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Letter from the Editors

Undergraduate mathematics students are frequently tasked with writing expos-

itory pieces accessible to their peers. By the time they graduate, most math

majors will have been assigned a paper on a topic not explored by a class they

took, assembled a summary of a research niche they explored for an REU,

or simply decided to write about a result or topic they felt they had a fresh

way of talking about. The Columbia Journal of Undergraduate Mathematics

was created when we asked ourselves a simple question about these projects:

where do they go? The answer at the time seemed to be ‘nowhere’: since

undergraduate expository work does not present original results or research,

this writing is not eligible for most mathematics publications. We decided

to change that. Our belief was that, since papers written by undergraduates

themselves are uniquely understandable for undergraduates, such papers rep-

resent an untapped intellectual resource. We were confident that if we created

a journal to showcase this work, we would uncover a treasure trove of creative

and insightful mathematical exposition just waiting to come to light.

To our delight, our call for submissions was answered by a wide vari-

ety of talented undergraduate expositors originating from schools across the

country (and one or two from abroad). Throughout the editing process, we

were inspired by how these submissions offered novel ways of explaining known

mathematical concepts with target audiences ranging from first-semester un-

dergraduates to the most advanced graduating seniors. This issue offers the

best of the best of those submissions.

Our opening article, “A Topological Proof of the Riemann-Hurwitz For-

mula,” approaches an algebro-geometric result through the lens of manifolds

and algebraic topology, with exposition enhanced by diagrams drawn by the

author herself. Without assuming much complex analysis, the paper introduces

essential concepts in the study of Riemann surfaces and their branched covers,

as well as the Euler characteristic, before proving the titular Riemann-Hurwitz

formula. Our next piece, “Representations of Complex Tori and GL(2,C),” ex-

plores the representation theory of algebraic groups, culminating in a classifi-

cation of the representations for complex tori and GL(2,C). Along the way, the
paper introduces representation-theoretic tools such as Hopf algebras, weight

space decompositions, and the theorems of the highest weight, and should be

accessible to those with a minimal background in algebraic varieties and Lie

groups. Returning to geometry, “The Gauss-Bonnet Theorem” explains a clas-

sical topology result while only assuming the reader has a knowledge of linear

algebra and multivariable calculus. We recommend this article to introductory

readers.
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For more advanced readers, “The Peter-Weyl Theorem & Harmonic Anal-

ysis on Sn” assumes only group and integration theory to introduce the repre-

sentation theory of topological groups and its relation to functional and har-

monic analysis. The article culminates in a proof of the Peter-Weyl theo-

rem, a characterization of all the representations of a compact group in terms

of the square-integrable functions on it with applications to Fourier-type de-

compositions on spheres. Finally, “Elliptic bootstrapping and the non-linear

Cauchy-Riemann equations” introduces the essential technique of elliptic boot-

strapping in geometric analysis. Assuming knowledge of manifolds, Lp spaces,

and some familiarity with partial differential equations and complex analysis,

the paper discusses almost-complex and symplectic manifolds and introduces

Sobolev spaces to prove a regularity theorem for J-holomorphic curves, with

an explanation of their importance to moduli spaces in symplectic geometry.

Now as the editors-in-chief of this inaugural issue, we want to highlight

our wonderful team of content editors, copy editors, graduate student editors,

and our faculty advisors. Creating, editing, and reviewing a brand-new journal

is no easy task, and we want to thank each of you for all the time and effort

you have put into making this first issue. We are particularly thankful for the

contributions of our Head Copy Editor Jazmyn Wang and Chief Confidentiality

Officer J Xiang, without whom this issue would not exist. We would also like

to acknowledge the support from the Columbia Libraries and Department of

Mathematics, who were the technical and financial backbone to make this

project come to life.

Finally, on behalf of the editorial team, we would like to thank every un-

dergraduate student who submitted to our journal. We know firsthand the

hard work and dedication required to create a novel piece of exposition, and

we truly appreciate every submission we received, even if they did not make

it into the final issue. In particular, we want to provide a special thanks to

our published authors, who submitted inspiring work and worked tirelessly

with our editorial and copy teams to turn already-amazing papers into the

polished versions you see now. Our undergraduate editors grew tremendously

as mathematical thinkers and writers from reading and editing these papers.

We hope our readers will grow in the same way from reading this issue, dis-

cover a new favorite theorem or two, and perhaps be inspired to produce some

undergraduate expository work of their own.

Sincerely,

Aiden Sagerman, Zachary Lihn, and Lisa Faulkner Valiente

Editors-in-Chief, Columbia Journal of Undergraduate Mathematics
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A topological proof of the
Riemann–Hurwitz formula

By Mrinalini Sisodia Wadhwa

Abstract

The Riemann–Hurwitz formula is generally given as a result from algebraic

geometry that provides a means of constraining branched covers of surfaces via

their Euler characteristic. By restricting to the special case of compact Rie-

mann surfaces, we develop an alternative proof of the formula that draws on

topology and manifold theory as opposed to more advanced algebraic machin-

ery. We first discuss the foundation in manifold theory, defining Riemann

surfaces and providing an example of the complex projective line. We then

discuss the local topological structure of holomorphic maps between Riemann

surfaces, introducing the notion of a branched cover and of branch points.

Next, we discuss triangulations of a topological space and use this to intro-

duce the Euler characteristic of Riemann surfaces. Using these definitions, we

explicate and prove the Riemann–Hurwitz formula on compact Riemann sur-

faces. To conclude, we discuss consequences of this formula for adjacent fields

such as algebraic topology. We provide visual intuition and examples through-

out, drawing primarily on Szameuly’s Galois Groups and Fundamental Groups

(2009), as well as Forster’s Lectures on Riemann Surfaces (1981), Guillemin

and Pollack’s Differential Topology (1974), and a few other supplementary

sources. The main prerequisite for this paper is a background in topology and

covering spaces.

1. Introduction

We begin with a topological problem. Suppose we have two surfaces,

each with certain properties—such as holes, punctures, boundaries, and so

forth—that are invariant under homeomorphism. We call such properties topo-

logical invariants. Can we always obtain a surjective map between these two

surfaces that preserves their local structure? In fact, we cannot: as we will

© 2024 Wadhwa, Mrinalini Sisodia. This is an open access article distributed under the

terms of the Creative Commons BY-NC-ND 4.0 license.
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see at the end of this paper, there is no such surjective map from the complex

projective plane (a surface with no holes) to the torus (a surface with one hole).

This prompts a second question: do the topological invariants of these

surfaces tell us something about whether or not we can obtain such a map be-

tween the two surfaces? There is, in fact, an intricate relationship between the

surfaces’ topological invariants and the existence of a surjective map between

them that preserves their structure. This relationship is given by the Rie-

mann–Hurwitz formula, first proposed by Bernard Riemann (1826–66) in his

1857 Theorie der Abel’schen Functionen [Theory of Abelian Functions] [Rie57,

§7]. We give a preliminary statement of the formula below and will define the

terms used in the formula statement carefully in subsequent sections of the

paper.

Theorem 1.1 (Riemann–Hurwitz Formula). Let φ : Y → X be a holo-

morphic map of compact Riemann surfaces with degree d as a branched cover.

The Euler characteristics χ(X) and χ(Y ) of X and Y are related by the for-

mula

χ(Y ) = d · χ(X)−
∑
y

(ey − 1),

where the sum is over the branch points of φ and ey is the ramification index

corresponding to each branch point y ∈ Y .

A branched cover is a particularly well-structured surjective map between

Y and X, and the ramification index corresponds to “sheets” of the cover inter-

secting with one another. As seen in the above statement, Riemann was looking

at a specific class of surfaces and maps between them—namely, Riemann sur-

faces and holomorphic maps, concepts he had introduced in his 1851 doctoral

dissertation that now serve as the foundation for the field of complex analy-

sis. He appears to have died without offering a proof of this formula [Oor16,

p.568–69]. The first proof was likely Adolf Hurwitz’s (1858–1919) argument in

his 1891 paper, Über Riemann’sche Fläche mit gegebenen Verzweigungspunkten

[On Riemann surfaces with Given Branch Points] [Hur91, p.375–76].

This formula has subsequently been generalized to an algebraic-geometric

version that takes X and Y to be smooth curves (rather than Riemann sur-

faces) and φ to be a morphism between them (rather than a holomorphic map)

[Oor16, p.573–74]. It is in this abstract form—within the context of algebraic

geometry—that most students now encounter the Riemann–Hurwitz formula.

The usual proof of this version of the formula, given in [Sta18, Tag 0C1B], re-

lies upon spectral sequences and other abstract-algebraic machinery. To avoid

getting lost in the thickets of algebraic geometry, we will restrict to original

case of Riemann surfaces and holomorphic maps between them. From this,

we can develop a proof of the Riemann–Hurwitz formula that uses topology
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and manifold theory, providing the elusive topological and geometric intuition

for the formula that draws us back to our motivating problem—how to un-

derstand the relationship between a surjective map between two surfaces and

their topological invariants. The goal of this paper is to offer such a proof,

following [Sza09, §3.6].
We proceed in four sections. Section 2 provides a foundation in manifold

theory, defining Riemann surfaces and discussing the complex projective line

as an example. Section 3 discusses holomorphic maps between Riemann sur-

faces and their local topological structure, introducing the notion of branch

points and a branched cover. Section 4 discusses triangulation and the Euler

characteristic of Riemann surfaces. Finally, Section 5 completes the proof of

the Riemann–Hurwitz formula and discusses some interesting corollaries for

algebraic topology.

This paper assumes a background in topology—specifically point-set topol-

ogy and covering spaces. The reader does not need an extensive background in

manifold theory or complex analysis. Rather, the relevant concepts from these

fields—specifically holomorphisms and complex manifolds—are explained in

the Section 2 with reference to the real case, identifying R2 with C. It should
also be noted that because complex analysis is not the main focus of this paper,

we either assume or sketch complex-analytic results as needed to complete the

major proofs in this paper, particularly in Section 4. Wherever possible, we

provide pictures and visual intuition for definitions and proofs.

2. Riemann surfaces

This section grounds this paper in the relevant manifold theory, drawing

on [For07, p.1–12] and [Sza09, §3.1–3.2]. We build up to a definition of Riemann

surfaces and discuss some examples.

We begin by defining a holomorphic map between subsets of Cn and a

complex atlas on a manifold.

Definition 2.1. Let U ⊂ Cn and V ⊂ Cm. A map f : U → V is holomor-

phic if, for every x ∈ U , there exists a neighborhood Ux ⊂ U of x such that f

is complex-differentiable everywhere in Ux.

This is the complex analogue of a smooth map in real analysis, although

being holomorphic is a vastly stronger condition: a complex-differentiable map

is both infinitely differentiable and analytic (unlike in the real case, where C1

maps are not necessarily C∞, and where C∞ maps are not necessarily analytic).

Definition 2.2. Let X be a topological 2-manifold. A complex chart on

X is a pair (Ui ⊂ X, fi : Ui → fi(Ui) ⊂ C) such that Ui is an open subset of X

and fi is a homeomorphic mapping from Ui onto its image f(Ui) ⊂ C.
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We say a chart (Ui, fi) is centered at x ∈ Ui if fi(x) = 0. Two charts

(U, f), (V, g) are holomorphically compatible if their transition maps f◦g−1

and g ◦ f−1 are holomorphic where defined. This is illustrated in Figure 1.

Figure 1. Two charts (U, f) and (V, g), with transition map

f ◦ g−1 defined on g(U ∩ V ) and g ◦ f−1 defined on f(U ∩ V ),

based on the illustration of the real case in [Tu07, §5.2, Fig 5.2].

Definition 2.3. A complex atlas U on X is a collection of holomorphi-

cally compatible charts (Ui, fi) such that the {Ui} form an open cover of X.

We say two atlases (Ui, fi), (Vj , gj) on X are equivalent if their union,

defined by taking all Ui and Vj as a covering of X and all complex charts, is

also a complex atlas on X. In particular, this implies that fi ◦g−1
j and gj ◦f−1

i

are holomorphic on their respective domains for all i, j. We now proceed to

define a Riemann surface by placing a complex structure on X, in a manner

analogous to how [Tu07, §2.5] discusses placing a smooth structure in the real

case.

Definition 2.4. A Riemann surface is a topological 2-manifold X with

an equivalence class of complex atlases (which we call a complex structure

on X).

As a trivial example, consider any open subset U ⊂ C. Then U is a

Riemann surface with the complex atlas (U, i : U ↪→ C), where i is the inclusion
map. We consider one nontrivial example, the complex projective line, which

we return to in subsequent sections of this paper.

Example 2.5 (Complex projective line CP1). Let CP1 = C ∪ {∞}, where
∞ is an extra point not included in C. We topologize CP1 as follows: the open

sets are the usual open sets U ⊂ C and sets of the form V ∪{∞}, where V ⊂ C
is the complement of a compact set K ⊂ C. We call CP1 with this topology

the complex projective line, and we see that it is homeomorphic to the

2-sphere S2 ⊂ R3 with antipodal points identified with 0 and ∞, as shown in

Figure 2.
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Figure 2. CP1 homeomorphic to S2.

Now we define a complex atlas on CP1. Let U1 := CP1 \ {∞} = C, and
let f1 be the identity map z on U1. Then, let U2 := CP1 \ {0}, and define the

map f2 as follows:

f2(z) =

{
1
z z ∈ U2 \ {∞}
0 z = ∞.

Then both f1 and f2 are well-defined homeomorphisms onto their images.

The charts (U1, f1), (U2, f2) cover CP1 and are holomorphically compatible, as

their transition maps

f1 ◦ f−1
2 = f2 ◦ f−1

1 : U1 ∩ U2 = C \ {0} → U1 ∩ U2 = C \ {0}

are given by z 7→ 1
z . Thus, they form a complex atlas on CP1.

If we consider CP1 under the homeomorphism to S2, then the maps f1
and f2 correspond to the stereographic projection from R2×{0} and R2×{1},
respectively, as shown in Figure 3.

♢

3. Holomorphic maps and branched covers

We now define holomorphic maps between Riemann surfaces, discuss their

local topological structure, and introduce the notion of a branched cover.

Definition 3.1. Let X and Y be Riemann surfaces. A continuous map

φ : Y → X is holomorphic if for every pair of charts (U, f) on Y and (V, g)

on X such that φ(U) ⊂ V , the map g ◦ φ ◦ f−1 : f(U) ⊂ C → g(V ) ⊂ C is

holomorphic in the usual sense (i.e., the sense of Definition 2.1).

This definition is visualized in Figure 4. Note that this corresponds to

our definition of a smooth map between smooth manifolds in the real case in

[Tu07, §2.6].
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(a) The chart (U1, f1) on CP1.

(b) The chart (U2, f2) on CP1.

Figure 3. A complex atlas on CP1, visualized under homeomor-

phism to S2.

Henceforth, to avoid the trivial case, we assume that all holomorphic

maps between Riemann surfaces in this paper are nonconstant on all connected

components—i.e., that they do not map an entire connected component to a

single point. We remarked after Definition 2.1 that being holomorphic is a

stronger condition than being smooth, as holomorphic maps are both infinitely

differentiable and analytic on subsets of Cn. As we shall see, this means that

we actually know a great deal more about the local structure of holomorphic

maps than we do about smooth maps in the real case. This is summarized in

the below proposition, which tells us that locally, every holomorphic map is

just exponentiation.

Proposition 3.2. Let φ : Y → X be a holomorphic map of Riemann

surfaces and y ∈ Y with image φ(y) = x in X . Then there exist open neigh-

borhoods Vy ⊂ Y and Ux ⊂ X of y and x respectively satisfying φ(Vy) ⊂ Ux,
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Figure 4. A holomorphic map φ : Y → X with charts (U, f) on

Y and (V, g) on X, based on the illustration of the real case in

[Tu07, §2.6, Figure 6.3].

as well as homeomorphisms gy : Vy → gy(Vy) ⊂ C and fx : Ux → fx(Ux) ⊂ C
satisfying fx(x) = gy(y) = 0 such that the diagram

Vy Ux

C C

φ

fx

z 7→zey

gy

commutes for an appropriate positive integer ey chosen with respect to y that

does not depend upon the choice of gy or fx.

Figure 5 provides a geometric visualization of the commutative diagram.

We proceed to sketch its proof, drawing on some results from complex analysis.

Proof sketch of Proposition 3.2. First, by selecting and shrinking neigh-

borhoods Ux and Vy as necessary and performing linear transformations in

C, we can find charts (Vy, g
′
y) and (Ux, fx) centered at y and x, respectively.

We will now modify these in order for the diagram to commute. As φ is a

holomorphism from Y to X, we know by Definition 3.1 that fx ◦ φ ◦ g′−1
y is

holomorphic in a neighborhood of 0 and vanishes at 0. As holomorphic maps

are necessarily analytic, complex analysis tells us that fx ◦φ ◦ g′−1
y must be of

the form z 7→ zeyH(z), where H is a holomorphic function such that H(0) ̸= 0.

We denote by log a fixed branch of the logarithm function in a neighbor-

hood of H(0). Now we apply complex analysis results to conclude: we shrink

the neighborhood Vy as necessary so that h := exp((1/ey) logH) defines a

holomorphic function h on g′y(Vy) such that hey = H, and then we define gy to

be the composition of g′y with the map z 7→ zh(z). This yields charts (Vy, gy)

and (Ux, fx) centered at y and x respectively such that the diagram commutes.
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Figure 5. A geometric visualization of the local structure on

holomorphic maps.

