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The Peter–Weyl theorem & harmonic
analysis on Sn

By Luca Nashabeh

Abstract

For finite groups, the Artin–Wedderburn theorem gives a precise de-
composition of the algebra of all C-valued functions into matrix algebras.
Specialized to the case of cyclic groups, this produces the classical discrete
Fourier transform. In this paper, we endeavor to extend these techniques
to compact topological groups, proving similar harmonic decompositions
on S1, S2, and S3.

1. Introduction

The representation theory of finite groups provides us with many powerful
tools that not only allow us to directly study the properties and structures of
groups, but also give insight into algebras defined on those groups. One of
the most powerful results is the following theorem, which gives a relationship
between the algebra of C-valued functions on a finite group G and its irreducible
representations.

Theorem 1.1 (Artin–Wedderburn theorem). Let G be a finite group and
C[G] its group algebra with the convolution product

(f1 ∗ f2)(g) =
∑
h∈G

f1(h)f2(h
−1g).

Furthermore, let ρi : G → GL(Vi) for 1 ≤ i ≤ k be the irreducible representa-
tions of G, and ρ̃i : C[G] → End(Vi) the linear extensions to the group algebra.
Then, the map

ρ̃ =
k⊕

i=1

ρi, ρ̃ : C[G] →
k⊕

i=1

End(Vi)

is an isomorphism.
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A simple example of the power of the Artin–Wedderburn theorem comes
from specializing to the cyclic case G = Z/nZ. Here, we can describe ρm and
ρ̃m explicitly as

ρm(x) = ζmx
n = exp

Å
2πi

n
mx

ã
and ρ̃m(f) =

∑
x∈G

f(x) exp

Å
2πi

n
mx

ã
.

The Artin–Wedderburn theorem then gives us the following classical result.

Corollary 1.2 (Discrete Fourier transform). Let f ∈ C[G] ∼= Cn . Then
f can be uniquely decomposed into pure frequencies with amplitudes

Fm =
n∑

x=1

f(x) exp

Å
2πi

n
mx

ã
.

More generally, the Artin–Wedderburn theorem allows us to do a Fourier
decomposition on any finite group, including non-abelian ones. However, while
the Artin–Wedderburn theorem is certainly a powerful result, the requirement
of finiteness prevents us from getting a Fourier decomposition for many inter-
esting continuous groups.

The Peter–Weyl theorem is one path to generalizing the Artin–Wedderburn
theorem, proving a very similar result not just for finite groups, but indeed for
all compact groups. In doing so, we obtain not only the classical Fourier series,
which is simply a decomposition on the compact circle group, but also anal-
ogous decompositions on all n-spheres. However, before we move to proving
these exciting results, we will begin with a necessary discussion of the repre-
sentation theory of compact groups.

2. Preliminaries on compact groups

To begin, we should answer the question of what a compact group actually
is. As one might guess, in order to make sense of compactness on a group, we
need to introduce a topology on the group. Moreover, for this topology to be at
all useful, it would be smart to have the topology interact well with the group
structure. These ideas motivate the following definition.

Definition 2.1. A topological group G is a group equipped with a topol-
ogy τ such that

(1) The group product is continuous as a function G × G → G, with the
product topology on G×G;

(2) The inverse function −1 : G → G is continuous as a function on G.
If, in addition, G is compact and Hausdorff, then it is a compact group.

Remark 2.2. The Hausdorff condition is not universal, but we will include
it here for simplicity.
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Example 2.3. Any finite group equipped with the discrete topology is a
compact group. ♢

Example 2.4. More interestingly, consider the group

U(1) = {eiθ | θ ∈ [0, 2π)} ⊆ C,

with the usual topology inherited from C. Since complex multiplication and
conjugation are continuous, this is a Hausdorff topological group. Furthermore,
since the unit circle is a compact subset of C, this is a compact group. ♢

Example 2.5. Consider the group

SU(2) =

®ñ
α β

−β α

ô ∣∣∣∣∣ |α|2 + |β|2 = 1

´
⊆ C4.

Again, since matrix multiplication and inversion are rational functions on Cn,
this is a Hausdorff topological group. Moreover, writing α = x + iy and β =

z + iw, we see that the restriction is

x2 + y2 + z2 + w2 = 1.

In particular, as a topological space, this group is homeomorphic to the 3-sphere
S3, which is certainly compact. ♢

The most important result about compact topological groups, for our pur-
poses, is the existence of a so-called Haar measure µ. We give a brief statement
of the result.

Theorem 2.6 (Haar measure on compact groups). Let G be a compact
group. Then, there exists a measure µ on (Borel) subsets S ⊆ G such that

(1) µ is left translation invariant, i.e., for any g ∈ G, µ(gS) = µ(S);
(2) µ is right translation invariant, i.e., for any g ∈ G, µ(Sg) = µ(S);
(3) µ(G) = 1.

Remark 2.7. The original theorem actually applies to locally compact
groups and gives some additional regularity properties of this measure.

We will not prove this theorem, as it is not really an exercise in represen-
tation theory. However, the interested reader can consult [vdB93, Sec. 1].

As with any measure, the Haar measure allows us to perform integration
on a compact group. Moreover, this integration is compatible with the group
structure, in the sense that∫

S

f(x) dµ(x) =

∫
g−1S

f(gx) dµ(x) =

∫
Sg−1

f(xg) dµ(x) .

As such, choosing S = G, we can use the Haar integral to perform an averaging
trick similar to the one used with sums in the case of finite groups.
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3. Representation theory of compact groups

3.1. Continuous representations. Having set up the preliminary background
on compact groups, we can now move to the actual subject of their representa-
tions. As with finite groups, it is most convenient to work with complex vector
spaces, so, unless otherwise mentioned, we will take any vector space to be over
C. Unlike in the finite case, however, we do impose a slight extra condition of
continuity on representations of infinite groups.

Definition 3.1. Let G be a topological group. A continuous representa-
tion of G is a homomorphism ρ : G → GL(V ) for some topological Hausdorff
vector space V , such that the map (g, v) 7→ ρ(g)v is continuous as a map
G× V → V . If V is also finite, then we have a finite continuous represen-
tation.

A subrepresentation of V is a subspace W fixed by the action of G, so
that ρ|W is also a representation. An irreducible representation V is a rep-
resentation with no nontrivial subrepresentations (i.e., no subrepresentations
except 0 and V itself).

Remark 3.2. The reason to consider ρ as a map G× V → V instead when
discussing continuity is so that we do not need to define a topology on GL(V ).

Furthermore, though we will not prove this, the continuity of ρ in this
sense is equivalent to the a priori weaker condition that, for any fixed v ∈ V ,
the map g 7→ ρ(g)v is continuous as a function G → V (see [Mor19, Sec. V.2]).

For the rest of this paper, we will only consider finite continuous represen-
tations over C unless otherwise mentioned. The advantage of doing so is that
much of the theory in the finite case carries over completely analogously. For
example, we have the following lemma.

