac-

teristic of the triangulation is given by

χ(S) = V − E + F,
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where V,E, and F denote the total number of vertices, edges, and faces, re-

spectively.

Theorem 7.5. Let S be a surface equipped with a triangulation. If S is

homeomorphic to another surface S ′, then χ(S) = χ(S ′).

Example 7.6. One triangulation of S2 is found by intersecting the sphere

with three coordinate planes.

This triangulation has eight faces, and its Euler characteristic is 6−12+8 = 2.

♢

Example 7.7. To triangulate the torus, we use the fact that the torus is

homeomorphic to a square: roll the square into a tube, then stretch the tube

so that the two ends meet as a donut. A triangulation of the square is shown

below.

Taking into account that opposite sides of the squares will meet once rolled

into the torus, we find the Euler characteristic of this triangulation to be

9− 27 + 18 = 0. ♢

While different triangulations of a surface S may have different num-

bers of vertices, edges, and faces, the Euler characteristic χ(S) only depends

on the surface itself. This important property is a consequence of the final

Gauss–Bonnet theorem.

Theorem 7.8 (Global Gauss–Bonnet). Let S ⊂ R3 be a compact, oriented

surface with piecewise smooth boundary. Then

∫
∂S
κgds+

∫
S
KdA+

n∑
i=1

δi = 2πχ(S),

where δi with i = 1, . . . , n is an exterior angle of ∂S .
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Notice that because the left-hand side of the equality has nothing to do

with a chosen triangulation, our proof will hold for any choice of triangulation

for S. Theorem 7.8 therefore implies the following corollary.

Corollary 7.9. The Euler characteristic χ(S) of a compact surface S
is independent of the choice of triangulation.

Proof of Theorem 7.8. As mentioned, the main idea is to apply the local

Gauss–Bonnet theorem to each △λ of the triangulation, then use the total to

compute each term on the left-hand side. The integral values are easy to find,

but we need some additional geometric reasoning to find the difference between

the total exterior angle of ∂S and the sum of the total exterior angles for all

polygons of the triangulation.

We begin by expressing the integrals over S in terms of the triangulation.

For the integral of κg on the boundary, we know from Definition 7.1 (iii) that

any edge of the triangulation which is not in ∂S will be paired with an edge

of the opposite orientation. Because κg changes sign when the orientation of

the curve is reversed, the integral of κg on non-boundary edges cancels out

in pairs. As for the area integral, the area of S is the sum of each △λ by

definition. Thus, we have∫
∂S
κgds =

F∑
λ=1

∫
∂△λ

κgds

∫
S
KdA =

F∑
λ=1

∫
∂△λ

KdA.

Now, we compute the total curvature of each region △λ. Let δλj
for

j = 1, 2, 3 denote an exterior angle of △λ. Applying Theorem 6.8, we have∫
∂△λ

κgds+

∫
△λ

KdA+
3∑

j=1

δλj
= 2π,

and the sum over all of the △λ is∫
∂S
κgds+

∫
S
KdA+

F∑
λ=1

3∑
j=1

δλj
= 2πF.

To complete the proof, we just need to show that the difference between

the sum in the previous expression and the total exterior angle of ∂S is exactly∑
λ,j

δλj
−

n∑
i=1

δi = 2π(E − V ).

This is merely a matter of counting. We first make a distinction between

vertices of triangulation on the boundary and in the interior of S, denoting the

respective totals by VB and VI . We do the same for edges of the triangulation

that are on the boundary, edges in the interior, and edges that join a boundary

vertex to an interior vertex, denoting these totals by EB, EI , and EIB.
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Letting αλj
denote the interior angles of the region △λ, we have∑

interior
vertices

δλj
=

∑
interior
vertices

(π − αλj
) = π(2EI + EIB)− 2πVI .

This is because each interior edge contributes two interior vertices to the total,

while each interior/boundary edge contributes one. Further, the interior angles

at each interior vertex sum to 2π.

On the other hand, given a boundary vertex υ, we will denote the asso-

ciated angle or number with a superscript (υ). Every boundary vertex υ is

contained in E
(υ)
IB +1 faces. Moreover, the total interior angle at any boundary

vertex is π if the vertex is on a smooth curve, and π − δi if the vertex is a

“corner” of ∂S with exterior angle δi. Thus,∑
boundary
vertices υ

δλj
=

∑
boundary
vertices υ

(π − αλj
) =

∑
boundary
vertices υ

π(E
(υ)
IB + 1)−

( ∑
smooth υ

αλj
+

∑
corner υ

αλj

)

= πEIB +
n∑

i=1

δi.

Using the fact that VB = EB for the closed polygon ∂S, we find∑
λ,j

δλj
=

∑
interior
vertices

δλj
+

∑
boundary
vertices

δυj = 2π(EI + EIB − VI) +
n∑

i=1

δi

= 2π(EI + EIB + EB − VI − VB) +
n∑

i=1

δi = 2π(E − V ) +
n∑

i=1

δi,

as desired. At last, we conclude∫
∂S
κgds+

∫
S
KdA+

n∑
i=1

δi = 2πF − 2π(E − V ) = 2πχ(S).

□

For surfaces without boundary, sometimes called closed surfaces, we have

the following remarkable result.

Corollary 7.10. When S ⊂ R3 is a compact, oriented surface without

boundary, the total curvature of S is∫
S
KdA = 2πχ(S).

Example 7.11. If S is any sphere, we know χ(S) = 2, so the Gauss–Bonnet

theorem says ∫
S
KdA = 4π.
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This agrees with our computation at the end of Section 5. ♢

Example 7.12. If S is a torus, then χ(S) = 0 and the Gauss–Bonnet

theorem says ∫
S
KdA = 0.

Earlier, we saw that the torus has both positively and negatively curved re-

gions; we now know the positive and negative contributions cancel each other

out. ♢

In this paper, we showed that the total curvature of a surface does not

change with a deformation of the surface. Beyond our discussion, it is a the-

orem of topology that every compact, oriented surface without boundary is

homeomorphic to a g-torus for some g ≥ 0, where g is, roughly, the number of

holes in the surface. Thus, the integral
∫
S KdA is precisely what determines

the topological classification of a surface.
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