We observe moreover that ey, defined in relation to an invertible holomorphic

map, is necessarily a positive integer independent of the choice of gy, fx. □

Having established this local structure, we introduce the notions of rami-

fication index, branch points, and branched cover, following [Sza09, §3.2].

Definition 3.3. The positive integer ey in Proposition 3.2 is called the

ramification index of φ at y. The points y ∈ Y such that ey > 1 are called

the branch points of φ. We denote the set of branch points of φ by Sφ.

Remark 3.4. Note that Sφ is a discrete closed subset of Y . This follows

from Proposition 3.2: given any y ∈ Y , there exists a punctured open neigh-

borhood Vy of y that contains no branch points where φ has finitely many

points in its preimage (due to the local structure of the map z 7→ zey).

From this observation, we proceed to introduce the notion of a branched

cover and relate it to this local structure on holomorphic maps. First we must

define a proper map.

Definition 3.5. A continuous map of locally compact topological spaces

φ : N → M is proper if the preimage of each compact subset of M under φ

is compact in N .
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(a) A finite branched cover φ.

(b) Restricting φ to obtain

a covering space.

Figure 6. Visualization of a branched cover.

Definition 3.6. Given locally compact Hausdorff spacesN andM , a proper

surjective map φ : N →M is a finite branched cover if it restricts to a finite

cover (of M) outside a discrete closed subset (of N).

Its degree is defined to be the degree of the finite cover obtained by its

restriction.

We can think of a finite branched cover as essentially a covering space at

all but a small number of points (namely, the branch points, which lie within

the discrete closed subset). At the branch points, we can visualize the sheets

of the cover merging together, so that the sheets of the cover “branch out”

from them. Thus, when we remove these points, we obtain a covering space in

its regular topological sense, as shown in Figure 6.

Finally, we relate this notion of a branched cover to holomorphic maps

between Riemann surfaces with the following rather wonderful result.
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Theorem 3.7. Let X be a connected Riemann surface, and let φ : Y → X

be a proper holomorphic map. Then φ is a finite branched cover.

Proof of Theorem 3.7. This result follows from Proposition 3.2 and Re-

mark 3.4.

First, by definition, X and Y are locally compact Hausdorff spaces because

they are Riemann surfaces.

Second, we claim φ is surjective because it is holomorphic and proper.

Proposition 3.2 implies that as a holomorphic map between Riemann surfaces,

φ is in fact an open map, since the map z 7→ zey is open and fx, gy are home-

omorphisms and therefore open maps. Thus φ(Y ) is open in X. Moreover,

because φ is proper and X,Y are Hausdorff and locally compact, φ is a closed

map, because in a locally compact Hausdorff space a subset is closed if and only

if its intersection with every compact subset is closed. Thus φ(Y ) is closed in

X. Then φ(Y ) is a nonempty clopen subset of X, so we must have φ(Y ) = X

as X is connected, proving that φ is surjective.

Third, we have from Remark 3.4 that Sφ is a discrete closed subset of Y .

To conclude, we claim that the restriction of the map φ to Y \φ−1(φ(Sφ))

is a finite topological cover of X \ φ(Sφ). This follows again from Proposition

3.2: given x ∈ X \ φ(Sφ), each of the finitely many points in the preimage

φ−1(x) has an open neighborhood that maps homeomorphically onto an open

neighborhood of x. The intersection of these open neighborhoods is an open

neighborhood of x that satisfies the definition of a finite topological cover

(demonstrated in Figure 6). □

In light of this result, we will now take as a given that a holomorphic map

φ as above yields a finite branched cover in subsequent sections of this paper.

4. Triangulation of Riemann surfaces

This section completes the setup for our topological proof of the Rie-

mann–Hurwitz formula, carefully defining and providing geometric intuition

for the various terms used in the formula statement. We define triangula-

tion on a compact topological 2-manifold (and thus on any Riemann surface),

prove that every compact Riemann surface has a triangulation, and introduce

the concept of the Euler characteristic of a compact Riemann surface.

Intuitively, a triangulation divides up a space into smaller “triangles”—closed

subsets of the space that map homeomorphically onto unit triangles in R2—that

are glued together at edges or vertices. We formalize this notion below.

Definition 4.1. Let X be a compact topological 2-manifold. A triangu-

lation of X consists of a finite system T = {T1, . . . , Tn} of closed subsets of
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X whose union is the whole of X, and homeomorphisms φi : ∆ → Ti, where ∆

is the unit triangle in R2.

We say that the Ti are the faces of the triangulation, and that the images

of the vertices (respectively edges) under φi of ∆ are the vertices (respectively

edges) of the triangulation. These must satisfy the following conditions:

(1) Each vertex (respectively edge) of T contained in a face Ti should be

the image of a vertex (respectively edge) of ∆ under φi;

(2) Any two different faces must either be disjoint, or intersect at a single

vertex, or intersect at a single edge.

As an example, we consider a triangulation on the 2-sphere S2, the un-

derlying topological structure for the complex projective line CP1 discussed in

Example 2.5.

Example 4.2 (Triangulation on the 2-sphere). By cutting S2 along the

equator and two meridians, we obtain a triangulation T with 6 vertices, 8

faces, and 12 edges. Figure 7 provides a visualization of T and the homeomor-

phic map from the unit triangle to one of its closed subsets T1. Since S2 is

homeomorphic to CP1, this implies that there is a corresponding triangulation

of CP1.

♢

Proposition 4.3 (Refinement of a triangulation). Given a particular tri-

angulation T of a compact topological space X and a point x ∈ X that is not

a vertex of T , we can refine T to include x as a vertex.

Proof of Proposition 4.3. There are two cases: either x lies in the interior

of a face of T or it lies on an edge of T .

Case 1: Take the face φi(∆) that contains x, and consider the natural

subdivision of ∆ that arises from joining φ−1
i (x) to the vertices and replace φi

with its restrictions to the smaller triangles ∆1,∆2 and ∆3 that arise from the

subdivision (where each ∆i is homeomorphic to the unit triangle ∆ in R2).

Case 2: Take the two faces φi(∆) and φj(∆) that meet at the edge on

which x lies, and repeat the same process, considering the natural subdivision

of ∆ that arises from joining φ−1
i (x) = φ−1

j (x) to the vertices and replace

φi and φj with their restrictions to the smaller triangles ∆1,∆2,∆3 and ∆4

(where, likewise, each ∆i is homeomorphic to the unit triangle ∆ in R2).

This process is illustrated in Figure 8.

□

We will now prove an important result, following [Sza09, §3.6], which will

set up our definition of the Euler characteristic.
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(a) A triangulation

T of S2.

(b) Homeomorphic mapping of the unit triangle ∆ to T1 ∈ T .

Figure 7. Illustration of Example 4.2.

Theorem 4.4. Every compact Riemann surface has a triangulation.

To prove this theorem, we begin with an arbitrary compact Riemann

surface, and use results from complex analysis and topology to reduce this

to the case of CP1, for which we know there is a triangulation by Example

4.2. We proceed in three steps. First, we show that a triangulation can be

canonically lifted via a finite branched cover. Second, we sketch a proof using

complex analysis that any compact Riemann surface yields a finite branched

cover of CP1. Finally, we relate these findings and Example 4.2 to conclude.

Lemma 4.5. Let φ : Y → X be a finite branched cover of compact Rie-

mann surfaces Y and X (in particular, following Theorem 3.7, consider the
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(a) Case 1, where x does not lie on an

edge of T .

(b) Case 2, where x lies on an edge of T .

Figure 8. Two possible cases for refining a triangulation.

case where X is connected and φ is a proper surjective holomorphic map

Y → X). Then every triangulation of X can be lifted canonically to a tri-

angulation of Y .

Proof of Lemma 4.5. Take some triangulation T on X with faces {Ti}
and homeomorphisms ψi : ∆ → Ti, and let S0 be the set of all vertices of T .

Following the process described in Proposition 4.3, we can refine T as necessary

so that S0 contains all images of branch points, i.e., for every x ∈ X such that

x = φ(y) for some y ∈ Sφ, we have x ∈ S0. Then the definition of a finite

branched cover implies that the restriction of φ to X \ φ−1(S0) is a cover.

Let ∆′ be the subset of ∆ obtained by omitting all vertices. We observe

that ∆′ is simply connected because it is contractible: as the triangle is filled-in

and convex, we can take the straight-line homotopy to contract it to its center
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point. Then the fundamental group of ∆′ is trivial and thus the restriction of

the branched cover φ : Y → X above each of ψi(∆
′) is trivial. This implies

that we can canonically lift the restriction of each ψi to ∆′ to each sheet of the

cover X \ φ−1(S0). We can also canonically lift all vertices of ψi(∆) that are

not the images of branch points. This demonstrates that the triangulation of

X gives rise to a triangulation of Y away from the branch points.

It remains to show that we also have a triangulation of Y at the branch

points. We revisit Proposition 3.2 regarding the local structure of holomorphic

maps to consider the behaviour of φ near branch points. For any branch point

y ∈ Y , Proposition 3.2 implies that there is a neighborhood of y on which φ

locally looks like the continuous open map z 7→ zey . Then we can apply the

process outlined in Proposition 4.3 to refine the triangulation again, adding

each branch point y as a vertex. This yields the desired triangulation of Y .

□

This process of lifting a triangulation is illustrated in Figure 9, where we

lift a triangle from X to Y via a branched cover of degree 3. We shall revisit

this process and diagram in Section 5 while proving the Riemann–Hurwitz

theorem.

Figure 9. A triangulation of X lifts canonically to a triangula-

tion of Y when φ : Y → X is a finite branched cover.

We move on to the second step of the proof of Theorem 4.4.

Lemma 4.6. Given a connected compact Riemann surface Y , there exists

a nonconstant holomorphic map Y → CP1.
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The proof of this lemma utilizes two results from complex analysis that

we will state below but not prove. Full proofs are given in [For07, Corollary

14.13, Theorem 1.8].

Lemma 4.7 (Riemann’s existence theorem). Let X be a compact Riemann

surface, x1, . . . , xn ∈ X a finite set of points, and a1, . . . , an a sequence of com-

plex numbers. Then there exists a function f on X that satisfies the following

conditions :

(1) f is holomorphic everywhere on X\S, where S ⊂ X is a discrete closed

subset, and for all complex charts (U,φ : U → C), the complex function

f ◦φ−1 is holomorphic everywhere except on a discrete closed subset of

the domain1;

(2) f is holomorphic at all the xi, with f(xi) = ai for all i from 1 to n.

□

Lemma 4.8 (Riemann’s removable singularities theorem). Let U be an

open subset of a Riemann surface X , let a ∈ U , and let f be some function

that is holomorphic on U \ {a}. Suppose f is bounded in some neighborhood

of a. Then f can be extended uniquely to a function f ′ that is holomorphic on

U . □

Proof sketch of Lemma 4.6. Since Y is a compact Riemann surface, Lemma

4.7 gives a nonconstant function f : Y → C that satisfies conditions (1) and (2)

in its statement. We now define a map φf : Y → CP1 = C ∪ {∞} as follows:

φf (y) =

{
f(y) y ̸= 0,∞
∞ y = 0,∞.

We know f is holomorphic on all but a discrete set of points by condition

(1), so given some y ∈ Y , we can choose a chart (U, g : U → C) centered around

y such that f is holomorphic on U \ {y} (shrinking U as necessary). Recall

from Example 2.5 that the two standard complex charts on CP1 are given by

z and 1
z on CP1 \ {∞} = C and CP1 \ {0}, respectively. Now there are two

cases. If f is holomorphic at y, then z ◦ φf ◦ g−1 is holomorphic on g(U). If f

is not holomorphic at y, we apply Lemma 4.8: (1z ) ◦ φf ◦ g−1 maps g(U \ {y})
to a bounded open subset of C and thus extends to a holomorphic function on

g(U). We conclude that φf is holomorphic. Moreover, since f is nonconstant,

φ is also nonconstant by construction. □

1 This is equivalent to f being a meromorphic function on X, which [Sza09, §3.3]
discusses formally. We eschew further discussion of meromorphic functions here to avoid

losing sight of the goal of this section: proving Theorem 4.4.
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We finally piece together these results to complete the proof of Theorem

4.4.

Proof of Theorem 4.4. Take any compact Riemann surface Y , and con-

sider its components (necessarily finitely many as Y is compact), which are

connected compact Riemann surfaces Y1, . . . , Yn. By Lemma 4.6, there exist

nonconstant holomorphic maps φ1, . . . , φn such that each φi maps Yi into CP1.

By Example 4.2, there is a triangulation on CP1. By Lemma 4.5, since each φi

is a holomorphic map from a compact connected Riemann surface Yi to CP1,

another compact connected Riemann surface, we have that φi is a branched

cover and that our triangulation of CP1 from Example 4.2 lifts to a triangula-

tion of Yi, say Ti. We can then piece together these triangulations by taking

their union to obtain a triangulation T on all of Y , completing the proof. □

Finally, we introduce the notion of an Euler characteristic, following the

definition given in [Sza09, §3.6].

Definition 4.9. Given a triangulation T of a compact Riemann surface X,

denote by S0, S1, and S2 the set of vertices, edges, and faces of T , respectively.

Let s0, s1, and s2 be their respective cardinalities. Then we define the Euler

characteristic of X to be χ(X) := s0 − s1 + s2.

This is the classical definition of the Euler characteristic. It is in fact equiv-

alent to the definition based on intersection theory in [GP78, p.116], though

proving this equivalence casts beyond this paper’s scope. Intuitively, this def-

inition offers us a means of classifying compact Riemann surfaces based on

their triangulations.

Note that we need Theorem 4.4 to ensure that the Euler characteristic

is defined for all compact Riemann surfaces, as any compact Riemann surface

must have a triangulation by Theorem 4.4 and therefore its Euler characteristic

can be computed using the given formula. Moreover, the Euler characteristic

is well-defined independent of the choice of triangulation on a given compact

Riemann surface. To see this, notice that the Euler characteristic remains un-

changed under the process of refining a triangulation described in Proposition

4.3 and illustrated in Figure 8. In both Case 1 (where we added x as a vertex

when x was not on an edge) and Case 2 (where we added x as a vertex when

x was on an edge), the Euler characteristic with the refined triangulation is

(s0+1)−(s1+3)+(s2+2) = s0−s1+s2, the same as the original. Then, given

any two triangulations of a compact Riemann surface, we can take their com-

mon refinement and thereby obtain the same value for its Euler characteristic

throughout.

As an example, we return to the case of S2, homeomorphic to CP1 as

discussed in Examples 2.5 and 4.2.
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Example 4.10. The triangulation T given in Example 4.2 and illustrated

in Figure 7 has 8 faces, 6 vertices, and 12 edges, which implies that χ(S2) =

6 − 12 + 8 = 2. Indeed, any other triangulation of S2 yields the same cal-

culation for the Euler characteristic. For example, Figure 10 shows another

triangulation T ′ of S2 obtained by cutting along the equator and twice in the

upper hemisphere. This triangulation has 4 faces, 4 vertices, and 6 edges, so

again we compute χ(S2) = 4− 6 + 4 = 2.

Figure 10. Another triangulation T ′ of S2.

♢

5. Proof of Riemann–Hurwitz formula

Finally, we move to prove the Riemann–Hurwitz formula, given as The-

orem 1.1 in the introduction, which we restate for convenience. Let φ : Y →
X be a holomorphic map of compact Riemann surfaces with degree d as a

branched cover. The Euler characteristics χ(X) and χ(Y ) of X and Y are

related by the formula

χ(Y ) = d · χ(X)−
∑
y

(ey − 1),

where the sum is over the branch points of φ and ey is the ramification index

corresponding to each branch point y ∈ Y .

The proof follows from closely revisiting the process of lifting a triangu-

lation via a branched cover discussed in Lemma 4.5 and illustrated in Figure

9.

Proof of Theorem 1.1 (The Riemann–Hurwitz formula). Take any trian-

gulation on X, and let s0, s1 and s2 be the number of vertices, faces, and

edges, respectively. Consider its canonical lifting to a triangulation of Y via
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the finite branched cover φ, given by the process outlined in the proof of Lemma

4.5. Notice that, by construction, all branch points y ∈ Y of φ correspond to

vertices of the lifted triangulation and therefore do not lie on edges or faces.

Thus, edges and faces are lifted canonically on the cover of degree d,

so the number of edges and the number of faces of the lifted triangulation

are equal to ds1 and ds2, respectively. For vertices on the lifted triangula-

tion, there are two cases. Vertices that do not correspond to the images of

branch points have d preimages as well, as the covering space is of degree d.

However, at any branch point y, we have to account for the ey sheets of the

branched cover merging together, and thus the number of preimages is instead

d − (ey − 1). Thus the number of vertices of the lifted triangulation can be

written as ds0 −
∑

y∈Sφ
(ey − 1), and we can compute the Euler characteristic

as follows:

χ(Y ) =

Ñ
ds0 −

∑
y∈Sφ

(ey − 1)

é
− ds1 + ds2

= d(s0 − s1 + s2)−
∑
y∈Sφ

(ey − 1)

= d · χ(X)−
∑
y∈Sφ

(ey − 1).