Lemma 3.3 (Schur’s lemma, part 1). Let G be a compact group, and V1, V2

two complex irreducible representations. Then the space of all homomorphisms
from V1 to V2 commuting with the actions of G is

HomG(V1, V2) =

{
0 V1 ̸∼= V2

C V1
∼= V2.

Proof. Let ρ : V1 → V2 be a homomorphism commuting with G. Then,
as can easily be checked, ker ρ and ρ(V1) are subrepresentations of V1 and V2,
respectively. Since V1 and V2 are irreducible, either ρ = 0 or V1

∼= V2. In the
latter case, we can then consider an eigenvalue λ of ρ; since ρ−λ has nontrivial
kernel, it must be the 0 map, showing that ρ = λ. □

Corollary 3.4. The irreducible representations of compact abelian groups
are all one-dimensional.
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Proof. Let V be an irreducible representation of an abelian group, and let
ρ(g) be the representation of some element g. Since the group is abelian, ρ(g)
commutes with the action of any other group element so—taking V1 = V2 = V

in Schur’s lemma—we conclude that ρ(g) is a scalar. Since this is true for any
g, for V to be irreducible, it must be one-dimensional. □

Example 3.5. We can already determine all the irreducible representations
of U(1). By Schur’s lemma, we know these are all one-dimensional. Parametriz-
ing U(1) as exp(iθ), any irreducible representation must therefore be a contin-
uous function satisfying

ρ(x+ y) = ρ(x)ρ(y) and ρ(0) = ρ(2π) = 1.

Since ρ(g) ̸= 0, setting f(x) = log(ρ(x)) gives

f(x+ y) = f(x) + f(y) and f(0) = f(2π) + 2πin, n ∈ Z.

Choosing f(0) = 0 for convenience, we see that the only continuous functions
satisfying these conditions are

fn(θ) = inθ.

Thus, all irreducible representations of U(1) have the form

ρn(x) = einθ.

♢

3.2. Unitary representations. In the case of finite groups, defining a G-
invariant inner product on our representations was ultimately a rather useful
tool. Motivated by the technique of averaging there, we can do something
similar for compact groups.

Proposition 3.6. Let G be a compact group and (ρ, V ) a finite represen-
tation. Then there exists an inner product on V such that ρ(g) is unitary for
all g ∈ G (i.e., the inner product is G-invariant).

Proof. Using the Haar measure, we can imitate the proof from the case of
finite groups. Specifically, let ⟨·, ·⟩ be any inner product on V , and define the
new inner product ⟨·, ·⟩G by

⟨v, w⟩G =

∫
G

⟨gv, gw⟩ dg .

Note that this is indeed an inner product, as ⟨v, v⟩G is the integral of a continu-
ous, nonnegative quantity which is only identically zero if v = 0. Furthermore,
this inner product is G-invariant, as

⟨hv, hw⟩G =

∫
G

⟨ghv, ghw⟩dg =

∫
Gh

⟨gv, gw⟩ dg = ⟨v, w⟩G.
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□

Corollary 3.7. Let G be a compact group and V a finite representation.
Then V is semisimple (i.e., decomposes as a sum of irreducibles).

Proof. If V is irreducible, we are done. Thus, let W ⊆ V be an irreducible
subspace fixed by G, and consider W⊥ as given by the invariant inner product.
We wish to show that W⊥ is fixed by G. But, for any v ∈ W⊥ and w ∈ W ,
we know that ⟨gv, w⟩ = ⟨v, g−1w⟩ = 0, since W is fixed by G. Thus, gv

is orthogonal to everything in W , so it is in W⊥, showing that W⊥ is also
fixed by G. We can thus write V = W ⊕ W⊥ and induct on W⊥ to get a
decomposition into irreducible subspaces. □

Corollary 3.8 (Schur’s lemma, part 2). Let G be a compact group and
V a finite representation such that EndG(V ) = C. Then V is irreducible.

Proof. Suppose that V were reducible, so that V = V1 ⊕ V2 with V1 and
V2 nontrivial. Let P : V → V2 be the orthogonal projection map onto V2 given
the unitary structure of the proposition. Then P ∈ EndG(V ), so either P = 0

or V ∼= V2. But V2 ̸= 0, so P cannot be 0 and V ∼= V2, a contradiction. □

From now on, we will also assume any representation is unitary and denote
its inner product as simply ⟨·, ·⟩.

3.3. Matrix coefficients and Schur orthogonality. In our ultimate discussion
of the Peter–Weyl theorem, it will be useful to have a more concrete under-
standing of the endomorphisms of the representations of G. To that end, it
would be useful to consider matrix representations of these endomorphisms.
However, rather than having to choose a basis for our representations, it is
convenient to use the slightly more abstract notion of matrix coefficients.

Definition 3.9. Let G be a compact group and (ρ, V ) a finite representa-
tion. A matrix coefficient is any function mρ

v,w : G → C of the form

mρ
v,w(g) = mv,w(g) = ⟨ρ(g)v, w⟩ with v, w ∈ V.

The span of all matrix coefficients will be denoted C(G)ρ. If a specific basis vi
is implied, these may also just be written as mij .

Note that this naming makes the most sense if we choose v, w to be from
an orthonormal basis, in which case the individual matrix coefficients are just
those of the matrix representation of g. However, more generally, the matrix
coefficients so defined will always be the elements of the matrix representation
of g with respect to some basis. The converse, namely that the elements of any
matrix representation are actually matrix coefficients, also holds by linearity,
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so this definition really is not introducing anything new; it is perhaps just a bit
easier to work with.

For finite groups, we had a very strong result on the orthogonality of these
matrix coefficients. As one might expect by now, this result raises practically
unchanged to the compact case.

Theorem 3.10 (Orthogonality of matrix coefficients). Let G be a compact
group and (ρ1, V ) and (ρ2,W ) two irreducible finite representations. Let v1, v2 ∈
V and w1, w2 ∈ W . Then we have∫

G

mv1,v2(g)mw1,w2(g) dg =

{
1

dimV ⟨v1, w1⟩⟨v2, w2⟩ ρ1 ∼= ρ2

0 otherwise.

Proof. For any v ∈ V , w ∈ W , consider the operators

Lv,w(x) = ⟨x, v⟩w and Tv,w =

∫
G

gLv,wg
−1 dg .

Both of these are elements of Hom(V,W ). Furthermore, note that Tv,w com-
mutes with the action of G, as

Tv,wg =

∫
G

hLv,w(h
−1g) dh =

∫
G

(gh)Lv,wh
−1 dh = gTv,w.

As such, Schur’s lemma tells us Tv,w is a scalar if and only if ρ1 ∼= ρ2 and is 0
otherwise. To determine this scalar, we can take the trace:

TrTv,w(g) =

∫
G

TrhLv,wh
−1 dh =

∫
G

TrLv,w dh = TrLv,w.