□

This is visually illustrated in the lifting of a triangle in Figure 9, where

φ is a branched cover of degree 3. We notice that the 3 edges of the triangle

in X are each lifted to 3 edges (for a total of 9 edges) in Y , and likewise that

the 1 face of the triangle in X is lifted to 3 faces in Y . The 2 vertices in X

that do not correspond to branch points are each lifted to 3 vertices in Y , but

the vertex that corresponds to a branch point (with ramification index 3, as 3

sheets merge) is only lifted to 1 = 3 · 1− (3− 1) vertex in Y . This gives a total

of 7 = 3 · 3 − (3 − 1) vertices in the lifted triangle, providing visual intuition

for the proof.

This gives us the major result of this paper, and we conclude with a brief

discussion of its implications. Because we are working with compact Riemann

surfaces (instead of smooth curves in the algebraic geometry setting), we can

apply some results from algebraic topology to restate the statement of Theorem

1.1 in more specific terms. In particular, any compact Riemann surface X is

homeomorphic to a torus with g holes. The proof of this result, given in [Ful95,

Theorem 17.4], utilizes the fact that compact Riemann surfaces are orientable

topological 2-manifolds and a method of “cutting and pasting.” We call g

the genus of X, and can thus classify compact Riemann surfaces in terms of



26 MRINALINI SISODIA WADHWA

their genera, as depicted in Figure 11: compact Riemann surfaces of genus 0

are homeomorphic to S2 and CP1, those of genus 1 are homeomorphic to the

torus, those of genus 2 are homeomorphic to the 2-torus, and so forth.

Figure 11. Tori with genera 0, 1, and 2, respectively.

Moreover, the genus of a compact Riemann surface gives us information

about its Euler characteristic: a compact Riemann surface of genus g has Euler

characteristic 2− 2g. This algebraic topology result, proven in [Ful95, p.244],

follows by taking g = 0 and g = 1 as base cases and inducting on the genus.

Note that we have already shown the g = 0 case in Example 4.10, since we

computed the Euler characteristic of CP1 to be 2 = 2− 2 · 0, where gCP1 = 0.

By restating Theorem 1.1 in these terms, we obtain the following corollary.

Corollary 5.1. Let φ : Y → X be a holomorphic map of compact Rie-

mann surfaces with degree d as a branched cover. Then

2gY − 2 = d(2gX − 2) +
∑
y

(ey − 1),

where the sum is over the branch points of φ, ey is the ramification index

corresponding to each branch point y ∈ Y , and gX and gY are the genera of X

and Y , respectively. □

This restatement of the Riemann–Hurwitz formula has a number of im-

plications, one of which is discussed below, relating to our previous discussion

of the case of CP1 in Examples 2.5 and 4.2.

Corollary 5.2. If X is a compact Riemann surface of genus g > 0, then

there are no nonconstant holomorphic maps CP1 → X .

Proof of Corollary 5.2. Suppose to the contrary that φ is a nonconstant

holomorphic map CP1 → X. By Theorem 3.7, φ induces a branched cover, so

by Corollary 5.1,

2gCP1 − 2 = d(2g − 2) +
∑
y

(ey − 1).
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As gCP1 = 0, the left-hand side equals 2 · 0− 2 = −2. But the right-hand side

must be a positive value, as g > 0 by assumption, so

d(2g − 2) +
∑
y

(ey − 1) > 0.

This gives us a contradiction, so no such φ can exist. □

This result is particularly interesting, as it reveals that the reverse of

Lemma 4.6 does not hold: while, for any connected compact Riemann surface

Y , we can have a nonconstant holomorphic map from Y into CP1, we cannot

necessarily have a nonconstant holomorphic map out of CP1 into Y .
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Representations of complex tori and
GL(2,C)

By Songyu Ye

Abstract

Groups and their representations have been studied for a long time. One

can extend the notion of a group by asking the group axioms to hold in

other categories. A group in the category of smooth manifolds is a Lie

group, and a group in the category of algebraic varieties is an algebraic

group. In this paper, we discuss the representation theory of algebraic

groups, in particular complex tori and GL(2,C).

1. Introduction

The theme of this expository paper is to compare and contrast group objects

in the settings of smooth manifolds and algebraic varieties. In particular, we

begin by discussing the representation theory of tori in the smooth setting, and

from our discussion it will become clear that some tools of Lie theory are not

available to us in the algebraic setting. We remedy this by introducing different

tools. One such tool we will introduce is the notion of a Hopf algebra, which

axiomatizes the structure of the coordinate ring of an algebraic group. With a

clear understanding of what is and is not available to us, we then discuss the

representation theory of (C∗)n and GL(2,C) in the algebraic setting.

2. Representations of Tori

2.1. Real tori. In this section, we study the representations of tori in the cat-

egory of smooth manifolds. In particular, this means that the objects we are

considering are smooth manifolds and the morphisms are smooth maps. A real

torus T is a real Lie group which is isomorphic to the product of n circles.

We say that T has rank n.

© 2024 Ye, Songyu. This is an open access article distributed under the terms of the

Creative Commons BY-NC-ND 4.0 license.
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Let us first consider the case of T = S1. We want to classify the finite-

dimensional representations of S1. It turns out that all finite-dimensional

representations of S1 are decomposable, i.e., can be written as a direct sum of

irreducible representations.

Proposition 2.1. Let K be a compact Lie group and let ρ : K → GL(V ) be

a finite-dimensional complex representation. Then ρ is completely reducible.

Proof sketch. The idea is to replicate the proof of Maschke’s theorem for finite

groups. Choose any inner product ⟨·, ·⟩ on V and average over the group action

to get a K-invariant inner product on V . In particular, put

⟨v, w⟩avg =
1

|K|

∫
K

⟨ρ(k)v, ρ(k)w⟩dk.

The existence of this inner product allows us to conclude that the orthogonal

complement of a K-invariant subspace is also K-invariant. Inducting on the

dimension of V allows us to completely decompose V into irreducible repre-

sentations. □

We refer the reader to Chapter 9 of [FH91] for more detailed discussion.

Thus, it is enough to just consider the irreducible representations of S1. By

Schur’s lemma (in particular, S1 is abelian), they are all one-dimensional and

therefore are indexed by characters χ : S1 → C∗. Since S1 is compact, its

image in C∗ must also be compact; moreover, it is connected and contains the

identity. Therefore, the image of χ must lie in S1.

Proposition 2.2. All characters of S1 are isomorphic to χn : S1 → S1 given

by z 7→ zn for n ∈ Z.

Proof. Use the universal covering map exp : R → S1. Given a character

χ : S1 → S1, we can lift it to a map χ̃ : S1 → R. Since χ is a group

homomorphism, it carries 1 to 1, and the fiber over 1 under exp is Z. □

Since characters for S1 × · · · × S1 are the same as products of characters for

S1, all characters of T are indexed by Zn. Explicitly, if T has rank n, then

a character χ : T → S1 is given by a tuple of integers (n1, . . . , nk), and the

character is given by

(z1, . . . , zk) 7→ zn1
1 · · · znk

k .

From our discussion above, we have the following classification statement for

representations of real tori as Lie groups.
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Theorem 2.3. Let T be a real torus of rank n. Then every finite-dimensional

representation V of T is isomorphic to a direct sum of one-dimensional irre-

ducible representations with some multiplicities

V ∼=
⊕
χ∈Zn

W
⊕nχ
χ ,

where Wχ denotes the unique one-dimensional irreducible representation for

which T acts by χ.

In particular, we can decompose V into eigenspaces for the action of T

V ∼=
⊕
χ∈Zn

Vχ,

where Vχ = {v ∈ V | t · v = χ(t)v for all v ∈ V and t ∈ T}. This is referred

to as the weight space decomposition of V , and we refer to the χ which

appear in the decomposition as the weights of V . We say that v ∈ Vχ is a

weight vector of weight χ.

2.2. Complex tori. We want an analagous story in algebraic geometry. To

do so, we establish the following framework. Specifically, we are now dealing

with the category of algebraic varieties over C, where the objects are algebraic
varieties and the morphisms are morphisms of algebraic varieties.

Definition 2.4. An algebraic group G over C is an algebraic variety over C
with a group structure so that the multipliation map G × G → G and the

inversion map G → G are morphisms of algebraic varieties.

Definition 2.5. A morphism of algebraic groups G → H is a morphism of

algebraic varieties that is also a group homomorphism.

Definition 2.6. Let G be an algebraic group. A rational representation of

G is a morphism of algebraic groups G → GL(V ) for some vector space V .

(For us, V will always be finite-dimensional over C.)

We will consider complex algebraic tori T = C∗×· · ·×C∗. This is an algebraic

group because T is the zero locus of the polynomial equations

T = SpecC[x±1
1 , . . . , x±1

n ]

:= Spec
(
C[x1, . . . , xn, y1, . . . , yn]/(x1y1 − 1, . . . , xnyn − 1)

)
.

This is a group in the familiar way, and it is clear that the group law is indeed

a morphism of algebraic varieties. The rest of this section will discuss the

finite-dimensional rational representations of T as an algebraic group.

Remark 2.7. Why do we consider real tori as Lie groups and complex algebraic

tori as algebraic groups? One good reason is that the real tori are not complex
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algebraic varieties. For example, there are no polynomials over C which define

S1 × S1 as a complex algebraic variety. Moreover, as Lie groups, the complex

torus is the complexification of the real torus.

Example 2.8. GL(n,C) is a familiar group which can be endowed with the

structure of an algebraic group. GL(n,C) is the zero locus of the polynomial

equations

GL(n,C) = Spec
(
C[xij ,det−1]

)
:= Spec

(
C[xij , t]/(det(xij)t− 1)

)
.

This variety becomes a group in the familiar way, and it is clear that the group

law is indeed a morphism of algebraic varieties. ♢

The following theorem classifies the finite-dimensional rational representations

of T as an algebraic group. The story is precisely that of the smooth manifold

setting, but we introduce the language of Hopf algebras to demonstrate this.

Theorem 2.9. Let T be a complex torus of rank n. Then every finite-dimensional

rational representation of T is isomorphic to a direct sum of one-dimensional

irreducible representations with some multiplicities

V ∼=
⊕
χ∈Zn

W
⊕nχ
χ ,

where Wχ denotes the unique one-dimensional irreducible representation for

which T acts by χ.

We will give an proof of this theorem after we introduce the language of Hopf

algebras.

2.3. Hopf algebras. The notion of a Hopf algebra axiomatizes the structure of

the ring of regular functions on an algebraic group. In particular, let G be an

algebraic group andO(G) its ring of regular functions. Then the multiplication,

inversion, and identity maps

µ : G×G → G

ι : G → G

e : SpecC → G

induce maps on the coordinate rings

∆ : O(G) → O(G)⊗O(G)

ϵ : O(G) → C
S : O(G) → O(G),

where we made the identification O(G×G) ∼= O(G)⊗O(G). Because the group

axioms hold, these maps satisfy the following conditions and equip O(G) with

the structure of a Hopf algebra.
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Definition 2.10. Let A be a C-algebra. Then we say A is a Hopf algebra if

there are maps

comultiplication ∆ : A → A⊗A

counit (augmentation) ϵ : A → C
coinverse (antipode) S : A → A

so that the following diagrams commute:

A A⊗A

A⊗A A⊗A⊗A

∆

∆ ∆⊗ id

id⊗∆

A A⊗A

A C⊗A

∆

id ϵ⊗ id

∼=

A A⊗A

C A

∆

ϵ S⊗ id .

Remark 2.11. These maps can be worked out very explicitly. In particular, the

points of G are in correspondence with the elements of HomkAlg(O(G),C). The
correspondence can be written down explicitly as g 7→ evg, where evg : O(G) → C
is the evaluation map. The key idea is as follows. Let G be an arbitrary al-

gebraic group G with x, y points of G, and write fx, fy : O(G) → C for the

corresponding morphisms of C-algebras. Then the composition (fx ⊗ fy) ◦∆
is again a map O(G) → O(G) ⊗ O(G) → C, and so we can ask if it is the

map fz corresponding to some z ∈ G. The condition that we require from

comultiplication is precisely that the composition (fx ⊗ fy) ◦∆ corresponds to

the product xy ∈ G. In particular, the group law on G uniquely determines

the comultiplication map on O(G).

Example 2.12. Recall that

O(Ga(C)) = C[x],

where Ga(C) is the additive group of C. Let f, g ∈ HomkAlg(O(G),C) with

f(x) = a and g(x) = b. We want to find a map

∆ : O(Ga(C)) → O(Ga(C))⊗O(Ga(C))
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so that

((f ⊗ g) ◦∆) (X) = (a+ b).

We write down the map ∆ explicitly as

∆(X) = X ⊗ 1 + 1⊗X

and notice that it does the job. We see that ∆ then must be the comultipli-

cation map for Ga(C) because such a map is unique (see the above remark),

given the prescribed group law on Ga(C). ♢

Example 2.13. By the same token, we can work out the Hopf algebra structure

for C∗ to be

∆(x) = x⊗ x

ϵ(x) = 1

S(x) = x−1.

♢

Example 2.14. Consider the example of GL(2,C) as an algebraic group. The

Hopf algebra structure is given by

∆(xij) =
2∑

k=1

xik ⊗ xkj

ϵ(xij) = δij

S(xij) = Mij ,

where

M =

ñ
x11 x12
x21 x22

ô−1

=
1

det(M)

ñ
x22 −x12
−x21 x11

ô
.

♢

Now we want to translate the representation theory of algebraic groups G into

the language of comodules over Hopf algebras.

Theorem 2.15. Let G be an algebraic group. Then rational representations

V of G correspond to linear maps ρ : V → V ⊗ O(G) so that the following

diagrams commute:

V V ⊗O(G)

V ⊗O(G) V ⊗O(G)⊗O(G)

ρ

ρ ρ⊗ id

id⊗∆
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V V ⊗O(G)

V V ⊗ C

ρ

id id⊗ ϵ

∼=

.

Proof sketch. The first diagram says that the action of G on V is associative

and the second diagram says that e ∈ G acts by the identity transformation

on V . These are precisely the conditions that say that V is a representation

of G. □

We refer the reader to [Wat79] for a more detailed discussion of this theorem.

Definition 2.16. We call ρ a comodule structure on V .

Example 2.17. Consider the action of C∗ on C2 given by

t · (a, b) = (ta, t−1b).

This is a rational representation of C∗ which we can write as

τ : C∗ → GL(2,C)

t 7→
ñ
t 0

0 t−1

ô
.

This induces a comodule structure on C2 given by the map ρ : C2 → C2⊗O(C∗)

ρ(a) = a⊗ x

ρ(b) = b⊗ x−1,

where x is the coordinate function on C∗. ♢

2.4. Weight space decomposition. We are now ready to give a proof of Theorem

2.9 using the language of Hopf algebras.

Proof of 2.9. Let V be a finite-dimensional rational representation of T and

let ρ : V → V ⊗O(T ) be the corresponding comodule structure. Recall that

O(T ) ∼= C[x1, . . . , xn, x1−1, . . . , xn
−1].

We write as a vector space decomposition

V ⊗O(T ) ∼=
⊕
m∈Zn

V ⊗ C · xm.



REPRESENTATIONS OF COMPLEX TORI AND GL(2,C) 35

Expanding ρ(v) in terms of this basis, we find that

ρ(v) =
∑
m∈Zn

vm ⊗ xm finitely many nonzero vm

=⇒ (id⊗∆)(ρ(v)) =
∑
m∈Zn

vm ⊗ xm ⊗ xm

=⇒ (ρ⊗ id)(ρ(v)) =
∑
m∈Zn

ρ(vm)⊗ xm

=⇒ ρ(vm) = vm ⊗ xm for those nonzero vm.

The second step comes from our computation that ∆(xi) = xi ⊗ xi and the

fact that ∆ is a coalgebra homomorphism. The claim that ∆ is a morphism of

coalgebras is not immediate, but it ultimately reduces to the statement that if

B is a k-algebra, then the multiplication map B⊗B → B is a morphism of k-

algebras if and only ifB is commutative. We are working with (co)commutative

(co)algebras, so this is not an issue. The fourth step comes from equating the

second and third left-hand sides.

Finally, we apply the second diagram in 2.10 to get

(id⊗ ϵ)(ρ(v)) = v =
∑
m∈Zn

vmϵ(xm) =
∑
m∈Zn

vm.

Thus we see that the comodule V decomposes as a direct sum of subcomodules

V =
⊕
m∈Zn

Vm,

where Vm := {v ∈ V | ρ(v) = v ⊗ xm}. This is precisely saying that T acts on

Vm by the character χm : T → C∗ given by t 7→ tm. Moreover, picking a basis

for each Vm gives a decomposition of V into a direct sum of one-dimensional

irreducible representations

V ∼=
⊕
m∈Zn

W⊕nm
m ,

where Wm is the unique one-dimensional irreducible representation for which

T acts by χm. □

3. Representations of GL(2,C)

3.1. Reducibility. We saw in Section 2 that every rational representation of

T decomposes into a direct sum of irreducible representations and that the

irreducible representations are indexed by Zn.

It turns out that rational representations of GL(2,C) also decompose into a

direct sum of irreducible representations. This is because we can apply Weyl’s
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unitary trick again. We consider U(2) ⊂ GL(2,C), the subgroup of unitary

matrices. This is a compact subgroup that is also Zariski dense in GL(2,C).
We can then apply the same averaging trick to obtain an inner product on

V that will actually be GL(2,C) invariant, because U(2) is Zariski dense in

GL(2,C).

We refer the reader to Chapter 9 of [FH91] for more detailed discussion.

3.2. Highest weight vectors. To completely classify the rational representations

of GL(2,C), we need to introduce highest weight vectors. Let T ⊂ GL(2,C)
be the subgroup of diagonal matrices and B ⊂ GL(2,C) be the subgroup of

upper triangular matrices. These ad hoc definitions will work for us, but in

general T is a maximal torus and B is a Borel subgroup of GL(2,C).

Definition 3.1. Let V be a finite-dimensional rational representation of GL(2,C).
A highest weight vector v ∈ V is a weight vector so that B · v = C∗ · v. A

highest weight is a weight which corresponds to a highest weight vector.

Example 3.2. The group GL(2,C) has a standard representation on C2 given

by the matrix multiplication map. This action is transitive on the nonzero

vectors, so C2 is irreducible. Considering the torus action T ⊂ GL(2,C), we
see that C2 decomposes into a direct sum of weight spaces

C2 ∼= C · e1 ⊕ C · e2,

where e1 and e2 are the standard basis vectors with weights (1, 0) and (0, 1),

respectively. Then (1, 0) is the unique highest weight, and the corresponding

weight space is one-dimensional. The standard representation of GL(2,C) is

irreducible. ♢

Example 3.3. Since GL(2,C) acts on C2, it also acts on (C2)⊗n for n ∈ Z≥0

via

g · (v1 ⊗ · · · ⊗ vn) = (gv1 ⊗ · · · ⊗ gvn).

This is known as the tensor product representation of GL(2,C). We can

further quotient by the submodule generated by vectors of the form

v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn − v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn

for 1 ≤ i ≤ n− 1. This is known as the symmetric power representation

of GL(2,C), denoted SymnC2. Choosing a basis e1, e2 for C2 gives a basis for

SymnC2 given by

{ek1en−k
2 | 0 ≤ k ≤ n},



REPRESENTATIONS OF COMPLEX TORI AND GL(2,C) 37

and the action of GL(2,C) on SymnC2 is given by

g · ek1en−k
2 = (ge1)

k(ge2)
n−k.

Setting g ∈ T , we see that ek1e
n−k
2 is a weight vector with weight (k, n − k).

One can quickly check that SymnC2 is irreducible for all n ∈ Z≥0. One can

also check that the highest weight vector is en1 and that it has highest weight

(n, 0). ♢

Example 3.4. We have a familiar one-dimensional representation of GL(2,C)
given by the determinant map. The determinant of a diagonal matrix is the

product of its diagonal entries, and so this representation has weight (1, 1).

We will denote the kth power of the determinant map by detk for k ∈ Z. This
is a one-dimensional representation with weight (k, k). ♢

We are now ready to state the classification theorem for finite-dimensional

rational irreducible representations of GL(2,C).

Theorem 3.5. Every finite-dimensional rational irreducible representation of

GL(2,C) is isomorphic to

SymnC2 ⊗ det k

for some n ∈ Z≥0 and k ∈ Z.

We will prove this theorem by considering the weights that appear in the weight

space decomposition of V |T , where T ⊂ GL(2,C) is the subgroup of diagonal

matrices.

In particular, we appeal to the following facts from representation theory, col-

lectively referred to as the theorems of the highest weight.

Theorem 3.6.

(1) A finite-dimensional rational representation V of GL(2,C) is irreducible
if and only if it has a unique highest weight vector. In this case, it

makes sense to talk about the highest weight of V , defined as the weight

corresponding to the highest weight vector.

(2) Two finite-dimensional rational irreducible representations of GL(2,C)
are isomorphic if and only if they have the same highest weight.

(3) Let V be a finite-dimensional irreducible rational representation of

GL(2,C) with highest weight vector v. Then the highest weight of V is

contained in the set

{(a, b) ∈ Z2 | a ≥ b}.

(4) Every such weight above is a highest weight for some irreducible repre-

sentation of GL(2,C).
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We will give a short discussion of the proof of these theorems in the case of

GL(n,C).

Remark 3.7. This theorem holds in great generality. Analagous statements

are true for other algebraic groups such as SL(n,C) and SO(n), as well as

representations of complex semisimple Lie algebras, but in order to make sense

of such a theorem, one has to find the right notion of Borel subgroups and

highest weight vector.

The proof in full generality is quite technical and we refer the reader to [Mil17]

for a more detailed discussion.

The theorems of the highest weight immediately imply the classification theo-

rem for finite-dimensional rational irreducible representations of GL(2,C). In

particular, let V be a finite-dimensional rational irreducible representation of

GL(2,C) with highest weight (a, b). Then by looking at the highest weights

(observe that if v is a weight vector for V with weight µ and w is a weight

vector for W with weight ν, then v ⊗ w is a weight vector for V ⊗ W with

weight µ+ ν), we see that V ∼= Syma−bC2 ⊗ det b.

4. Theorems of the highest weight

In this section, we will discuss some aspects of Theorem 3.6 in the case of

GL(2,C), in both the smooth setting and the algebraic setting.

4.1. The smooth setting. The exposition in this section follows Chapter 8 of

[Ful97]. One of the main ingredients in the proof of 3.6 is considering the

induced action of gl(2,C) on V , where gl(2,C) is the Lie algebra of GL(2,C).
Recall that

gl(2,C) = Mat(2,C)

is a vector space equipped with a bracket operation given by the commutator.

The Lie algebra gl(2,C) can be identified with the tangent space of GL(2,C)
at the identity matrix. We can then consider the action of gl(2,C) on V given

by

X · v =
d

dt

∣∣∣∣
t=0

exp(tX) · v,

where exp : gl(2,C) → GL(2,C) is the exponential map. In particular, this

map is the differential of the action of GL(2,C) on V .

Studying the action of gl(2,C) on V is equivalent to studying the action of

GL(2,C) on V because GL(2,C) is simply connected. This is a general principle

which reflects the fact that any map of Lie groups G → H with G simply
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connected is determined by its differential at the identity. Then one can show

the following lemma.

Lemma 4.1. A subspace W of a representation of GL(2,C) is a subrepresen-

tation if and only if W is stable under the action of gl(2,C).

We refer the reader to Chapter 3 of [Bou89] for a proof of this lemma. This

discussion justifies our passing from the study of GL(2,C) to the study of

gl(2,C).

Just as we obtained a decomposition of V as a GL(2,C) into eigenspaces for

the action of T , there is an analagous decomposition for the action of gl(2,C).
The object which replaces our maximal torus T ⊂ GL(2,C) is the Cartan

subalgebra h ⊂ gl(2,C). For us, h will be the subspace of diagonal matrices

in gl(2,C). In general, h is a maximal abelian subalgebra of gl(2,C).

We can obtain a decomposition of V into eigenspaces for the action of h

V =
⊕
χ∈h∗

Vχ,

where Vχ = {v ∈ V | X · v = χ(X)v for all X ∈ h}. Moreover gl(2,C) acts

on itself via the bracket (adjoint representation) and we can decompose this

action as

gl(2,C) ∼= h⊕ gα ⊕ g−α

∼= h⊕ Ce⊕ Cf,

where α

Çñ
d1 0

0 d2

ôå
= d1 − d2 and

e =

ñ
0 1

0 0

ô
f =

ñ
0 0

1 0

ô
.

One can check that for all h ∈ h we have

[h, e] = α(h)e

[h, f ] = −α(h)f.

The weights which appear in the adjoint representation of gl(2,C) are called

the roots. We will say α is a positive root and −α is a negative root, and

call Ce and Cf the corresponding positive and negative root spaces. Then

a weight vector v ∈ V is a highest weight vector if and only if e · v = 0.
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We care about roots of the adjoint representation for the following reason. Let

V be a finite-dimensional rational representation of gl(2,C). Decompose V

into eigenspaces for the action of h as before:

V =
⊕
χ∈h∗

Vχ.

Knowing how h acts on V , we now need to investigate the actions of e and

f . As it turns out, e and f are operators which translate between the weight

spaces. Specifically, let v be an weight vector for the action of h with weight

χ. Then e · v is a weight vector with weight χ+ α. Indeed—recalling that the

action of the Lie algebra respects brackets—for X ∈ h we have

X · ev = e ·Xv + [X, e] · v
= χ(X)ev + α(X)ev.

A priori, we know nothing about the weights of V . Now we know that all of

the weights of V are translates of each other by the roots of gl(2,C). Now

let µ be any weight which appears in the decomposition of V . Then we can

consider the translates

µ+ Zα

and since V is finite-dimensional, only finitely many of the weight spaces of

V corresponding to these weights are nonzero. Recall we picked a positive

system, so now it makes to talk about the highest weight (it is the weight χ

so that all of the weights χ+ Nα correspond to empty weight spaces).

If V is an irreducible representation then a highest weight vector must span

its root space. This is because if v is a highest weight vector, then one can

show that the subspace generated by v, f · v, f2 · v, . . . is a subrepresentation.

It follows that an irreducible representation can have only one highest weight

vector (up to scale).

4.2. The algebraic setting. In order to justify the passage from GL(2,C) to

gl(2,C), we made use of the exponential map. This is not available in the

category of varieties. However we can still make sense of the Lie algebra of an

algebraic group and the induced action of the Lie algebra on a vector space.

To do so, we need to pass to the Zariski tangent space of a variety.

Definition 4.2. Let A be a local ring and m its maximal ideal. The residue

field k of A is the field A/m and the Zariski cotangent space of A is the

k-vector space m/m2. The Zariski tangent space of A is the dual vector

space Homk(m/m2, k). If X is a variety and p ∈ X, then we define the Zariski

tangent space of X at p to be the Zariski tangent space of OX,p.
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To make sense of this definition, we need to borrow a little motivation from the

theory of differentiable manifolds. If M is a smooth manifold, tangent vectors

at a point p ∈ M are in one-to-one correspondence with derivations of the ring

of germs of smooth functions at p, i.e., R-linear maps OM,p → R which satisfy

the Leibniz rule

D(fg) = f(p)Dg + g(p)Df

for all f, g ∈ OM,p. We refer to Chapter 3 of [Lee03] for a more detailed

discussion of this point of view.

Proposition 4.3. Let X be a variety over a field k and let p ∈ X . Consider

the local ring OX,x and its maximal ideal m. Let k(p) be the residue field of

OX,p. It coincides with k. There is an isomorphism

Homk(m/m2, k) ∼= Derk(OX,p, k(x)).

Proof. A derivation is precisely the data of a k-linear mapm → k which satisfies

the Leibniz rule. This extends to a k-linear map OX,p → k by precomposing

with f 7→ f − f(p). Moreover, m2 maps to zero because if f(p) = g(p) = 0,

then

D(fg) = f(p)Dg + g(p)Df = 0.

Therefore, a derivation induces an element of the tangent space of X at p.

Conversely, if we have a k-linear map m/m2 → k, precompose with the quo-

tient map to get D : m → k. Then we have to show that D satisfies the

Leibniz rule. This is a straightforward computation. Let f, g ∈ OX,p. Then

(f − f(p))(g − g(p)) ∈ m2 and so

0 = D((f − f(p))(g − g(p))) = D(fg − f(p)g − fg(p) + f(p)g(p))

=⇒ D(fg) = f(p)Dg + g(p)Df,

since constants derive to zero and so D is a derivation. It is clear that these

two maps are inverses of each other. □

Now we can make sense of the Lie algebra of an algebraic group.

Definition 4.4. Let G be an algebraic group. The Lie algebra of G, denoted

g, is the Zariski tangent space of G at the identity.

Note that if α : G → W is a morphism of varieties, then there is an induced

map O(W ) → O(G) on coordinate rings, and this map is local in the sense that

OW,α(p) → OG,p is a local ring homomorphism for all p ∈ G. Geometrically,

this is saying that if a regular function on W vanishes at a point α(p), then its

pullback to G vanishes at p.
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In particular, we see that a morphism of varieties α has a differential dα which

takes a derivation D : OW,α(p) → k to a derivation dα(D) : OG,p → k. Letting

W = GL(V ), we see that the differential of the action of G on V gives us a Lie

algebra representation (in the sense that it respects the bracket) of g on V .

Then again one proves that Lemma 4.1 holds in the algebraic setting and so

we have reduced to the study of the action of g on V . A reference for this

proof can be found in Chapter 1 of [Bor91]. We can then proceed as in the

smooth setting to prove Theorem 3.6.
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The Gauss–Bonnet theorem

By Bonnie Yang

1. Introduction

The Gauss–Bonnet theorem is a crowning result of surface theory that

gives a fundamental connection between geometry and topology. Roughly

speaking, geometry refers to the “local” properties—lengths, angles, curvature—

of some fixed object, while topology seeks to identify the “global” properties

that are unchanged by a continuous deformation, such as stretching or twist-

ing. The theorem formalizes an intuitive idea: continuous changes to curvature

on one region of a surface will be balanced out elsewhere, so the total curvature

of the surface stays the same.

Explicitly, the Gauss–Bonnet theorem says that a surface’s total curva-

ture, defined using its local Gaussian curvature, is directly proportional to

the number of holes in the surface, which comes from an invariant quantity

called its Euler characteristic. The Euler characteristic is a way of classifying

which surfaces can be continuously deformed into one another; as an informal

example, the classic joke that “a topologist is a person who cannot tell the

difference between a coffee mug and a doughnut” comes from the fact that the

objects each have one hole. Even though a coffee mug and a doughnut have

visibly different geometric shapes, according to the Gauss–Bonnet theorem,

both objects will have the same total curvature.

Our goal is to show ∫
S
KdA = 2πχ(S),

where S is a closed surface in R3, K is the Gaussian curvature, dA is the area

element, and χ(S) is the Euler characteristic. The proof itself is delightfully

systematic: we first find the total curvature of a curve on a plane, extend that

result to curves on three-dimensional surfaces, extend that result to “polygons”

on surfaces, and finally the entire surface.

In Section 2, we prove Hopf’s Umlaufsatz for the total curvature of a

simple closed curve in R2. Sections 3, 4, and 5 introduce concepts from differ-

ential geometry to define Gaussian curvature. In Section 6, we prove the local
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Gauss–Bonnet theorem for the total curvature of a surface polygon. At last,

in Section 7, we prove the global Gauss–Bonnet theorem for compact surfaces

by covering the surface with polygons and applying the local Gauss–Bonnet

theorem to each one.

Our discussion focuses on exposition, and references will be given in place

of tedious computations when reasonable. This paper assumes a somewhat

rigorous understanding of multivariable calculus and linear algebra, as well as

some elementary group theory.

2. Plane curves and Hopf’s Umlaufsatz

Hopf’s Umlaufsatz1 asserts that the total signed curvature of any simple

closed curve in R2 is equal to ±2π, with sign depending on the curve’s orien-

tation. Although the theorem is about the curvature of a line and not a region

with area, the Umlaufsatz does much of the heavy lifting for our later proof in

R3. We begin with some preliminary theory of paths and curves.

Definition 2.1. A (parametric) path in Rn is a continuous function

γ : I → Rn, where I is any interval of R. The image of a path is called a

parametrized curve in Rn.

If γ is differentiable, the differential2 γ̇(t) is called the tangent vector of

γ at the point γ(t). We say γ is regular if γ̇(t) is nonzero for all t ∈ I.

Remark 2.2. A particular curve can be the image of infinitely many paths.

To see this, suppose γ1 and γ2 are two paths defined on the intervals I1 and

I2, respectively. Since these are intervals of R, we can define a bijection ϕ :

I1 → I2 between their domains. Then if γ1 and γ2 are both injective with the

same image curve, we can always reparametrize one path as the other by a

composition γ2 = γ1 ◦ ϕ.
In practice, the terms path and curve are used interchangeably to mean

either a continuous function γ : [a, b] → Rn or its image. The correct interpre-

tation should be clear from context.

Unless otherwise specified, all curves discussed in this paper are

assumed to be regular and smooth, meaning there exist continuous

partial derivatives of all orders.

1 From German umlauf (rotation) and satz (theorem)—sometimes translated, unsurpris-

ingly, to “rotation angle theorem.”
2 The “overdot” notation is conventially used for a derivative taken with respect to time

(i.e., γ̇ = dγ/dt and γ̈ = d2γ/dt).
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Definition 2.3. If γ : [a, b] → Rn is a parametrized curve, then for any

a ≤ t ≤ b, the arc length of γ from a to t is given by the function

s(t) =

∫ t

a

∥γ̇t∥dt.

A regular curve γ is unit-speed if for all t, we have ∥γ̇(t)∥ = 1. In this case, the

arc length is s(t) = t, so γ is also said to be an arc length parametrization.

Remark 2.4. Every regular curve can be reparametrized to unit speed.

Hopf’s Umlaufsatz involves an integral over the curvature of a plane curve,

so we now focus our discussion on some geometric properties that are specific

to curves in R2. For plane curves, which have two choices of unit normal vector

for each tangent vector γ̇(s), we fix the signed unit normal n to be the vector

obtained by rotating γ̇ counterclockwise by π/2.