The trace of Lv,w is most easily evaluated by using an orthonormal basis ei of
V , yielding

TrLv,w =
dimV∑
i=1

⟨Lv,w(ei), ei⟩ =
dimV∑
i=1

⟨ei, v⟩⟨w, ei⟩ = ⟨w, v⟩.

Thus, we have Tv,w(g) = 1
dimV ⟨w, v⟩. Finally, we can answer our original

question by noting that∫
G

mv1,v2(g)mw1,w2(g) dg =

∫
G

⟨gv1, v2⟩⟨gw1, w2⟩dg

=

∫
G

⟨gv1, v2⟩⟨g−1w2, w1⟩ dg

=

∫
G

⟨g ⟨g−1w2, w1⟩ v1, v2⟩dg

=

≠∫
G

g⟨g−1w2, w1⟩v1 dg , v2
∑

= ⟨Lw1,v1w2, v2⟩.
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Using our classification for Lw1,v1 , we can ultimately conclude∫
G

mv1,v2(g)mw1,w2(g) dg =

{
1

dimV ⟨v1, w1⟩⟨v2, w2⟩ ρ1 ∼= ρ2

0 otherwise.

□

3.4. Characters. Having just proved Schur orthogonality, it is worth taking
a brief digression to discuss characters.

Definition 3.11. Let G be a compact group and (ρ, V ) a representation.
The character χ of ρ is defined by

χ(g) = Tr ρ(g).

If ρ is an irreducible representation, χ is called an irreducible character.

Characters function largely the same as for finite groups. Indeed, the
character of the sum of two representations is simply the sum of characters,
and therefore any character breaks down into a sum of irreducible characters.
We reproduce the following two familiar results.

Corollary 3.12 (Character orthogonality). Let G be a compact group
and let V , W be two irreducible representations with characters χV , χW . Then∫

G

χV (g)χW (g) dg =

{
1 V ∼= W

0 V ̸∼= W.

Proof. Choose orthonormal bases vi and wj of V and W . Then, we have

χV (g) =
dimV∑
i=1

⟨gvi, vi⟩ =
dimV∑
i=1

mvi,vi(g)

and similarly for χW . Thus,∫
G

χV (g)χW (g) dg =
dimV∑
i=1

dimW∑
j=1

∫
G

mvi,vi(g)mwj ,wj (g) dg .

If V ̸∼= W , we already know this is 0 by Theorem 3.10. On the other hand, if
V ∼= W , we can take vi = wi, yielding

dimV∑
i=1

dimV∑
j=1

∫
G

mvi,vi(g)mvj ,vj (g) dg =
1

dimV

dimV∑
i=1

dimV∑
j=1

|⟨vi, vj⟩|2 = 1.

□

Corollary 3.13. Let G be a compact group and χ a character of a finite
representation. Write χ as a sum of irreducible characters χ =

∑k
i=1 niχi .
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Then ∫
G

|χ(g)|2 dg =
k∑

i=1

n2
i .

Namely, χ is irreducible if and only if the integral is 1.

Example 3.14. If we parametrize the circle group in terms of an angle
θ ∈ [0, 2π), one can check that the Haar measure is given by

dg =
dθ

2π
.

Furthermore, since the irreducible representations of U(1) are one-dimensional
(see the example), we already have the characters

χn(θ) = ρn(θ) = exp(inθ).

Thus, by a needlessly complicated proof, we have that∫
U(1)

χn(g)χm(g) dg =
1

2π

∫ 2π

0

einθe−imθ dθ = δnm.

More interestingly, we also have a finite, integral version of Parseval’s
identity. Indeed, if f is an arbitrary finite character

f =
N∑

i=−N

niχi,

then Corollary 3.13 tells us that

1

2π

∫ 2π

0

|f(θ)|2 dθ =
N∑

i=−N

n2
i .

♢

4. L2(G) & the Peter–Weyl theorem

Having digressed enough on the subject of representations, it would be
good to remind ourselves of the original goal of describing functions on G.
In the case of finite groups, this could be achieved by considering the group
algebra

C[G] =
⊕
g∈G

Cg,

which has a multiplication linearly extending that of G. This could be identified
as the algebra of all functions f : G → C with the convolution product by letting
f(g) be the coefficient of g in f .

Unfortunately, directly attempting to use the group algebra in the case of
compact groups is a bit too general. Indeed, the space C[G] ∼ CG contains
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plenty of unwieldy and uninteresting functions. More importantly, it also con-
tains plenty of nonintegrable functions, which prevents us from using the tools
we have developed. The easiest way to fix this issue is just to get rid of these
problematic functions.

4.1. The representation L2(G).

Definition 4.1. Let G be a compact group. Let L2(G) be the Banach space
of complex square-integrable functions, i.e., those functions f : G → C such
that ∫

G

|f |2 dg exists and is < ∞.

Then, G acts on L2(G) as

(gf)(x) = f(g−1x).

Remark 4.2. Technically speaking, the space L2(G) is actually a quotient
of the above definition by the equivalence of almost-everywhere equality, but
we will ignore this complication as it is not essential. For more on Lp spaces,
see [Axl19, Chap. 7–8].

Example 4.3. The matrix coefficients C(G)ρ are all continuous functions,
and hence their squares are integrable over the compact set G. Thus, we have

C(G)ρ ⊆ L2(G) for all ρ.

♢

Example 4.4. For a finite group, we know that L2(G) ∼= C[G], since the
integral is just summing over each group element. Thus, an element f looks
like

f =
∑
h∈G

f(h)h.

Therefore,

gf =
∑
h∈G

(gf)(h)h =
∑
h∈G

f(g−1h)h =
∑
h∈G

f(h)gh.

In other words, L2(G) is just the regular representation of G, which should not
be too surprising given the analogy with the group algebra. ♢

Example 4.5. For the group U(1), L2(U(1)) can be identified as all square-
integrable functions on the circle, since U(1) ∼= S1, together with the translation
action f(x) 7→ f(x− θ). ♢

The reason to choose square integrability, rather than just normal integra-
bility, is that it will allow us to promote L2(G) from just a Banach space to a
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Hilbert space, i.e., a space with an inner product. Indeed, we can define

⟨f, g⟩ =
∫
G

fg dx ,

which is guaranteed to exist by the complex polarization identities. However,
before continuing with its representation theory, it is worth digressing to discuss
the product structure of L2(G).

4.2. Convolutions. Without being too rigorous, we can think about an
element f ∈ L2(G) as a “weighted integral” of elements of G

f =

∫
G

f(g)g dg .

From this, we can calculate the product of two elements as

f1 ∗ f2 =
∫
G

∫
G

f1(h)f2(g)hg dhdg =

∫
G

Å∫
G

f1(h)f2(h
−1g) dh

ã
g dg .

Looking at the coefficient of g in this expression thus motivates the following
definition for the convolution.

Definition 4.6. Let G be a compact group. Then, for any f1, f2 ∈ L2(G),
we define the convolution

(f1 ∗ f2)(g) =
∫
G

f1(h)f2(h
−1g) dh .

Remark 4.7. One should prove that this convolution does actually obey
the regular associativity and distributivity laws of a product. This is a good
exercise in analysis.

Also, note that if G is not discrete, ∗ does not technically have an identity
element. However, as we will discuss, one can still approximate an identity
element using L2(G) functions.

Note that the convolution is not, in general, abelian (which should not
be a surprise, considering G need not be). As such, there are two natural
operations we can extract from the convolution by fixing one of the two factors.
Specifically, we will write

Lh(f) = h ∗ f and Rh(f) = f ∗ h for h, f ∈ L2(G).

These operations are, in general, very well behaved. Specifically, we have the
following collection of technical results from functional analysis, which are only
partially reproduced as they are not the focus of this article.

Proposition 4.8. Let h ∈ L2(G), and define h̃(x) = h(x−1). Then we
have that

(1) Lh and Rh are continuous compact operators;
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(2) (Lh)
∗ = Lh̃ and (Rh)

∗ = Rh̃ . In particular, if h = h̃, then Lh and Rh

are self-adjoint.

Proof.

(1) The continuity of both Lh and Rh follows easily enough by applying
the Cauchy–Schwarz inequality to show that

∥Lh(f)(g)∥ =

∥∥∥∥∫
G

h(x)f(x−1g) dx

∥∥∥∥ ≤ ∥h∥∥f∥,

and similarly for Rh. Compactness, on the other hand, is more tech-
nical, but can be done by noting that the convolution is an integral
operator with a compactly supported kernel; the interested reader can
find the full details in [Mor19, Chap V.4] or [vdB93, Sec. 8].

(2) We prove this for Lh, as the proof for Rh is nearly identical.

⟨Lhf1, f2⟩ =
∫
G

h ∗ f1f2 dx

=

∫
G

∫
G

h(y)f1(y
−1x)f2(x) dy dx

=

∫
G×G

h(y−1)f1(x)f2(y−1x) dy dx (x → yx and y → y−1)

=

∫
G

f1(x)

ï∫
G

h(y−1)f2(y
−1x) dy

ò∗
dx

= ⟨f1, Lh̃f2⟩.

Thus, if h = h̃, then Lh = Lh̃ is equal to its adjoint.

□

Despite being very nicely behaved, however, the convolution does have one
major weakness: its lack of an identity element. This is rather annoying, as
it means that L2(G) with ∗ as the product is a non-unital ring. However, as
alluded to, we can still approximate an identity element as well as we need to.

Lemma 4.9. Given any f ∈ L2(G), there is a sequence of functions hn
such that

(1) hn = h̃n ;
(2) ∥hn∥ = 1;
(3) f ∗ hn → f as n → ∞.

Proof. Denote by rx right multiplication by x, i.e., rxf(y) = f(yx).
Now, let ϵ > 0, and choose a neighborhood of the identity U ⊆ G such

that U = U−1 and ∥rxf − f∥ < ϵ for all x ∈ U , which is possible by continuity
of the group multiplication. Define hϵ =

1
Vol(U)1U . Then hϵ = h̃ϵ and ∥hϵ∥ = 1
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by definition. Furthermore, we have

f ∗ hϵ(g)− f(g) =
1

Vol(U)

∫
G

f(x)1U (x
−1g) dx− f(g)

=
1

Vol(U)

∫
G

f(gx)1U (x
−1) dx− 1

Vol(U)

∫
U

f(g) dx

=
1

Vol(U)

∫
U

(rxf)(g)− f(g) dx .

Thus, we can conclude that

∥f ∗ hϵ − f∥2 = 1

Vol(U)2

∫
U×U

((rx)f − f)((ry)f − f) dx dy

≤ 1

Vol(U)2

∫
U×U

∥(rx)f − f∥∥(rx)f − f∥ dx dy

=
1

Vol(U)2

∫
U×U

ϵ2 dx dy

= ϵ2.

In particular, if we take the sequence hn := h2−n , we get an approximation to
the identity. □

4.3. The Peter–Weyl theorem. We can finally come to our first major re-
sult, the titular Peter–Weyl theorem. This, as mentioned earlier, is really just
a generalization of the Artin–Wedderburn theorem to compact groups, giving
us a decomposition of L2(G), the equivalent to C[G], into simpler spaces given
by the irreducible representations of G.

We will still need one more theorem before proving Peter–Weyl: the spec-
tral theorem for compact self-adjoint operators. However, we will just be stating
this result, as it is purely a result from functional analysis.

Theorem 4.10 (Spectral theorem). Let T : V → W be a compact self-
adjoint operator between Hilbert spaces. Then V decomposes as an orthogonal
direct sum

V = Ker(T )
⊕
λ∈Λ

Eλ,

where Λ ∈ R∗ is a discrete set of eigenvalues, and the Eλ are orthogonal, finite-
dimensional eigenspaces.

Proof. See [Mor19, Chap. V.6] or [Axl19, Chap. 10D]. □

Having finally gone through all the preliminaries, we present the Peter–
Weyl theorem.
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Theorem 4.11 (Peter & Weyl, 1927). Let G be a compact group, and “G
the set of finite irreducible representations of G. Then

L2(G) ∼=
⊕̂
ρ∈“G C(G)ρ,

where “⊕ denotes the closure of the direct sum.

Proof. We will denote

R(G) =
⊕̂
ρ∈“G C(G)ρ

for convenience. The proof will consist of two steps: showing that every finite
subrepresentation of L2(G) occurs in R(G), and showing that this implies that
the complement of R(G) is trivial.

For the first step, consider some arbitrary finite representation V of G.
Without loss of generality, we may take V to be irreducible, since any finite
representation is semisimple by Corollary 3.7. Our strategy will be to show that
the image of any inclusion map u : V → L2(G) commuting with the action of
G is in fact contained in R(G), i.e., is in the span of all matrix coefficients. To
do so, take some v ∈ V and let f ∈ L2(G). We then have

(u(v) ∗ f̃)(g) =
∫
G

u(v)(h)f(g−1h) dh

=

∫
G

u(v)(gh)f(h) dh

= ⟨u(v) ◦ g, f⟩

= ⟨u(ρ(g−1)v), f⟩

= ⟨ρ(g−1)v, u∗(f)⟩.

This is a matrix coefficient for the dual representation of ρ, so it is in R(G).
Now, if we take a sequence of f̃n approximating the identity, we can then
conclude that

u(v) ∗ f̃n → u(v) ∈ R(G).