Proposition 2.5. Given a unit-speed plane curve γ, there exists a scalar

κ called the signed curvature of γ such that

γ̈ = κn,

where n is the signed unit normal of γ. Note that κ can be positive, negative,

or zero for each point of the curve γ.

Proof. Recall that ⟨γ̇, γ̇⟩ = 1, so we can differentiate to obtain ⟨γ̈, γ̇⟩ +
⟨γ̇, γ̈⟩ = 0. Thus, the vectors γ̇ and γ̈ are perpendicular, so γ̈ must be a scalar

multiple of n. □

(a) κ > 0 (b) κ < 0

This formulation of curvature is strictly local, since it arises from the

behavior of a curve at a specific point: if γ(s) is a point on a unit-speed curve,

then ∥n(s)∥ = 1 and we have precisely |κ(s)| = ∥γ̈(s)∥. To see how Hopf’s

Umlaufsatz relates local curvature to a curve’s topology, we must next get a

sense of what global properties a curve has.

We start with a geometric interpretation of the tangent vector for plane

curves. When γ : [a, b] → R2 is unit-speed, the direction of each vector γ̇(s)
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is determined by the angle θ(s) for which γ̇(s) = eiθ(s). It is straightforward

to show that our choice of θ(s) is smooth: briefly, if γ̇ is indeed defined on the

complex unit circle, then the chain rule implies

γ̈(s) = iθ̇(s) · eiθ(s) = θ̇(s);

one can recover θ̇ as the scalar in this expression, and then the continuous map

θ by taking an antiderivative.

Definition 2.6. Let f : [a, b] → S1 be any path in the unit circle, and let

p : R → S1 be defined by p(t) = eit. An angle function for f is a smooth

map θ : [a, b] → R which satisfies

f(s) = p ◦ θ = eiθ(s).

If f = γ̇ for some unit-speed plane curve γ, then θ is called a tangent angle

function for γ.

Proposition 2.7. Given a unit-speed curve γ : [a, b] → R2 with a tangent

angle function θ, the signed curvature of γ is defined by

κ = θ̇,

the rate at which the tangent vector γ̇ rotates. (See [Pre10, Proposition 2.2.1]

for a proof.)

The upshot of this discussion is that we can express the tangent γ̇ of any

plane curve γ as a path in the unit circle! This is useful because every path in

S1 has a fixed degree, which counts how many times the curve “goes around”

the circle counterclockwise. Defining a path γ̇ : [a, b] → S1 this way allows us

to treat the degree of the tangent as a topological property of γ itself. Later,

we will see that the proof of the Umlaufsatz is essentially an argument about

the degree of γ̇ in a specific case: when γ is a simple closed curve.

A tangent angle function θ takes each point γ̇(s) on the circle to a number

on the “unfolded” real line, which we call a lift of γ̇ to R. Notice that a

tangent curve γ̇ which winds around the circle n times will have its tangent

angle function increase by n. Using the fact that each corresponding angle θ(s)

is unique up to an integer multiple of 2π, we can recover the degree of γ̇ from

this unfolding process.

[a, b] S1

R

γ̇

θ p
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Relationship between domains for the tangent curve γ̇, tangent angle

function θ, and the unit circle S1.

Proposition 2.8. Let f : [a, b] → S1 be a path in the circle and θ, ϕ :

[a, b] → R be any two angle functions for f . Then we have

θ(b)− θ(a) = ϕ(b)− ϕ(a).

Equivalently, for a chosen tangent angle θ(s0) with s0 ∈ [a, b], there exists a

unique angle function θ0 such that f(s0) = eiθ0(s0).

Proof. We will show that for eiθ(s) and eiϕ(s) to agree, the values θ(s) and

ϕ(s) must differ by an integer multiple of 2π, and by continuity, the integer

must be the same for all s.

First, since both expressions for γ̇(s) are points in S1, the angles θ(s)

and γ(s) clearly differ by full rotations about unit circle. Formally, this means

there exists some integer n(s) such that for all s ∈ [a, b], we have

ϕ(s)− θ(s) = 2πn(s).

Because θ and ϕ are continuous functions, n is continuous on the domain [a, b]

as well, and we apply the intermediate value theorem to conclude that n is a

constant that does not depend on s. Thus, the integer term cancels, and we

see

ϕ(b)− ϕ(a) = θ(b) + 2πn(s)− θ(a)− 2πn(s) = θ(b)− θ(a)

as desired. □

Definition 2.9. Let f : [a, b] → S1 be a path in the circle and let θ :

[a, b] → R be a tangent angle function of γ. The degree of f is defined as

θ(b)− θ(a)

2π
.

If γ : [a, b] → R2 is a unit-speed plane curve, then the degree of its tangent γ̇

is called the rotation index of γ and denoted ind(γ).

Definition 2.10. Given a compact interval [a, b] ⊂ R, we say γ : [a, b] → Rn

is a closed curve of period b− a if γ(a) = γ(b). If γ is injective on the open

interval (a, b), then γ is called simple.

Simple and closed Simple, not closed Not simple, closed Not simple and not closed
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The Jordan curve theorem from topology tells us that any simple closed

curve on a plane has an “interior” and an “exterior.” Precisely, if γ is a simple

closed curve in R2, then the complement of its image is the union of two subsets

of R2, denoted int(γ) and ext(γ), which satisfy the following:

• int(γ) and ext(γ) are disjoint, so int(γ) ∩ ext(γ) = ∅;
• int(γ) is bounded and ext(γ) is unbounded;

• Both int(γ) and ext(γ) are connected, so any two points in the same

subset can be joined by a curve contained entirely in that subset.

This gives us a way to distinguish between two possible orientations of γ

using geometry: we say γ is positively-oriented if the signed unit normal n

points into int(γ) at every point in the curve.

Now, when we claim that a property like the rotation index is global, we

mean that it is invariant under a “continuous deformation.” The following

definition formalizes this notion for closed curves in R2.

Definition 2.11. An isotopy of simple closed plane curves of period ℓ is

a family of curves γt : R → R2 such that

(i) Each curve γt is period ℓ;

(ii) For all 0 ≤ t ≤ 1, the map h : R× [0, 1] → R2 defined by h(s, t) = γt(s)

is also a regular, smooth, and closed plane curve of period ℓ;

(iii) We have h(s, 0) = γ0(s) and h(s, 1) = γ1(s).

If such a family exists, we say that γ0 is isotopic to γ1.

Example 2.12. We have already seen an example of such a family: the

reparametrizations discussed at the beginning of this section are given by iso-

topies of the form h(s, t) = γ(s+ s0t), where s0 ∈ R is a constant. ♢

Example 2.13. A translation of a plane curve is an isotopy of the form

h(s, t) = γ(s) + tx⃗

for some point x⃗ ∈ R2. ♢

Lemma 2.14. If γ0 and γ1 are closed plane curves connected by an isotopy,

then I(γ0) = I(γ1).

Proof. Similar to the proof of Proposition 2.8, we show that the rotation

index is an integer constant by continuity. First, notice that the rotation index

for a closed curve is indeed an integer. Now let h be an isotopy from γ0 to γ1,

and fix γt(s) = h(s, t). Then the map from s to I(γs) given by the equation in

Definition 2.9 is a continuous function [0, 1] → Z, so we apply the intermediate

value theorem to conclude that I(γs) is constant. □
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Theorem 2.15 (Hopf’s Umlaufsatz). Let γ : [a, b] → R2 be a unit-speed,

simple closed curve on a plane. Then the total signed curvature is given by

∫
γ

κds = ±2π.

As promised, this reduces to a claim about the rotation index! Since κ = θ̇

for any curve by Proposition 2.7, the total signed curvature can be computed

as ∫
γ

κds =

∫ b

a

θ̇(s)ds = θ(b)− θ(a) = 2π · ind(γ).

Thus, the point of the Umlaufsatz is that for simple closed curves, we have

ind(γ) = ±1.

Proof of Theorem 2.15. Our strategy is to replace γ̇ : [a, b] → S1 with

another map to the circle, the secant line between two points on a curve.

Crucially, the degree of the secant line is straightforward to compute, so we

will use it to obtain ind(γ) indirectly.

Both the secant line and its angle function take two parameter inputs.

When the two parameters are equal, the secant is precisely the tangent line, and

the secant angle function is continuously extended to the tangent angle function

of γ at a single point. The domain of this secant map can be interpreted

geometrically as a triangle formed by the points (a, a), (a, b), and (b, b), and

the restriction of the secant map to the diagonal is exactly the tangent map γ̇.

A continuous deformation of the diagonal to the other two sides of the triangle

preserves the endpoints (a, a) and (b, b), so the total change of the secant angle

function is the same along this deformed path. Then to find I(γ), it suffices

to compute the degree of the secant map coming from the non-diagonal sides.

We begin by assuming, without loss of generality, that γ(a) is the lowest

point on the curve and is located at the origin (0, 0). Since γ is assumed to

be continuous, the projection of γ to its y-coordinate is continuous on [a, b] as

well, so we know there exists a t0 ∈ [a, b] such that the y-coordinate of γ(t0)

is minimal. The remaining assumptions follow because the rotation index

is invariant under isotopy, including the reparametrizations and translations

given as examples of Definition 2.11. Finally, because γ is unit-speed, we also

have γ̇(a) = ±e1, the first standard basis vector of R2.

Now we are ready to define the secant map. Let

△ = {(t1, t2) | a ≤ t1 ≤ t2 ≤ b},
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and define the continuous function ψ : △ → S1 by

ψ(t1, t2) =


γ̇(t1) t1 = t2

−γ̇(a) (t1, t2) = (a, b)
γ(t2)− γ(t1)

∥γ(t2)− γ(t1)∥
otherwise.

This is a smooth function (see [Ben17, pages 22-24]), and the first two cases

are straightforward to visualize. For parameters (t1, t2) which satisfy the third

case, the vector ψ(t1, t2) is precisely the unit vector with origin γ(t1) and

pointing towards γ(t2). In particular, if (t1, t2) lies on a non-diagonal side of

the triangle △, then γ(t1) is fixed as γ(t2) travels along the curve (see [Kni06]

for nice animations).

γ(t1)

γ(t2)ψ(t1, t2)

γ(a)
(a, a)

(b, b)(a, b)

By applying Proposition 2.8 in each coordinate, we see that there exists a

smooth function θ̃ : R2 → S1 which gives the angle θ̃(t1, t2) between ψ(t1, t2)

and the horizontal. Because we defined ψ = γ̇ along the diagonal, by Proposi-

tion 2.8, we know that

2π · ind(γ) = θ(b)− θ(a) = θ̃(b, b)− θ̃(a, a),

so ind(γ) is equal to the degree of ψ! Further, it is visually clear that we

can compute the total change of θ̃ the diagonal by computing the change from

(a, a) to (a, b) and (a, b) to (b, b) separately, then taking a sum. Thus, we have

2π · ind(γ) = θ̃(b, b)− θ̃(a, a) =
Ä
θ̃(a, b)− θ̃(a, a)

ä
+
Ä
θ̃(b, b)− θ̃(a, b)

ä
.

The last step is to compute the degree of ψ over the two non-diagonal

segments. We will suppose γ is positively-oriented, so γ̇(a) = e1 and the secant

angle is θ̃(a, a) = 0 (an analogous argument holds for the opposite orientation,

where θ̃(a, a) = π). For the segment from (a, a) to (a, b), we know that the

corresponding line ψ(a, t) lies in the upper half-plane for all t ∈ [a, b], so we

must have 0 ≤ θ̃(a, t) ≤ π. Thus, we find θ̃(a, b) = π. Meanwhile, on the

segment from (a, b) to (b, b), we have the corresponding line ψ(t, b) = −ψ(a, t),
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which implies θ̃(b, b)− θ̃(a, b) = π as well. The degree of ψ is therefore

(θ̃(a, b)− θ̃(a, a)) + (θ̃(b, b)− θ̃(a, b))

2π
=
π + π

2π
= 1

and −1 if the orientation of ψ is reversed. This shows ind(γ) = ±1 as desired.

Altogether, we conclude that if θ is any tangent angle function for γ, then∫ b

a

κds = θ(b)− θ(a) = 2π · ind(γ) = ±2π,

which completes the proof. □

3. Regular surfaces and tangent planes

In the previous section, we showed that the two-dimensional circle can be

locally unfolded to the one-dimensional real line using the function eit, which

gives a continuous deformation on sufficiently small intervals. Similarly, we

interpret surfaces as three-dimensional objects which can be “flattened” to R2.

Definition 3.1. Given any subsets X ⊂ Rn and Y ⊂ Rm, a invertible map

f : X → Y is called a homeomorphism if both f and its inverse f−1 : Y → X

are continuous. If such a map exists, we say X and Y are homeomorphic.

Remark 3.2. The paths defined in Section 2 are homeomorphisms from

an interval of R to a curve in Rn. In general, isotopies, which we only defined

for simple closed plane curves, are continuous families of homeomorphisms.

Definition 3.3. A regular surface is a subset S ⊂ R3 where for each

point p ∈ S, there exists an open neighborhood V ⊂ R3 containing p, an open

subset U ⊂ R2, and a map σ : U → V ∩ S with the following properties:

(i) σ is a smooth function on U ;

(ii) σ is a homeomorphism;

(iii) For all q ∈ U , the differential dσq is injective.

In this case, the map σ is called a surface patch or local parametrization

of the coordinate neighborhood V ∩ S. We will also only consider connected

surfaces, meaning any two points in S can be joined by a curve lying entirely

in S.

Unless otherwise specified, all surfaces discussed in this paper

are assumed to be regular.

Remark 3.4. Like paths, multiple surface patches may have the same im-

age. Suppose the surface patches σ1 and σ2 are defined on the open sub-

sets U1, U2 ⊂ R2 respectively. We say that two surface patches σ1, σ2 are

reparametrizations of one another if there exists a homeomorphism

Φ : U1 → U2 such that σ2 = σ1 ◦ Φ. In this case, the bijection Φ is called a
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reparametrization map. The upshot is that we can define any geometric

property of a smooth surface by defining it up to reparametrization!

Condition (i) is basic for doing calculus on surfaces, like understanding

what it means for a function on a surface to be differentiable. Condition (ii)

ensures that the inverse σ−1 : V ∩ σ(U) → U is continuous, so the surface has

no self-intersections and the tangent to each point is unique. Condition (iii),

sometimes called the regularity condition, allows us to apply the immersion

theorem to conclude that σ is indeed “locally invertible” when the codomain

is restricted to V ∩ σ(U).

Example 3.5. A surface is often the image of multiple surface patches.

Given the unit sphere S2, which has radius 1, we can define the smooth maps

σ1, σ2 : U → S2 by

σ1

Ç
u

v

å
=

Ñ
cos(u) cos(v)

cos(u) sin(v)

sin(u)

é
σ2

Ç
u

v

å
=

Ñ
− cos(u) cos(v)

sin(u)

− cos(u) sin(u)

é
,

where u and v are angles corresponding to something like latitude and longi-

tude, respectively. That is, if p is a point on the sphere, then we can draw a

line through p which is parallel to the z-axis and intersects the xy-plane at a

point q. Then u is the angle between p and q, while v is the angle between q

and the positive x-axis.

To ensure σ1 and σ2 are homeomorphisms, we take the domain to be the

open set U = (−π/2, π/2)× (0, 2π) ⊂ R2. Notice that neither σ1 nor σ2 cover

all of S2 when restricting the domain to U : the image of σ1 misses points of

the form (x, 0, z) with x ≥ 0, while the image of σ2 misses points of the form

(x, y, 0) with x ≤ 0. However, we have S2 = σ1(U)∪ σ2(U), so S2 satisfies the

definition of a surface.

Thus, the construction of a surface can be somewhat ad hoc. Our strategy

also happens to be unnecessarily complicated for the sphere, which has a neat

geometric origin we will introduce in the next example. ♢

Example 3.6. A surface of revolution is obtained by rotating a simple

plane curve, called the profile curve, around a straight line in the plane. Typ-

ically, the axis of revolution is the z-axis, and we define a path γ : I → R3

on the xz-plane by γ(u) = (f(u), 0, g(u)). The surface obtained by rotating γ

about the z-axis is parametrized with σ : I × [0, 2π) → R3 given by

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where v is the angle of rotation. To check for Definition 3.3 (iii), notice

σu × σv = f(u)(−ġ(u) cos v, −ġ(u) sin v, ḟ(u)),



THE GAUSS–BONNET THEOREM 53

so σu × σv is nonzero if and only if f(u) ̸= 0 and ḟ , ġ are not both zero; the

nonzero vector product implies that σu and σv are linearly independent, which

we will show is crucial for doing calculus on surfaces in the following discussion

of tangent planes. Thus, the surface of revolution is indeed a surface when γ

does not intersect the z-axis and is indeed regular. In practice, we assume

f(u) > 0 so that f(u) is the distance between σ(u, v) and the axis of rotation.