We are now ready to complete our proof of the theorem. To that end,
consider an element f ∈ R(G)⊥. If we now consider any element h ∈ L2(G)

such that h = h̃, we know that Rh is a self-adjoint compact operator. As such,
L2(G) decomposes as

L2(G) = Ker(Rh)
⊕
i

Eλi
,

where the Eλi
are finite-dimensional. As such, they are all in R(G), so f is

orthogonal to them. In particular, f ∈ Ker(Rh), i.e., f ∗ h = 0. Again, taking
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now a sequence hn that approximates the identity, we conclude that f = 0,
completing the proof. □

5. Applications to S1 and S3

After all of that work, we are finally ready to discuss some concrete appli-
cations of all of this theory to Fourier-type decompositions on n-spheres. We
will only handle the cases S1, S2, and S3 in this article, as the general case
needs more sophisticated tools. The cases of S1 and S3 are easiest to han-
dle thanks to the fact that these two spheres actually have group structures;
namely, we have S1 ∼= U(1) and S3 ∼= SU(2) as discussed previously. As such,
we will discuss them first.

5.1. U(1) and S1 . The case of S1, though not particularly revolutionary in
its conclusion, is still a wonderful and simple example of the Wedderburn-type
decomposition we are trying to do. Moreover, it provides the framework with
which we can approach more general cases.

Theorem 5.1 (Fourier, 1807). The space L2(S1) decomposes as

L2(S1) ∼=
⊕̂
n∈Z

C(U(1))n ∼=
⊕̂
n∈Z

Ceinθ.

More concretely, a function f ∈ L2(S1) can be written as

f(θ) =
∑
n∈Z

f̂(n)einθ with f̂(n) =
1

2π

∫ 2π

0

f(θ)e−inθ dθ .

Proof. Note that U(1) ∼= S1. Furthermore, by our classification of the
irreducible representations, the span of matrix coefficients is clearly just

C(U(1))n ∼= C exp(inθ).

Thus, applying Theorem 4.11 gives us the first statement.
For the more concrete realization, note that we already know f decomposes

as a sum:
f =

∑
n∈Z

ane
inθ.

We can then use Theorem 3.10 to isolate what an is. Specifically, taking the
inner product with the matrix coefficient mn = e−inθ = m−n, and recalling
that dg = dθ /(2π), gives us that

1

2π

∫ 2π

0

f(θ)e−inθ dθ =
1

2π

∫ 2π

0

∑
k∈Z

akmkmn dθ =
∑
k∈Z

akδkn = an.

□
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5.2. Representation theory of SU(2). As we noted previously, SU(2) can
be viewed as the manifold S3. Thus, to get a Fourier theory on S3, it would
be sufficient to determine the matrix coefficients of representations of SU(2).
Before we can do that, however, we need to actually determine the irreducible
representations themselves.

In order to find these irreducible representations, note that there is a nat-
ural action of SU(2) on C2 given by

g

ñ
z1
z2

ô
=

ñ
α β

−β α

ô ñ
z1
z2

ô
=

ñ
αz1 + βz2
−βz1 + αz2

ô
.

A slight reframing of this involves considering z = (z1, z2) as variables for
a 2-variable polynomial p1(z) = az1 + bz2. With this reframing, we get a
representation

(gp1)(z) = p1(g
−1z),

the inverse being necessary to respect associativity. This can be generalized by
considering higher-degree polynomials. Namely, if we let Pn be the space of all
≤ n degree complex polynomials in 2 variables, we get a representation

(gpn)(z) = pn(g
−1z) for pn ∈ Pn.

This representation, unfortunately, is not irreducible. Indeed, consider the
subspace Pn of all homogeneous degree n polynomials, i.e., the polynomials
such that

pn(λz) = λnpn(z).

Then this subspace is invariant under the SU(2) action, as

(gpn)(λz) = pn(g
−1λz) = pn(λg

−1z) = λn(gpn)(z).

The natural question to ask is whether this new representation is irreducible.
The answer, as we will prove, is yes.

Proposition 5.2. The SU(2) representation on Pn is irreducible for every
n ≥ 0. In particular, there is a representation ρn of dimension n+ 1 for every
n ≥ 0.

Proof. Our proof will attempt to use Corollary 3.8 by showing that any
endomorphism A of Pn commuting with the action of SU(2) is a scalar.

To start our proof, note that the polynomials pk = zk1z
n−k
2 form a basis of

Pn for 0 ≤ k ≤ n. Now, consider the special elements

uθ =

ñ
e−iθ 0

0 eiθ

ô
∈ U(1) ⊆ SU(2).

These elements are of note, as

uθpk = (eiθz1)
k(e−iθz2)

n−k = eiθ(2k−n)pk.
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Namely, the pk are eigenvectors of uθ with respective eigenvalues eiθ(2k−n). As
such, in the basis of the pk, we have

ρn(uθ) = diag
(
e−iθn, e−iθ(n−2), . . . , eiθn

)
.

By choosing θ small enough, these eigenvalues are all distinct, so the pk also
generate all the eigenspaces of uθ. Since A is assumed to commute with SU(2),
it must map each of these eigenspaces to itself. Thus,

Apk = λkpk for 0 ≤ k ≤ n.

We now want to show that λk = λ0 for all k. To do so, consider the new
elements

rθ =

ñ
cos θ − sin θ

sin θ cos θ

ô
∈ U(1) ⊆ SU(2).

We can then look at the action of rθ and A on p0 = zn1 . Specifically, we have

Arθp0 = A(cos θz1 + sin θz2)
n

= A
n∑

k=0

Ç
n

k

å
(cos θ)k(sin θ)n−kzk1z

n−k
2

=
n∑

k=0

Ç
n

k

å
(cos θ)k(sin θ)n−kApk

=
n∑

k=0

λk

Ç
n

k

å
(cos θ)k(sin θ)n−kpk.

On the other hand, since Arθ = rθA, we also get

rθAp0 = λ0rθp0 =
n∑

k=0

λ0

Ç
n

k

å
(cos θ)k(sin θ)n−kpk.

Comparing these two expressions, we can indeed conclude that λ0 = λk for all
0 ≤ k ≤ n. Thus, A = λ0I is a scalar, and we conclude that ρn is irreducible.

□

Corollary 5.3. For every n ≥ 0, SU(2) has an irreducible character χn

given by

χn(uθ) =
n∑

k=0

eiθ(2k−n).

Proof. Note that, by the spectral theorem for finite vector spaces, any
element of SU(2) is conjugate to a diagonal matrix of the form uθ defined
previously. Thus, it is sufficient to define the characters on this subspace.

Now, consider again the basis pk = zk1z
n−k
2 of Pn. We already saw that

ρn(uθ)pk = eiθ(2k−n)pk,
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from which we can conclude that the trace of ρn(uθ) is

χn(uθ) =
n∑

k=0

eiθ(2k−n).

□

The previous corollary tells us that the span of the characters of SU(2) is
dense in the even periodic functions. Specifically, denoting χn(θ) := χn(uθ),
we can express cos(nθ) for n ∈ Z as

1 = χ0 and cos(θ) =
1

2
χ1(θ) and cos(nθ) =

1

2

(
χn(θ)− χn−2(θ)

)
,

which are dense in the even periodic L2 functions by Theorem 5.1. In fact,
this observation allows us to conclude that the ρn we defined give all of the
irreducible representations of SU(2).

Proposition 5.4. The ρn enumerate all irreducible representations of
SU(2).