♢

Example 3.7. The unit sphere S2 in latitude-longitude coordinates, as

in the first example, is a surface of revolution with profile curve functions

f(u) = cos(u) and g(u) = sin(u). ♢

Example 3.8. A torus is formed by rotating a circle in the xz-plane with

center (R, 0, 0) and radius r about the z-axis, with R > r > 0. This is a surface

of revolution with profile curve

γ(θ) = (R+ r cos θ, 0, r sin θ),

and the parametrization is σ : [0, 2π)× [0, 2π) → R3 defined by

σ

Ç
u

v

å
=

Ñ
(R+ r cos(u)) cos(v)

(R+ r cos(u)) sin(v)

r sin(v)

é
,

where u is the angle in γ and v is the angle about the z-axis. ♢

Example 3.9 (Non-example). Consider a line passing through the origin

that forms an angle α with the xy-plane, such that the length of the line above

the plane is the same as the length below. Rotating this line about the z-axis

generates a circular cone with vertex at the origin. For example, if α = π/4,

the cone is parametrized by

S = {(x, y, z) ∈ R3 | x2 + y2 = z2}.

We give an abridged argument for why this is not a regular surface (for full

explanation and diagrams, see [Pre10, Example 4.1.5]). Let U ⊂ R2 be an open

ball and σ : U → V ∩ S be a surface patch that contains the vertex (0, 0, 0).

Further, let a⃗ ∈ U be the point at the center of U such that σ(a) = (0, 0, 0).

The open set V ∩S must contain a point p⃗ in the upper half of the cone where

z > 0, as well as a point q⃗ in the lower half where z < 0; let a⃗, b⃗ ∈ U be the

points with σ(⃗a) = p⃗ and σ(⃗b) = q⃗. We can find a curve β : I → U that passes

through b⃗ and c⃗, but not a⃗; this implies the existence of a continuous curve

γ = σ ◦ β that passes through p⃗ and q⃗ but not (0, 0, 0), which contradicts the

definition of a surface patch σ. ♢

Now, condition (iii) of Definition 3.3 is also precisely what allows us to

find the tangent plane to a point. It implies that the partials σu and σv are



54 BONNIE YANG

Sphere with

latitude-longitude

grid [Com07].

Torus generated by

rotating a circle in the

xz-plane about the

z-axis. A circular cone is

not a regular surface

[Com06].

linearly independent, so their span must be a two-dimensional linear subspace.

We begin defining the tangent by considering smooth curves on the surface.

Definition 3.10. Let p be any point on a surface S ⊂ R3. If γ : (−ϵ, ϵ) → S
is a path with γ(0) = p, then tangent vector to S at p is precisely γ̇(0), the

tangent vector to γ at p. The tangent space of S at p, denoted TpS, is the

set of all vectors tangent to S at p.

Proposition 3.11. Let p be a point on a surface S ⊂ R3, and suppose

σ : U → R3 is a surface patch whose image contains p, say p = σ(u0, v0). Then

the tangent space of S at p is the vector subspace

TpS = span(σu, σv),

where σu, σv are the partial derivatives evaluated at p.

Proof. We will prove these two spaces are equal using double containment.

First, if γ is a path in the image of a surface patch σ, then we have

γ(t) = σ(u(t), v(t))

for some smooth functions u(t) and v(t). The existence of such smooth func-

tions follows from properties (i)–(iii) of a surface, which imply σ−1 is smooth.

Differentiating with the chain rule, we have

γ̇ = σudu+ σvdv,

so every tangent vector of S can be written as a linear combination of the

partials σu and σv. Thus, we have TpS ⊂ span(σu, σv).

On the other hand, we can write every vector v⃗ ∈ span(σu, σv) as a linear

combination v⃗ = a1σu + a2σv for some coefficients a1, a2 ∈ R. Then we can

define a curve

γ(t) = σ(u0 + a1t, v0 + a2t).
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At the point p = γ(0) ∈ S, we have

γ̇(0) = a1σu + a2σv = v⃗,

so every vector in the span is the tangent vector of S at some point p. This

shows span(σu, σv) ⊂ TpS, so we must have exactly span(σu, σv) = TpS. □

4. The first fundamental form and surface area

To describe the local geometry of a surface, we need a way to make local

measurements like lengths, angles, and areas. The first fundamental form

allows us to compute the length of a curve on a surface using tangent vectors.

Definition 4.1. Let p ∈ S be any point of a surface. The first funda-

mental form of S at p is given by

Ip(v⃗, w⃗) = ⟨v⃗, w⃗⟩,

where v⃗, w⃗ ∈ TpS are tangent vectors. That is, the first fundamental form Ip
is the standard inner product on R3 restricted to the tangent space TpS.

In practice, this form is expressed in terms of surface patches. Suppose

p = σ(u0, v0) for some surface patch σ so that partial derivatives {σu, σv}
evaluated at p form a basis for the tangent plane TpS. Then any tangent vector

v⃗ ∈ TpS is tangent to a curve γ in the image of σ given by γ(t) = σ(u(t), v(t)).

As shown in the proof of Proposition 3.11, we can express the tangent vector

as a linear combination v⃗ = γ̇(0) = σudu+ σvdv.

We use the fact that the inner product is symmetric bilinear to expand Ip
as the quadratic form

Ip(v⃗, v⃗) = ⟨σudu+ σvdv, σudu+ σvdv⟩

= ⟨σu, σu⟩(du)2 + 2⟨σu, σv⟩dudv + ⟨σv, σv⟩(dv)2.

Traditionally, the inner product components of this form are denoted

E = ⟨σu, σu⟩ F = ⟨σu, σv⟩ G = ⟨σv, σv⟩,

and the expression Edu2+2Fdudv+Gdv2 is called the first fundamental form

of the surface patch σ(u, v). Note that the linear maps du, dv and metric

coefficients E,F,G depend on choice of parametrization σ, but the form itself

only depends on S and point p.

Finally, when γ is a curve in the image of a patch σ, we can substitute

the first fundamental form of σ in the arc length formula to compute∫
∥γ̇(t)∥dt =

∫ »
⟨γ̇, γ̇⟩dt =

∫ √
Edu2 + 2Fdudv +Gdv2dt.
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Example 4.2. For a surface of revolution with unit-speed profile curve

u 7→ (f(u), 0, g(u)), we have

σu = (ḟ cos v, ḟ sin v, ġ) σv = (−f sin v, f cos v, 0).

Using the fact that ḟ2 + ġ2 = 1 for the unit-speed curve, we compute the

coefficients E = 1, F = 0, and G = f2. Thus, the first fundamental form is

du2 + f(u2)dv2. ♢

Example 4.3. For the parametrization of S2 as a surface of revolution, we

have f(u) = cos(u) and g(u) = sin(u). The corresponding first fundamental

form is du2 + cos2(u)dv2. ♢

Since the Gauss–Bonnet theorem involves integrating over a surface, we

will briefly discuss areas of surface regions.

Definition 4.4. Given a surface patch σ : U → R3 and a subset R ⊆ U ,

the area Aσ(R) of the surface region σ(R) is

Aσ(R) =

∫
R

∥σu × σv∥dudv.

Using the first fundamental form to compute ∥σu ×σv∥ =
√
EG− F 2, we

can further write

dA =
√
EG− F 2dudv.

Importantly, since the value EG− F 2 = det(Ip) does not depend on choice of

basis, the area of a surface region does not depend on choice of patch σ. This

agrees with the remark about reparametrizations and geometric properties at

the beginning of Section 3.

Example 4.5. Recall that a general surface of revolution has parametriza-

tion σ : I × [0, 2π) for some interval I ⊂ R, so the surface area is computed

by

A(S) =
∫
S
1dA =

∫
I×[0,2π)

√
G− 0dudv =

∫ 2π

0

∫
I

f(u)dudv.

♢

Example 4.6. The surface area of the unit sphere is

A(S2) =

∫
S2

1dA =

∫ 2π

0

∫ π/2

−π/2

cos(u)dudv = 4π.

♢

5. The second fundamental form and surface curvature

In the same way that a plane curve’s signed curvature κ = dθ/ds is a ratio

defined by associating an infinitesimal change γ̇ with an infinitesimal angle θ̇
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on the unit circle, the curvature of a surface in R3 is defined by associating an

infinitesimal area element dA = dudv with another infinitesimal area element

dσ on the unit sphere. The Gaussian curvature is precisely the ratio K =

dA/dσ.

In practice, we can measure curvature by considering how the the unit

normal N varies as we move around the surface. For the tangent plane TpS,
Proposition 3.11 makes a choice of normal vector straightforward: if σ : U →
R3 is a surface patch which contains p, then the unit vector

Nσ =
σu × σv

∥σu × σv∥

is perpendicular to every linear combination of σu and σv. We call Nσ the

standard unit normal of the patch σ at point p.

While ±N does not depend on choice of surface patch σ, the parametriza-

tion determines the sign. In order for the integration of functions to be well-

defined, we will only consider surfaces which are orientable, meaning we have

a smooth choice of normal N. Informally, an orientable surface has two sides;

the typical example of a non-orientable surface is the Mobius strip (see [Pre10,

Example 4.5.3]). Importantly, working with orientable surfaces means we as-

sume that all surface patches discussed in the paper will have a

standard unit normal that is the same as the chosen normal N.

The values of N are given by the Gauss map G : S → S2, which sends

each point p ∈ S to its standard unit normal Np in the unit sphere. Since we

are interested in the rate of change of N, we need to define the derivative dGp

at each point. In general, given a map f between two surfaces S1 and S2, the

derivative of f is the linear map dfp : TpS1 → Tf(p)S2 which “pushes forward”

the tangent vector to the curve p = γ(0) in S1 to the tangent at (f ◦ γ)(0) in
S2. Thus, the derivative of the Gauss map is a function

dGp : TpS → TG(p)S
2.

Now by definition, TNpS
2 is the plane through the origin perpendicular to

the point G(p) = Np, which is precisely TpS, so the derivative dGp is actually

a map from TpS to itself.

Definition 5.1. Let S be an orientable surface with Gauss map G. For

each p ∈ S, the Weingarten map of S at p is the linear map W : TpS → TpS
is given by

Wp = −dGp.

Definition 5.2. If Wp is the Weingarten map at a point p ∈ S, the Gauss-

ian curvature K of S at p is given by

K = det(Wp).
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Remark 5.3. The Gaussian curvature does not depend on orientation of

the tangent plane, as the determinant of the 2×2 matrix Wp is the same when

every entry changes sign.

Example 5.4. The Gaussian curvature of S2 is 1 everywhere, because the

Gauss map at every point in S2 is the precisely the identity map. Thus, the

Weingarten map at every point is also the identity, and so K = det(I) = 1. ♢

Unfortunately, most Weingarten maps are not so obvious. To get an

explicit formula for K, we need to define a metric for curvature on a surface

patch σ.

Definition 5.5. The second fundamental form of S at p is the bilinear

map IIp : TpS → R defined by

IIp = ⟨Wp(v⃗), w⃗⟩

for some tangent vectors v⃗, w⃗ ∈ TpS.

Unlike with the form Ip, it is not immediately clear that IIp has a corre-

sponding quadratic function.

Proposition 5.6. The second fundamental form is symmetric bilinear.

That is, for all tangent vectors v⃗, w⃗ ∈ TpS , we have IIp(v⃗, w⃗) = IIp(w⃗, v⃗).

Proof. First, let p ∈ S be a point in the image of a surface patch σ.

Suppose γ(t) = σ(u(t), v(t)) is a curve in the patch with γ(0) = p, so

γ̇(0) = σudu(0) + σvdv(0)

is tangent to S at p. Then

Wp(γ̇(0)) = −dGp(σudu(0) + σvdv(0))

= − d

dt
G(u(t), v(t))

∣∣∣∣
t=0

= − (Gudu(0) +Gvdv(0)) .

In particular, since

du(σu) = dv(σv) = 1 du(σv) = dv(σu) = 0,

we have Wp(σu) = −Gu and Wp(σv) = −Gv.

Since {σu, σv} is a basis for TpS, we can write our tangent vectors as linear

combinations v⃗ = a1σu + a2σv and w⃗ = b1σu + b2σv for some a1, a2, b1, b2 ∈ R.
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Using the fact that a bilinear form on Rn is linear in both inputs, we compute

IIp(v⃗, w⃗) = ⟨Wp(v⃗), w⃗⟩ = ⟨−a1Gu − a2Gv, b1σu + b2σv⟩
= −a1b1⟨Gu, σu⟩ − a1b2⟨Gu, σv⟩ − a2b1⟨Gv, σu⟩ − a2b2⟨Gv, σv⟩
= ⟨−b1Gu − b2Gv, a1σu + a2σv⟩
= ⟨Wp(w⃗), v⃗⟩ = IIp(w⃗, v⃗),

which shows the desired equality. □

We now obtain a quadratic form: given a tangent vector v⃗ = σudu+σvdv,

we have

IIp(v⃗, v⃗) = −⟨Gu, σu⟩(du)2 − 2⟨Gu, σv⟩dudv − ⟨Gv, σv⟩(dv)2,

where the middle term uses the fact that ⟨Gu, σv⟩ = ⟨Gv, σu⟩.
The metric coefficients are traditionally denoted

L = −⟨Gu, σu⟩ M = −⟨Gu, σv⟩ N = −⟨Gv, σv⟩,

and we say Ldu2 + 2Mdudv + Ndv2 is the second fundamental form of the

surface patch σ(u, v).

Together with the first fundamental form, the second fundamental form

gives us a very useful formula for Gaussian curvature. If we write −Gu and

−Gv in terms of the basis {σu, σv}, then the explicit matrix for the Weingarten

map with respect to this basis isÇ
E F

F G

å−1Ç
L M

M N

å
(for the full derivation, see [Pre10, Proposition 8.1.2]). Thus, we have

K =
LM −M2

EG− F 2
.

Example 5.7. A sphere of radius c has Gaussian curvature 1/c2 every-

where. This is because when a surface is scaled by some constant c, the coeffi-

cients E,F,G are multiplied by a factor of c2 and the coefficients L,M,N are

multiplied by a factor of c, so K changes by a factor of 1/c2.

Further, since the surface area changes by a factor of c2, we find the total

curvature of any sphere S is∫
S
KdA =

1

a2
· 4πa2 = 4π.

♢
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Example 5.8. Using the parametrization of the torus from Section 3, we

compute the partials

σu =

Ñ
−r sin(u) cos(v)
−r sin(u) sin(v)

r cos(v)

é
σv =

Ñ
−(R+ r cos(u) sin(v)

(R+ r cos(u)) cos(v)

0

é
.

The coefficients for the first fundamental form are E = r2, F = 0, and

G = (R+ r cos(u))2, and the coefficients for the second are L = r, M = 0, and

N = (R+ r cos θ) cos θ. The Gaussian curvature is then

K =
cos(u)

r(R+ r cos(u))
.

Interestingly, the torus has both positive and negative curvature: we have

K ≥ 0 when π/2 ≤ u ≤ π/2, and K ≤ 0 when π/2 ≤ v ≤ 3π/2. ♢

6. The local Gauss–Bonnet theorem

The most basic version of the Gauss–Bonnet theorem applies to simple

closed curves on a surface. In Section 2, we considered the particular case

where the surface is a plane, where the Gaussian curvature is 0. Our next step

is to extend the Umlaufsatz to curved surfaces.

Definition 6.1. Given an open subset U ⊂ R2 and a local parametrization

σ : U → S, we say γ : [a, b] → R3 is a simple closed curve in the patch

σ(U) if there exists a simple closed plane curve β(t) = (u(t), v(t)) such that

γ = σ ◦ β.
In this case, γ is positively-oriented if the signed unit normal n of β

points into int(β) ⊂ R2 at every point of β. Finally, int(γ) ⊂ R3 is defined as

the image of int(β) under the map σ.

Lemma 6.2. In the situation above, we have∫
γ

θ̇(s)ds = ±2π.

Proof. Briefly, we can find an isotopy between γ and any another simple

closed curve γ̃ that is completely contained in int(γ). We choose γ̃ to be the

image under surface patch σ of a very small circle in int(β), so the interior of

γ̃ is essentially a subset of the plane in R2. Then using Lemma 2.14, we can

replace γ with γ̃ in the above integral, and the equality follows from Hopf’s

Umlaufsatz.

For the first isotopy, let p = σ(u0, v0) be a point in int(γ) = σ(int(β)). By

property (iii) of regular surfaces, we can scale the axes of R3 to obtain a patch

σ̃(V ) ⊂ σ(U) containing p with

σ̃(x, y) = (x, y, f(x, y))
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for some smooth map f . By the same property, we may translate the surface

so that p = σ̃(u0, v0). Then σ−1(σ̃(V )) is an open subset of U ⊂ R2, so there

exists an ϵ > 0 such that σ(Bϵ(p)) ⊂ σ̃(V ).

Now, consider the isotopy of curves given by

h1(s, t) = σ(t · u(s), t · v(s)).

By choosing sufficiently small t, such as t = ϵ/2, we can find an isotopy between

our original curve γ = h1(s, 1) and a curve in σ̃(V ). Note that such a curve has

the form γϵ/2(s) = (x(s), y(s), f (x(s), y(s))) for some smooth functions x(s)

and y(s).

Using this, we define a second isotopy of curves in σ̃(V ) by

h2(s, t) = (x(s), y(s), t · f(x(s), y(s))).