Proof. Let ρ be a representation with character χ. Note that χ is com-
pletely described by its restriction to the uθ, since characters are invariant
under conjugation and any SU(2) matrix can be diagonalized. Furthermore,
since uθ is conjugate to u−θ, we must have χ(−θ) = χ(θ). In other words, χ is
just an even function on the unit circle. Thus, by Theorem 5.1, χ decomposes
as a sum of cos(nθ) terms. However, we just saw that cos(nθ) can be expressed
in terms of the χn. Thus, χ can be expressed as a sum of the χn. In particular,
χ contains at least one of the χn, so χ is either one of them or is reducible. □

5.3. SU(2) and S3 . Now that we have a concrete realization and under-
standing of all of the irreducible representations of SU(2), an application of
Theorem 4.11 achieves our stated goal.

Proposition 5.5. The space L2(S3) ∼= L2(SU(2)) decomposes as

L2(S3) ∼=
⊕̂
n≥0

C(SU(2))n.

However, this is not really a satisfying result. Indeed, while this is certainly
a valid decomposition of the functions on S3 into smaller algebras, it is not clear
at all what the spaces C(SU(2))n look like, or how they even relate to functions
on S3. Thus, to get a better understanding, we need to put a bit more effort
into studying the matrix coefficients of SU(2).

Recall that the link between SU(2) and S3 we had was based on mappingñ
α β

−β α

ô
7→ (x1, y1, x2, y2) ∈ S3 where α = x1 + iy1, β = x2 + iy2.
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As such, it would make sense to consider the matrix coefficients as functions of
α and β. For example, we can consider the actionñ

α −β

β α

ô
pk =

(
αz1 + βz2

)k(
−βz1 + αz2

)n−k
=: Fk(α, β)

as a polynomial in α, β, α, and β. Note that this is particularly convenient, as
these 4 variables are linearly related to the variables x1, y1, x2, and y2.

There are now three insights that allow us to give a more concrete picture
of C(SU(2))n. The first is that, since the pk are a basis of Pn, a basis for
C(SU(2))n is given by

Fm
k (α, β) := zn−m

1 zm2 coefficient of
(
αz1 + βz2

)k(
−βz1 + αz2

)n−k
,

where 0 ≤ m, k ≤ n.

Example 5.6. Consider the space P2. We have

F0 =
(
αz1 + βz2

)2
= α2z21 + 2αβz1z2 + β2z22

F1 =
(
αz1 + βz2

)(
−βz1 + αz2

)
= −αβz21 + (αα− ββ)z1z2 + αβz22

F2 =
(
−βz1 + αz2

)2
= β

2
z21 − 2αβz1z2 + α2z22 .

Thus, the Fm
k , which form a basis for the space of matrix coefficients, are

Fm
k 0 1 2

0 α2 2αβ β2

1 −αβ αα− ββ αβ

2 β
2 −2αβ α2

.

♢

The second observation is that Fk is still real-homogeneous of degree n,
i.e.,

Fk(λα, λβ) =
(
λαz1 + λβz2

)k(
−λβz1 + λαz2

)n−k
= λnFk(α, β)

for λ ∈ R. Thus, we can also interpret the matrix coefficients as some subspace
of the homogeneous polynomials of degree n in 4 real variables, if we choose to
write α, β, and their conjugates in terms of the xi and yi.
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Example 5.7. Continuing the previous example, we get these degree 2 ho-
mogeneous polynomials:

α2 = x21 + 2ix1y1 − y21 α2 = x21 − 2ix1y1 − y21

β2 = x22 + 2ix2y2 − y22 β
2
= x22 − 2ix2y2 − y22

2αβ = 2(x1x2 + y1y2) + 2i(x1y2 + x2y1) −αβ = −x1x2 + y1y2 + i(x1y2 − x2y1)

αβ = x1x2 − y1y2 + i(x1y2 − x2y1) −2αβ = −2(x1x2 + y1y2) + 2i(x1y2 + x2y1)

αα− ββ = x21 + y21 − x22 − y22.

♢

The final observation is that, as a 4-variable real function, Fk(x1, y1, x2, y2)

is actually harmonic. If we write

∆ =
∂2

∂x21
+

∂2

∂y21
+

∂2

∂x22
+

∂2

∂y22
= 4

∂2

∂α∂α
+ 4

∂2

∂β∂β
,

the symmetry of the two terms defining Fk makes it easy to check that it
is harmonic. Moreover, since Fk is harmonic, each of the Fm

k is too. We
have therefore established that the matrix coefficients C(SU(2))n are actually
homogeneous harmonic polynomials of degree n on R4. These polynomials are
so important, in fact, that it is worth giving them a special symbol.

Definition 5.8. Let

Hm
n = {p ∈ Pn(Rm)|∆p = 0},

i.e., the space of all harmonic homogeneous polynomials of degree n on Rm.

Example 5.9. The space H4
2 is simple enough that one can manually enu-

merate the possibilities. Doing so shows that H4
2 is 9-dimensional, with basis

x21 − y21, x
2
2 − y22, x

2
1 − x22, x1y1, x1x2, x1y2, y1x2, y1y2, x2y2.

♢

Curiously, the previous examples show that H4
2 and C(SU(2))2 actually

have the same dimension and are thus the same space. It turns out this is a
general phenomenon: C(SU(2))n is not only a subspace of H4

n, but is in fact
equal to it. Proving this is most easily done by noting both of these spaces have
dimension (n+1)2. For C(SU(2))n, this follows immediately from the fact that
the n + 1 elements pk form a basis of Pn. On the other hand, to see that H4

n

has dimension (n + 1)2, consult Appendix A. In any case, putting everything
together, we finally get the proper hyperspherical decomposition on S3.
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Theorem 5.10 (S3 hyperspherical decomposition). The space L2(S3) ∼=
L2(SU(2)) decomposes as

L2(S3) ∼=
⊕̂
n≥0

H4
n|S3 ,

where |S3 denotes restriction to S3 ⊆ R4 . Furthermore, the coefficients in this
decomposition can be calculated as

Fn
ij = ⟨f,mij⟩SU(2) =

∫
S3

f mn
ij dµ for 0 ≤ i, j ≤ n.

Remark 5.11. The invariant metric µ on SU(2) is, unfortunately, rather
complicated, so we will not be writing it down explicitly.

6. Applications to S2

Our final task is to tackle spherical decompositions on S2. This is hindered
by the fact that S2 has no obvious group structure; in fact, it can be shown
that there is no way to give S2 a group structure compatible with its geometry
(see [Lee18]). For this reason, we will need to change our approach slightly.

The most important insight is that, while S2 is not a group itself, it is
certainly acted upon very naturally by many groups. In particular, the group
SO(3) of three-dimensional rotations has a natural action on the 2-sphere. This
action is transitive, i.e., the orbit of every point is all of S2 but is not faithful.
Indeed, the stabilizer of any point is a subgroup of SO(3) isomorphic to SO(2).
This is easy to see geometrically: any rotation that fixes a particular point
on the surface of the sphere must be a rotation through that point, and so
these collectively form a group of two-dimensional rotations. Thus, by the
orbit-stabilizer theorem, we have an identification

S2 ∼= SO(3)/ SO(2).