This gives an isotopy between γϵ/2 = h1(s, ϵ/2) = h2(s, 1) and the simple plane

curve γ̃ = h2(s, 0). Then by Lemma 2.14, we have∫
γ

θ̇ds =

∫
γϵ/2

θ̇ds =

∫
γ̃

θ̇ds,

and the final integral is equal to ±2π by Theorem 2.15. □

Remark 6.3. A more sophisticated version of this proof will define the

relative index of a curve with respect to an orthonormal basis, then use the

Gram–Schmidt process to produce a smooth family of bases for curves in σ̃(V ).

After obtaining the plane curve γ̃, the final step is to show that the relative

index of γ̃ coincides with the formula for I(γ̃) (see [Swa, Theorem 6.6]).

Our definition of a curve’s curvature also requires adjustment. Notice that

given any curve γ on a surface S, the set {γ̇,N,N× γ̇} is an orthonormal basis

for R3. Recall that when γ is unit-speed, its absolute curvature is given by

κ = ∥γ̈∥. There is a particular term for the projection of κ on the the tangent

plane of S.

Definition 6.4. If γ is a unit-speed curve on an surface S, then the geo-

desic curvature of γ is defined by

κg = γ̈ · (N× γ̇).

Remark 6.5. Informally, κg measures how far the curve is from being the

shortest path between two points on a surface. When the surface is a plane,

the shortest path is a straight line, so a plane curve in R3 has κg = κ up to a

sign. In general, the sign of the geodesic curvature κg of a curve depends on

the orientation of both the surface and the curve itself.

We are now ready to prove the Gauss–Bonnet theorem for simple closed

curves.
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Theorem 6.6. Let γ be a unit-speed simple closed curve on a surface

patch σ, and suppose γ is positively-oriented. Then∫
γ

κgds = 2π −
∫
int(γ)

KdA,

where κg is the geodesic curvature of γ, K is the Gaussian curvature of σ, and

dA is the area element of σ. The integral over the area element is called the

total curvature of the region int(γ).

Proof. The argument is entirely computational. First, we will use a basis

of the tangent plane to find an orthonormal basis for R3, then expand γ̇ and

γ̈ in terms of this basis. We then use this to compute κg, which allows us to

rewrite the integral of κg over the curve γ as the difference of two integrals.

Finally, we evaluate the integrals separately to obtain the expression on the

right; the 2π term will come from a direct application of Hopf’s Umlaufsatz

for surface curves, while the area integral uses both fundamental forms of the

surface patch σ.

Let {e1, e2} be a smooth3 orthonormal basis for the tangent plane at each

point in the image of σ; one such choice is e1 = σu/∥σu∥ and e2 = N × e1.

Then {e1, e2,N} is an orthonormal basis for R3. Note that since we can always

swap values of e1 and e2 if necessary, we assume N = e1 × e2 without loss of

generality.

Now, let θ(s) be the oriented angle between the tangent vector γ̇(s) and

the basis vector e1. This is the angle by which e1 must be rotated to be parallel

to γ̇, when viewing the side of the surface which N points away from. That

is, from this side, θ(s) is precisely the tangent angle from Definition 2.6 taken

with respect to e1 instead of the standard basis. Thus, we have

γ̇ = cos θe1 + sin θe2

γ̈ = cos θė1 + sin θė2 + θ̇(− sin θe1 + cos θe2),

where the expression for γ̈ uses the chain rule. Substituting these expressions

and N = e1 × e2 into the formula for geodesic curvature, we find that

κg = θ̇ − e1 · ė2

(for full computations, see [Pre10, Theorem 13.1.2]). We can therefore compute

the left side of the claimed equality as∫
γ

κgds =

∫
γ

θ̇ds−
∫
γ

e1 · ė2ds.

3 Here, “smooth” means that e1, e2 are smooth functions of the surface parameters (u, v).
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First, we know know from Lemma 6.2 that the integral of θ̇ around γ is

equal to ±2π; since γ is positively-oriented, this is exactly 2π. It remains to

show that ∫
γ

e1 · ė2ds =
∫
int(γ)

KdA.

Differentiating e2, we have∫
γ

e1 · ė2 ds =
∫
γ

e1 · ((e2)uu̇+ (e2)vv̇) ds =

∫
β

(e1 · (e2)u)du+ (e1 · (e2)v)dv

=

∫
int(β)

[(e1 · (e2)v)u − (e1 · (e2)u)v] dudv,

where the last equality uses Green’s theorem (see [Shi, Appendix 2, Theorem

2.6]). Now given the first and second fundamental forms of σ,

Edu2 + 2Fdudv +Gdv2 Ldu2 + 2Mdudv +Ndv2,

we can write the partial derivatives of e1 and e2 in terms of the basis {e1, e2,N}
to see that

(e1)u · (e2)v − (e1)v · (e2)u =
LN −M2

(EG− F 2)1/2

(for full computations with coefficients, see [Pre10, Lemma 13.1.3]). Then

applying the formulas for dA and K, this integral becomes∫
γ

e1 · ė2ds =
∫
int(β)

LN −M2

(EG− F 2)1/2
dudv =

∫
int(γ)

LN −M2

EG− F 2
dA =

∫
int(γ)

KdA,

where β is the simple closed plane curve specified in Definition 6.1. This

completes the proof. □

For the remainder of this paper, our discussion will be in terms of regions

on surfaces rather than curves. By region, we mean a compact, simply con-

nected subset △ of a surface S. We will only consider regions with piecewise

smooth boundaries, which means the boundary ∂△ looks like a polygon with

curved sides, or possibly a simple closed curve with no vertices.

Definition 6.7. The boundary ∂△ is positively-oriented if, for all t such

that γi(t) is not a vertex, the signed unit normal n obtained by rotating γ̇i
counterclockwise by π/2 points into △.

The next version of the Gauss–Bonnet theorem accounts for boundary

vertices, where a single oriented angle is undefined, by using exterior angles.

Given a vertex υ of the polygon, we have one curved edge γi traveling towards

υ and another edge γj traveling away. As in the beginning of the proof of

Theorem 6.6, take {e1, e2,N} to be a smooth orthonormal basis of R3, and let

θi and θj be the oriented angles of γ̇i and γ̇j at υ, respectively. The exterior
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angle at υ is given by δ = θj−θi. Since this is only well-defined up to multiples

of 2π, we assume −π < δ < π.

Theorem 6.8 (Local Gauss–Bonnet). Let R be a simply connected region

with piecewise smooth boundary in a surface path σ. If the boundary ∂△ is

positively-oriented, then we have

∫
∂△

κgds = 2π −
n∑

i=1

δi −
∫
△
KdA,

where δi is the exterior angle for some vertex i = 1, . . . , n.

Proof. This is essentially a generalization of Theorem 6.6 to curves with

“corners.” Applying the same argument as before, we find∫
∂△

κgds =

∫
∂△

θ̇ds−
∫
△
KdA.

It remains to show that ∫
∂△

θ̇ds = 2π −
n∑

i=1

δi.

The strategy is to approximate ∂△ with a smooth curve γ which rounds

off the corners. We know by Lemma 6.2 that the total turning angle going

once around γ is exactly 2π. Now notice that since ∂△ is piecewise smooth,

the integral on the left-hand side of the equality is really the sum of n integrals

along the edges of the polygon, with the turning angle at each vertex excluded

from the total. We therefore take γ to be a close-enough approximation such

that the difference between 2π and
∫
∂△ θ̇ is only due to these vertex angles,

and the equality follows (for a more rigorous argument, see [Pre10, Theorem

13.2.2]). □

Example 6.9. Consider an n-gon on the plane with straight edges. In this

case, we have K = 0 and κg = 0 for each side of the polygon. An internal

angle of the polygon is given by αi = π − δi for i = 1, . . . , n and 0 < αi < 2π.

Then Theorem 6.8 implies

n∑
i=1

αi = (n− 2)π,

a well-known formula from elementary geometry. ♢
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7. The global Gauss–Bonnet theorem

The most general version of the Gauss–Bonnet theorem applies to com-

pact, oriented surfaces with piecewise smooth boundary. We will take com-

pact to mean closed and bounded, although compactness is technically a gener-

alization of these properties to higher-dimensional Euclidian subsets. Roughly

speaking, any such surface may be covered with a specific arrangement of

finitely many “polygons,” and we can find the entire surface’s curvature by ap-

plying the local Gauss–Bonnet theorem to each polygon and taking the sum.

Definition 7.1. A surface S ⊂ R3 can be triangulated if it is possible to

write S =
⋃F

λ=1△λ, where

(i) Each △λ is the image of a triangle under a local parametrization σ;

(ii) For all λ ̸= µ, the intersection △λ∩△µ is either empty, a single vertex,

or a single edge;

(iii) When△λ∩△µ is a single edge, the orientations of the edge are opposite

in △λ and △µ;

(iv) For all λ, at most one edge △λ is contained in ∂S.

In this case, each region △λ is called a face, and a collection of such faces is

called a triangulation of S.

Remark 7.2. The choice of compatible orientation in (iii) gives us an orien-

tation on the boundary of S, which comes from the normal N and orientation

of S itself. However, we do not need to worry about boundary orientation when

integrating κg in the theorem. If we have instead −N, then the orientation on

∂S swaps while N× γ̇ is unchanged, so the sign of κg on ∂S does not depend

on choice of orientation on S.

Theorem 7.3. Every compact surface has a triangulation with finitely

many faces.

The proof of this theorem, which comes from algebraic topology, has a rel-

atively simple idea. For every point p ∈ S, we can find a small disc containing

p, and we know S can be covered by a finite collection of these discs because

the surface is compact. We can triangulate the interior of each disc, then paste

them together to make a surface homeomorphic to S. The challenge with a

formal proof is adjusting for how the discs may overlap (see [DM68]).

We now define the topological invariant of interest in the final Gauss–Bonnet

theorem.

Definition 7.4. For any triangulation of a surface S, the Euler charac-

teristic of the triangulation is given by

χ(S) = V − E + F,
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where V,E, and F denote the total number of vertices, edges, and faces, re-

spectively.

Theorem 7.5. Let S be a surface equipped with a triangulation. If S is

homeomorphic to another surface S ′, then χ(S) = χ(S ′).

Example 7.6. One triangulation of S2 is found by intersecting the sphere

with three coordinate planes.

This triangulation has eight faces, and its Euler characteristic is 6−12+8 = 2.

♢

Example 7.7. To triangulate the torus, we use the fact that the torus is

homeomorphic to a square: roll the square into a tube, then stretch the tube

so that the two ends meet as a donut. A triangulation of the square is shown

below.

Taking into account that opposite sides of the squares will meet once rolled

into the torus, we find the Euler characteristic of this triangulation to be

9− 27 + 18 = 0. ♢

While different triangulations of a surface S may have different num-

bers of vertices, edges, and faces, the Euler characteristic χ(S) only depends

on the surface itself. This important property is a consequence of the final

Gauss–Bonnet theorem.

Theorem 7.8 (Global Gauss–Bonnet). Let S ⊂ R3 be a compact, oriented

surface with piecewise smooth boundary. Then

∫
∂S
κgds+

∫
S
KdA+

n∑
i=1

δi = 2πχ(S),

where δi with i = 1, . . . , n is an exterior angle of ∂S .
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Notice that because the left-hand side of the equality has nothing to do

with a chosen triangulation, our proof will hold for any choice of triangulation

for S. Theorem 7.8 therefore implies the following corollary.

Corollary 7.9. The Euler characteristic χ(S) of a compact surface S
is independent of the choice of triangulation.

Proof of Theorem 7.8. As mentioned, the main idea is to apply the local

Gauss–Bonnet theorem to each △λ of the triangulation, then use the total to

compute each term on the left-hand side. The integral values are easy to find,

but we need some additional geometric reasoning to find the difference between

the total exterior angle of ∂S and the sum of the total exterior angles for all

polygons of the triangulation.

We begin by expressing the integrals over S in terms of the triangulation.

For the integral of κg on the boundary, we know from Definition 7.1 (iii) that

any edge of the triangulation which is not in ∂S will be paired with an edge

of the opposite orientation. Because κg changes sign when the orientation of

the curve is reversed, the integral of κg on non-boundary edges cancels out

in pairs. As for the area integral, the area of S is the sum of each △λ by

definition. Thus, we have∫
∂S
κgds =

F∑
λ=1

∫
∂△λ

κgds

∫
S
KdA =

F∑
λ=1

∫
∂△λ

KdA.

Now, we compute the total curvature of each region △λ. Let δλj
for

j = 1, 2, 3 denote an exterior angle of △λ. Applying Theorem 6.8, we have∫
∂△λ

κgds+

∫
△λ

KdA+
3∑

j=1

δλj
= 2π,

and the sum over all of the △λ is∫
∂S
κgds+

∫
S
KdA+

F∑
λ=1

3∑
j=1

δλj
= 2πF.

To complete the proof, we just need to show that the difference between

the sum in the previous expression and the total exterior angle of ∂S is exactly∑
λ,j

δλj
−

n∑
i=1

δi = 2π(E − V ).

This is merely a matter of counting. We first make a distinction between

vertices of triangulation on the boundary and in the interior of S, denoting the

respective totals by VB and VI . We do the same for edges of the triangulation

that are on the boundary, edges in the interior, and edges that join a boundary

vertex to an interior vertex, denoting these totals by EB, EI , and EIB.
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Letting αλj
denote the interior angles of the region △λ, we have∑

interior
vertices

δλj
=

∑
interior
vertices

(π − αλj
) = π(2EI + EIB)− 2πVI .

This is because each interior edge contributes two interior vertices to the total,

while each interior/boundary edge contributes one. Further, the interior angles

at each interior vertex sum to 2π.

On the other hand, given a boundary vertex υ, we will denote the asso-

ciated angle or number with a superscript (υ). Every boundary vertex υ is

contained in E
(υ)
IB +1 faces. Moreover, the total interior angle at any boundary

vertex is π if the vertex is on a smooth curve, and π − δi if the vertex is a

“corner” of ∂S with exterior angle δi. Thus,∑
boundary
vertices υ

δλj
=

∑
boundary
vertices υ

(π − αλj
) =

∑
boundary
vertices υ

π(E
(υ)
IB + 1)−

( ∑
smooth υ

αλj
+

∑
corner υ

αλj

)

= πEIB +
n∑

i=1

δi.

Using the fact that VB = EB for the closed polygon ∂S, we find∑
λ,j

δλj
=

∑
interior
vertices

δλj
+

∑
boundary
vertices

δυj = 2π(EI + EIB − VI) +
n∑

i=1

δi

= 2π(EI + EIB + EB − VI − VB) +
n∑

i=1

δi = 2π(E − V ) +
n∑

i=1

δi,

as desired. At last, we conclude∫
∂S
κgds+

∫
S
KdA+

n∑
i=1

δi = 2πF − 2π(E − V ) = 2πχ(S).

□

For surfaces without boundary, sometimes called closed surfaces, we have

the following remarkable result.

Corollary 7.10. When S ⊂ R3 is a compact, oriented surface without

boundary, the total curvature of S is∫
S
KdA = 2πχ(S).

Example 7.11. If S is any sphere, we know χ(S) = 2, so the Gauss–Bonnet

theorem says ∫
S
KdA = 4π.



THE GAUSS–BONNET THEOREM 69

This agrees with our computation at the end of Section 5. ♢

Example 7.12. If S is a torus, then χ(S) = 0 and the Gauss–Bonnet

theorem says ∫
S
KdA = 0.

Earlier, we saw that the torus has both positively and negatively curved re-

gions; we now know the positive and negative contributions cancel each other

out. ♢

In this paper, we showed that the total curvature of a surface does not

change with a deformation of the surface. Beyond our discussion, it is a the-

orem of topology that every compact, oriented surface without boundary is

homeomorphic to a g-torus for some g ≥ 0, where g is, roughly, the number of

holes in the surface. Thus, the integral
∫
S KdA is precisely what determines

the topological classification of a surface.
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The Peter–Weyl theorem & harmonic
analysis on Sn

By Luca Nashabeh

Abstract

For finite groups, the Artin–Wedderburn theorem gives a precise de-
composition of the algebra of all C-valued functions into matrix algebras.
Specialized to the case of cyclic groups, this produces the classical discrete
Fourier transform. In this paper, we endeavor to extend these techniques
to compact topological groups, proving similar harmonic decompositions
on S1, S2, and S3.

1. Introduction

The representation theory of finite groups provides us with many powerful
tools that not only allow us to directly study the properties and structures of
groups, but also give insight into algebras defined on those groups. One of
the most powerful results is the following theorem, which gives a relationship
between the algebra of C-valued functions on a finite group G and its irreducible
representations.

Theorem 1.1 (Artin–Wedderburn theorem). Let G be a finite group and
C[G] its group algebra with the convolution product

(f1 ∗ f2)(g) =
∑
h∈G

f1(h)f2(h
−1g).

Furthermore, let ρi : G → GL(Vi) for 1 ≤ i ≤ k be the irreducible representa-
tions of G, and ρ̃i : C[G] → End(Vi) the linear extensions to the group algebra.
Then, the map

ρ̃ =
k⊕

i=1

ρi, ρ̃ : C[G] →
k⊕

i=1

End(Vi)

is an isomorphism.