This identification now gives us a useful way to think about L2(S2).
Namely, consider a function f ∈ L2(SO(3)) that is SO(2) invariant. Then,
f can just be defined on SO(3)/ SO(2)-cosets, which we just saw are isomor-
phic to S2. On the other hand, any function f ∈ L2(S2) can be lifted to a
function f ∈ L2(SO(3)) that is SO(2) invariant, so we have established an
isomorphism

L2(S2) ∼= L2(SO(3))SO(2),

where the superscript SO(2) denotes the subspace of SO(2)-invariant functions.
But now note that we can understand L2(SO(3)) very well using Theorem 4.11,
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and taking an SO(2)-invariant subspace commutes nicely with the decomposi-
tion we had. Indeed, we have

L2(SO(3))SO(2) =

ï ⊕̂
ρ∈ŜO(3)

C(SO(3))ρ

òSO(2)

=
⊕̂

ρ∈ŜO(3)

(
C(SO(3))ρ

)SO(2)
.

Because of this, we see that we should try to understand the irreducible repre-
sentations of SO(3) in order to understand L2(S2).

6.1. From SU(2) to SO(3) representations. To derive the irreducible repre-
sentations of SO(3), we will use a classical result that SU(2) is the double-cover
of SO(3). Intuitively, this means that there is a way of mapping SU(2) onto
SO(3) such that a 2π rotation in SO(3) corresponds to the map −I in SU(2).
The precise proof and details of this result are not so important for us (see
[vdB93, Sec. 20] for the details). All that matters is that there is a surjective
homomorphism

ϕ : SU(2) → SO(3) with kerϕ = ±I.

The existence of this homomorphism allows us to use what we already know
about SU(2) representations, namely Proposition 5.4, to completely character-
ize SO(3) representations.

In particular, consider an irreducible representation ρ̃ of SO(3). We can
then lift this to a representation ρ = ρ̃ ◦ ϕ of SU(2) where −I acts as the
identity. Since ρ̃ is irreducible, ρ must be as well, so we can conclude that
ρ = ρn for some n ≥ 0. But if n is odd, then

ρ(−I)p(z) = p(−z) = (−1)np(z) = −p(z),

so −I does not act as the identity. Thus, n = 2k is even, and we have that ρ̃

is given by projecting ρ2k onto SO(3). We thus get the following proposition.

Proposition 6.1. The irreducible representations of SO(3) are given by

ρ̃k = ρ2k ◦ ϕ−1 for some k ≥ 0.

In particular, SO(3) has an irreducible representation of dimension 2k + 1 for
every k ≥ 0.

Remark 6.2. One should reasonably object that ϕ−1 is not actually defined,
since ϕ is not injective. Instead, by ϕ−1, we mean any right inverse of ϕ (i.e.,
a map such that ϕ ◦ ϕ−1 = idSO(3), which exists since ϕ is surjective). That
the ρ̃k do not depend on the choice of right inverse then follows from the fact
that the only ambiguity in ϕ−1(g) is a ± freedom, which is irrelevant since
ρ2k(−g) = ρ2k(g).

Having this description of the irreducible representations, we can also ask
what the characters of SO(3) are. To do so, note that complexifying SO(3)
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and applying the complex spectral theorem shows that any element of SO(3)

is conjugate to a matrix

Rθ =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 ,

which form an SO(2) subgroup. Furthermore, while we will not show it, the
preimage of Rθ under ϕ is given by

uθ/2 =

ñ
e−iθ/2 0

0 eiθ/2

ô
,

where we are treating the range of θ as [0, 4π) to make this “inverse” continuous.
Intuitively, this is just the fact that a full 2π rotation in SO(3) corresponds to
the map −I in SU(2). With this in hand, we can calculate the characters.

Corollary 6.3. The character of ρ̃n is given by

χ̃n(Rθ) =
n∑

k=−n

eiθk.

Proof. We have

χ̃n(Rθ) = χ2n(uθ/2) =
2n∑
k=0

eiθ(2k−2n)/2 =
2n∑
k=0

eiθ(k−n) =
n∑

k=−n

eiθk.

□

6.2. Harmonic polynomials and SO(3) representations. While we now have
both the characters and descriptions of the irreducible representations, it is still
worth thinking about a more direct realization of them. Namely, our current
scheme requires lifting elements of SO(3) to SU(2), and then acting on complex
2-variable polynomials, which is rather involved. Ideally, we would directly
relate SO(3) representations to functions of 3 real variables.

To do so, we will draw some further inspiration from the case of SU(2)

representations and consider the homogeneous harmonic polynomials H3
n on

R3. Since the Laplacian is invariant under rotations, there is a natural action
of SO(3) on these polynomials given by

gp(r) = p(g−1r).

As shown in Appendix A, H3
n is 2n+1 dimensional, the same as ρ̃n. This begs

asking if these two representations are, in fact, isomorphic. Indeed, they are.

Proposition 6.4. The representations (Ṽn, ρ̃n) from Proposition 6.1 and
(H3

n, pn) of SO(3) are isomorphic. In particular, the H3
n also exhaust the irre-

ducible representations of SO(3).
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Proof. Since the Ṽi exhaust all irreducible representations of SO(3), we
must have

H3
n =

⊕
i∈I

Ṽmi

for some indexing set I. Comparing dimensions, we have that

2n+ 1 =
∑
i∈I

2mi + 1.

In particular, we just need to show that mi ≥ n for some i and we are done.
To do so, we can compare the characters

χ(Rθ) =
∑
i∈I

mi∑
k=−mi

eiθk.

Now, notice that if we can show pn(Rθ) has an eigenvalue einθ, then the sum
on the right must include an einθ term as well, since a character is just the sum
of eigenvalues. This would in turn show that one of the mi is greater than n,
as that is the only way an einθ term could appear.

To show this, consider the polynomial Yn(r) = (y+iz)n. This is a harmonic
homogeneous polynomial of degree n. Indeed, it is holomorphic as a function of
y+iz, and it is a standard result of complex analysis that the real and imaginary
parts of holomorphic functions are harmonic when regarded as functions of two
real variables. Furthermore, we have

pn(Rθ)Yn =
(
y cos θ − z sin θ + i(y sin θ + z cos θ)

)n

=
(
eiθy + ieiθz

)n

= eiθnYn,

completing the proof. □

6.3. SO(3)/SO(2) and S2 . Now that we have a very concrete understand-
ing of the representations of SO(3), the only thing stopping us from determining
a decomposition of L2(S2) is an understanding of the spaces

C(SO(3))SO(2)
n .

To do so, let us first consider the general case of a space

C(G)Hρ for H ⊆ G.

This is, by definition, just the space of matrix coefficients invariant under the
H-action. Letting V be the vector space of ρ, we can further say that the
space of matrix coefficients is isomorphic to the endomorphisms of V , since
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they match dimension. As such, we can interpret C(G)Hρ as the subspace of
End(V ) invariant under the H-action, i.e., the endomorphisms

A ∈ End(V ) such that Ah = A for h ∈ H.

Using now the unitary structure of V , we conclude that A = 0 on the orthogonal
complement of V H , the subspace of V fixed by H. Indeed, we could otherwise
restrict to a subspace of (V H)⊥ where A is invertible and conclude that H

acts as the identity, a contradiction. Thus, restriction to V H now induces an
isomorphism

C(G)Hρ
∼= Hom(V H , V ).

Example 6.5. If we take H = {1} to be the trivial subgroup, we are just
asserting a homomorphism

C(G)ρ ∼= C(G)Hρ
∼= Hom(V H , V ) ∼= End(V ).

If we take ρ to be the trivial representation, on the other hand, and let H be
any subgroup, we are asserting that

C ∼= C(G)H1
∼= Hom(CH ,C) ∼= C.

♢

Applying this to the case of C(SO(3))
SO(2)
n , we see that we really just need

to study

Hom(Ṽ SO(2)
n , Ṽn) ∼= Hom(PSO(2)

2n ,P2n).

However, recall from earlier that the preimage of SO(2) in SU(2) is just U(1).
Furthermore, the U(1) action on P2n was given by

uθpk = eiθ(2k−2n)pk.

This action is trivial only when k = n, so the space PSO(2)
2n

∼= PU(1)
2n is actually

just one-dimensional, i.e., is just C. In particular, we have

C(SO(3))SO(2)
n

∼= Hom(C, Ṽn) ∼= Ṽn
∼= H3

n.

Thus, we have finally proved our main result on the decomposition of L2(S2).

Theorem 6.6 (S2 spherical decomposition). The space L2(S2) ∼= L2(SO(3))SO(2)

decomposes as

L2(S2) ∼=
⊕̂
n≥0

H3
n|S2 .

Furthermore, the coefficients in this decomposition can be calculated as

Fn
i = ⟨f,mn

i ⟩S2 =

∫
S2

f mn
i dµ for |i| < n.
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Remark 6.7. One might wonder why we are allowed to freely restrict H3
n

to S2. However, this restriction actually loses no information, as

p(r) = p(rr̂) = rnp(r̂) for p ∈ H3
n.

In particular, p is already determined by its values on S2.
Also, as it turns out, the relevant metric dµ to use for the integration is

indeed the standard metric on a sphere dΩ, though we will not prove this.

7. Conclusions

The results we obtain here are about as far as we can go with just the
Peter–Weyl theorem. However, there are definitely many ways to extend these
results. For starters, any practical decomposition of functions on S2 would ide-
ally involve spherical polar coordinates, as these are the most natural. Indeed,
it is possible to derive an explicit formula giving a basis of H3

n in terms of polar
coordinates. For a reference, see [vdB93, Sec. 31].

Generalizing the decompositions discussed here to even-higher-dimensional
spheres is also certainly possible. Indeed, just from the results we obtained, one
might already guess that a decomposition into harmonic homogeneous polyno-
mials is always possible. This is indeed the case, though a full proof certainly
requires much more work. One way to approach this generalization would be
to realize that we can always consider Sn as a quotient

Sn ∼= SO(n+ 1)/ SO(n)

and apply similar techniques as we did in Section 6. This path of generalization
actually has connections to very current mathematical research, such as the
Langlands program (see [GR06]).

On the other hand, one could also consider the idea of further generalizing
the Peter–Weyl theorem. Unfortunately, a full generalization to even all locally
compact groups is much more difficult. However, the special case of abelian
locally compact groups is well understood thanks to Pontryagin duality, which
an interested reader can find more about in [Rud17, Chap. 1.7]. This route
then gives, for example, the Fourier transform on R, among other things.
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Appendix A. Dimension of Hn
m

Letting P (Rn) be the space of all polynomials on Rn, we will consider the
subspaces

Pn
m = {p ∈ P (Rn)|p(λr) = λmp(r)} and Hn

m = {p ∈ Pn
m|∆p = 0}.

To start, we calculate the dimension of Pn
m.

Proposition A.1.

dimPn
m =

Ç
n+m− 1

n− 1

å
.

Proof. A basis for Pn
m is given by the monomials

xα1
1 xα2

2 . . . xαn
n with α1 + α2 + · · ·+ αn = m.

In particular, the number of such monomials is just the number of ways to write
m as the sum of an n-tuple of nonnegative integers. This is just the classical
stars-and-bars problem from combinatorics, with solution

(n+m−1
n−1

)
. □

Having determined the dimension of Pn
m, we can now determine the di-

mension of Hn
m by cleverly decomposing it into lower-dimensional homogeneous

polynomial spaces.

Proposition A.2.

dimHn
m = dimPn−1

m + dimPn−1
m−1.

Proof. Consider some p = p(x1, x2, . . . , xn) ∈ Hn
m. We can expand this as

a sum around x1, giving

p =
m∑
k=0

fk(x2, . . . , xn)

k!
xk1.

Note that fk is a homogeneous polynomial, now of degree m−k; in other words,
fk ∈ Pn−1

m−k. Taking the Laplacian, we get

∆p =
m∑
k=2

fk
k!

k(k − 1)xk−2
1 +

m∑
k=0

xk1
k!

(
∆′fk

)
=

m−2∑
k=0

fk+2

k!
xk1 +

m∑
k=0

xk1
k!

(
∆′fk

)
,

where the ∆′ Laplacian excludes the x1 coordinate. Analyzing the second term
a bit more, we see that if k = m,m− 1, then fk is a polynomial of degree 0 or
1, so the Laplacian must vanish. Thus, we get

∆p =
m−2∑
k=0

xk1
k!

(
fk+2 +∆′fk

)
.
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In particular, if p is harmonic, we must have

fk+2 +∆′fk = 0 for 0 ≤ k ≤ m− 2.

Thus, specifying f0 and f1 determines p. Namely

Hn
m

∼= Pn−1
m ⊕ Pn−1

m−1,

which proves the proposition. □

Corollary A.3.

dimHn
m =

Ç
n+m− 2

n− 2

å
+

Ç
n+m− 3

n− 2

å
.

Example A.4. If we take n = 3, we get

dimH3
m =

Ç
m+ 1

1

å
+

Ç
m

1

å
= 2m+ 1,

proving the claim that H3
m and Ṽm have the same dimension. ♢

Example A.5. If we take n = 4, we get

dimH4
m =

Ç
m+ 2

2

å
+

Ç
m+ 1

2

å
=

(m+ 2)(m+ 1)

2
+

(m+ 1)m

2

=
(m+ 1)(2m+ 2)

2

= (m+ 1)2,

proving the claim that H4
m and C(SU(2))m have the same dimension. ♢
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