© 2024 Nashabeh, Luca. This is an open access article distributed under the terms of
the Creative Commons BY-NC-ND 4.0 license.
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A simple example of the power of the Artin–Wedderburn theorem comes
from specializing to the cyclic case G = Z/nZ. Here, we can describe ρm and
ρ̃m explicitly as

ρm(x) = ζmx
n = exp

Å
2πi

n
mx

ã
and ρ̃m(f) =

∑
x∈G

f(x) exp

Å
2πi

n
mx

ã
.

The Artin–Wedderburn theorem then gives us the following classical result.

Corollary 1.2 (Discrete Fourier transform). Let f ∈ C[G] ∼= Cn . Then
f can be uniquely decomposed into pure frequencies with amplitudes

Fm =
n∑

x=1

f(x) exp

Å
2πi

n
mx

ã
.

More generally, the Artin–Wedderburn theorem allows us to do a Fourier
decomposition on any finite group, including non-abelian ones. However, while
the Artin–Wedderburn theorem is certainly a powerful result, the requirement
of finiteness prevents us from getting a Fourier decomposition for many inter-
esting continuous groups.

The Peter–Weyl theorem is one path to generalizing the Artin–Wedderburn
theorem, proving a very similar result not just for finite groups, but indeed for
all compact groups. In doing so, we obtain not only the classical Fourier series,
which is simply a decomposition on the compact circle group, but also anal-
ogous decompositions on all n-spheres. However, before we move to proving
these exciting results, we will begin with a necessary discussion of the repre-
sentation theory of compact groups.

2. Preliminaries on compact groups

To begin, we should answer the question of what a compact group actually
is. As one might guess, in order to make sense of compactness on a group, we
need to introduce a topology on the group. Moreover, for this topology to be at
all useful, it would be smart to have the topology interact well with the group
structure. These ideas motivate the following definition.

Definition 2.1. A topological group G is a group equipped with a topol-
ogy τ such that

(1) The group product is continuous as a function G × G → G, with the
product topology on G×G;

(2) The inverse function −1 : G → G is continuous as a function on G.
If, in addition, G is compact and Hausdorff, then it is a compact group.

Remark 2.2. The Hausdorff condition is not universal, but we will include
it here for simplicity.
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Example 2.3. Any finite group equipped with the discrete topology is a
compact group. ♢

Example 2.4. More interestingly, consider the group

U(1) = {eiθ | θ ∈ [0, 2π)} ⊆ C,

with the usual topology inherited from C. Since complex multiplication and
conjugation are continuous, this is a Hausdorff topological group. Furthermore,
since the unit circle is a compact subset of C, this is a compact group. ♢

Example 2.5. Consider the group

SU(2) =

®ñ
α β

−β α

ô ∣∣∣∣∣ |α|2 + |β|2 = 1

´
⊆ C4.

Again, since matrix multiplication and inversion are rational functions on Cn,
this is a Hausdorff topological group. Moreover, writing α = x + iy and β =

z + iw, we see that the restriction is

x2 + y2 + z2 + w2 = 1.

In particular, as a topological space, this group is homeomorphic to the 3-sphere
S3, which is certainly compact. ♢

The most important result about compact topological groups, for our pur-
poses, is the existence of a so-called Haar measure µ. We give a brief statement
of the result.

Theorem 2.6 (Haar measure on compact groups). Let G be a compact
group. Then, there exists a measure µ on (Borel) subsets S ⊆ G such that

(1) µ is left translation invariant, i.e., for any g ∈ G, µ(gS) = µ(S);
(2) µ is right translation invariant, i.e., for any g ∈ G, µ(Sg) = µ(S);
(3) µ(G) = 1.

Remark 2.7. The original theorem actually applies to locally compact
groups and gives some additional regularity properties of this measure.

We will not prove this theorem, as it is not really an exercise in represen-
tation theory. However, the interested reader can consult [vdB93, Sec. 1].

As with any measure, the Haar measure allows us to perform integration
on a compact group. Moreover, this integration is compatible with the group
structure, in the sense that∫

S

f(x) dµ(x) =

∫
g−1S

f(gx) dµ(x) =

∫
Sg−1

f(xg) dµ(x) .

As such, choosing S = G, we can use the Haar integral to perform an averaging
trick similar to the one used with sums in the case of finite groups.
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3. Representation theory of compact groups

3.1. Continuous representations. Having set up the preliminary background
on compact groups, we can now move to the actual subject of their representa-
tions. As with finite groups, it is most convenient to work with complex vector
spaces, so, unless otherwise mentioned, we will take any vector space to be over
C. Unlike in the finite case, however, we do impose a slight extra condition of
continuity on representations of infinite groups.

Definition 3.1. Let G be a topological group. A continuous representa-
tion of G is a homomorphism ρ : G → GL(V ) for some topological Hausdorff
vector space V , such that the map (g, v) 7→ ρ(g)v is continuous as a map
G× V → V . If V is also finite, then we have a finite continuous represen-
tation.

A subrepresentation of V is a subspace W fixed by the action of G, so
that ρ|W is also a representation. An irreducible representation V is a rep-
resentation with no nontrivial subrepresentations (i.e., no subrepresentations
except 0 and V itself).

Remark 3.2. The reason to consider ρ as a map G× V → V instead when
discussing continuity is so that we do not need to define a topology on GL(V ).

Furthermore, though we will not prove this, the continuity of ρ in this
sense is equivalent to the a priori weaker condition that, for any fixed v ∈ V ,
the map g 7→ ρ(g)v is continuous as a function G → V (see [Mor19, Sec. V.2]).

For the rest of this paper, we will only consider finite continuous represen-
tations over C unless otherwise mentioned. The advantage of doing so is that
much of the theory in the finite case carries over completely analogously. For
example, we have the following lemma.

Lemma 3.3 (Schur’s lemma, part 1). Let G be a compact group, and V1, V2

two complex irreducible representations. Then the space of all homomorphisms
from V1 to V2 commuting with the actions of G is

HomG(V1, V2) =

{
0 V1 ̸∼= V2

C V1
∼= V2.

Proof. Let ρ : V1 → V2 be a homomorphism commuting with G. Then,
as can easily be checked, ker ρ and ρ(V1) are subrepresentations of V1 and V2,
respectively. Since V1 and V2 are irreducible, either ρ = 0 or V1

∼= V2. In the
latter case, we can then consider an eigenvalue λ of ρ; since ρ−λ has nontrivial
kernel, it must be the 0 map, showing that ρ = λ. □

Corollary 3.4. The irreducible representations of compact abelian groups
are all one-dimensional.
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Proof. Let V be an irreducible representation of an abelian group, and let
ρ(g) be the representation of some element g. Since the group is abelian, ρ(g)
commutes with the action of any other group element so—taking V1 = V2 = V

in Schur’s lemma—we conclude that ρ(g) is a scalar. Since this is true for any
g, for V to be irreducible, it must be one-dimensional. □

Example 3.5. We can already determine all the irreducible representations
of U(1). By Schur’s lemma, we know these are all one-dimensional. Parametriz-
ing U(1) as exp(iθ), any irreducible representation must therefore be a contin-
uous function satisfying

ρ(x+ y) = ρ(x)ρ(y) and ρ(0) = ρ(2π) = 1.

Since ρ(g) ̸= 0, setting f(x) = log(ρ(x)) gives

f(x+ y) = f(x) + f(y) and f(0) = f(2π) + 2πin, n ∈ Z.

Choosing f(0) = 0 for convenience, we see that the only continuous functions
satisfying these conditions are

fn(θ) = inθ.

Thus, all irreducible representations of U(1) have the form

ρn(x) = einθ.

♢

3.2. Unitary representations. In the case of finite groups, defining a G-
invariant inner product on our representations was ultimately a rather useful
tool. Motivated by the technique of averaging there, we can do something
similar for compact groups.

Proposition 3.6. Let G be a compact group and (ρ, V ) a finite represen-
tation. Then there exists an inner product on V such that ρ(g) is unitary for
all g ∈ G (i.e., the inner product is G-invariant).

Proof. Using the Haar measure, we can imitate the proof from the case of
finite groups. Specifically, let ⟨·, ·⟩ be any inner product on V , and define the
new inner product ⟨·, ·⟩G by

⟨v, w⟩G =

∫
G

⟨gv, gw⟩ dg .

Note that this is indeed an inner product, as ⟨v, v⟩G is the integral of a continu-
ous, nonnegative quantity which is only identically zero if v = 0. Furthermore,
this inner product is G-invariant, as

⟨hv, hw⟩G =

∫
G

⟨ghv, ghw⟩dg =

∫
Gh

⟨gv, gw⟩ dg = ⟨v, w⟩G.
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□

Corollary 3.7. Let G be a compact group and V a finite representation.
Then V is semisimple (i.e., decomposes as a sum of irreducibles).

Proof. If V is irreducible, we are done. Thus, let W ⊆ V be an irreducible
subspace fixed by G, and consider W⊥ as given by the invariant inner product.
We wish to show that W⊥ is fixed by G. But, for any v ∈ W⊥ and w ∈ W ,
we know that ⟨gv, w⟩ = ⟨v, g−1w⟩ = 0, since W is fixed by G. Thus, gv

is orthogonal to everything in W , so it is in W⊥, showing that W⊥ is also
fixed by G. We can thus write V = W ⊕ W⊥ and induct on W⊥ to get a
decomposition into irreducible subspaces. □

Corollary 3.8 (Schur’s lemma, part 2). Let G be a compact group and
V a finite representation such that EndG(V ) = C. Then V is irreducible.

Proof. Suppose that V were reducible, so that V = V1 ⊕ V2 with V1 and
V2 nontrivial. Let P : V → V2 be the orthogonal projection map onto V2 given
the unitary structure of the proposition. Then P ∈ EndG(V ), so either P = 0

or V ∼= V2. But V2 ̸= 0, so P cannot be 0 and V ∼= V2, a contradiction. □

From now on, we will also assume any representation is unitary and denote
its inner product as simply ⟨·, ·⟩.

3.3. Matrix coefficients and Schur orthogonality. In our ultimate discussion
of the Peter–Weyl theorem, it will be useful to have a more concrete under-
standing of the endomorphisms of the representations of G. To that end, it
would be useful to consider matrix representations of these endomorphisms.
However, rather than having to choose a basis for our representations, it is
convenient to use the slightly more abstract notion of matrix coefficients.

Definition 3.9. Let G be a compact group and (ρ, V ) a finite representa-
tion. A matrix coefficient is any function mρ

v,w : G → C of the form

mρ
v,w(g) = mv,w(g) = ⟨ρ(g)v, w⟩ with v, w ∈ V.

The span of all matrix coefficients will be denoted C(G)ρ. If a specific basis vi
is implied, these may also just be written as mij .

Note that this naming makes the most sense if we choose v, w to be from
an orthonormal basis, in which case the individual matrix coefficients are just
those of the matrix representation of g. However, more generally, the matrix
coefficients so defined will always be the elements of the matrix representation
of g with respect to some basis. The converse, namely that the elements of any
matrix representation are actually matrix coefficients, also holds by linearity,
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so this definition really is not introducing anything new; it is perhaps just a bit
easier to work with.

For finite groups, we had a very strong result on the orthogonality of these
matrix coefficients. As one might expect by now, this result raises practically
unchanged to the compact case.

Theorem 3.10 (Orthogonality of matrix coefficients). Let G be a compact
group and (ρ1, V ) and (ρ2,W ) two irreducible finite representations. Let v1, v2 ∈
V and w1, w2 ∈ W . Then we have∫

G

mv1,v2(g)mw1,w2(g) dg =

{
1

dimV ⟨v1, w1⟩⟨v2, w2⟩ ρ1 ∼= ρ2

0 otherwise.

Proof. For any v ∈ V , w ∈ W , consider the operators

Lv,w(x) = ⟨x, v⟩w and Tv,w =

∫
G

gLv,wg
−1 dg .

Both of these are elements of Hom(V,W ). Furthermore, note that Tv,w com-
mutes with the action of G, as

Tv,wg =

∫
G

hLv,w(h
−1g) dh =

∫
G

(gh)Lv,wh
−1 dh = gTv,w.

As such, Schur’s lemma tells us Tv,w is a scalar if and only if ρ1 ∼= ρ2 and is 0
otherwise. To determine this scalar, we can take the trace:

TrTv,w(g) =

∫
G

TrhLv,wh
−1 dh =

∫
G

TrLv,w dh = TrLv,w.

The trace of Lv,w is most easily evaluated by using an orthonormal basis ei of
V , yielding

TrLv,w =
dimV∑
i=1

⟨Lv,w(ei), ei⟩ =
dimV∑
i=1

⟨ei, v⟩⟨w, ei⟩ = ⟨w, v⟩.

Thus, we have Tv,w(g) = 1
dimV ⟨w, v⟩. Finally, we can answer our original

question by noting that∫
G

mv1,v2(g)mw1,w2(g) dg =

∫
G

⟨gv1, v2⟩⟨gw1, w2⟩dg

=

∫
G

⟨gv1, v2⟩⟨g−1w2, w1⟩ dg

=

∫
G

⟨g ⟨g−1w2, w1⟩ v1, v2⟩dg

=

≠∫
G

g⟨g−1w2, w1⟩v1 dg , v2
∑

= ⟨Lw1,v1w2, v2⟩.
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Using our classification for Lw1,v1 , we can ultimately conclude∫
G

mv1,v2(g)mw1,w2(g) dg =

{
1

dimV ⟨v1, w1⟩⟨v2, w2⟩ ρ1 ∼= ρ2

0 otherwise.

□

3.4. Characters. Having just proved Schur orthogonality, it is worth taking
a brief digression to discuss characters.

Definition 3.11. Let G be a compact group and (ρ, V ) a representation.
The character χ of ρ is defined by

χ(g) = Tr ρ(g).

If ρ is an irreducible representation, χ is called an irreducible character.

Characters function largely the same as for finite groups. Indeed, the
character of the sum of two representations is simply the sum of characters,
and therefore any character breaks down into a sum of irreducible characters.
We reproduce the following two familiar results.

Corollary 3.12 (Character orthogonality). Let G be a compact group
and let V , W be two irreducible representations with characters χV , χW . Then∫

G

χV (g)χW (g) dg =

{
1 V ∼= W

0 V ̸∼= W.

Proof. Choose orthonormal bases vi and wj of V and W . Then, we have

χV (g) =
dimV∑
i=1

⟨gvi, vi⟩ =
dimV∑
i=1

mvi,vi(g)

and similarly for χW . Thus,∫
G

χV (g)χW (g) dg =
dimV∑
i=1

dimW∑
j=1

∫
G

mvi,vi(g)mwj ,wj (g) dg .

If V ̸∼= W , we already know this is 0 by Theorem 3.10. On the other hand, if
V ∼= W , we can take vi = wi, yielding

dimV∑
i=1

dimV∑
j=1

∫
G

mvi,vi(g)mvj ,vj (g) dg =
1

dimV

dimV∑
i=1

dimV∑
j=1

|⟨vi, vj⟩|2 = 1.

□

Corollary 3.13. Let G be a compact group and χ a character of a finite
representation. Write χ as a sum of irreducible characters χ =

∑k
i=1 niχi .



78 LUCA NASHABEH

Then ∫
G

|χ(g)|2 dg =
k∑

i=1

n2
i .

Namely, χ is irreducible if and only if the integral is 1.

Example 3.14. If we parametrize the circle group in terms of an angle
θ ∈ [0, 2π), one can check that the Haar measure is given by

dg =
dθ

2π
.

Furthermore, since the irreducible representations of U(1) are one-dimensional
(see the example), we already have the characters

χn(θ) = ρn(θ) = exp(inθ).

Thus, by a needlessly complicated proof, we have that∫
U(1)

χn(g)χm(g) dg =
1

2π

∫ 2π

0

einθe−imθ dθ = δnm.

More interestingly, we also have a finite, integral version of Parseval’s
identity. Indeed, if f is an arbitrary finite character

f =
N∑

i=−N

niχi,

then Corollary 3.13 tells us that

1

2π

∫ 2π

0

|f(θ)|2 dθ =
N∑

i=−N

n2
i .

♢

4. L2(G) & the Peter–Weyl theorem

Having digressed enough on the subject of representations, it would be
good to remind ourselves of the original goal of describing functions on G.
In the case of finite groups, this could be achieved by considering the group
algebra

C[G] =
⊕
g∈G

Cg,

which has a multiplication linearly extending that of G. This could be identified
as the algebra of all functions f : G → C with the convolution product by letting
f(g) be the coefficient of g in f .

Unfortunately, directly attempting to use the group algebra in the case of
compact groups is a bit too general. Indeed, the space C[G] ∼ CG contains



THE PETER–WEYL THEOREM & HARMONIC ANALYSIS ON Sn 79

plenty of unwieldy and uninteresting functions. More importantly, it also con-
tains plenty of nonintegrable functions, which prevents us from using the tools
we have developed. The easiest way to fix this issue is just to get rid of these
problematic functions.

4.1. The representation L2(G).

Definition 4.1. Let G be a compact group. Let L2(G) be the Banach space
of complex square-integrable functions, i.e., those functions f : G → C such
that ∫

G

|f |2 dg exists and is < ∞.

Then, G acts on L2(G) as

(gf)(x) = f(g−1x).

Remark 4.2. Technically speaking, the space L2(G) is actually a quotient
of the above definition by the equivalence of almost-everywhere equality, but
we will ignore this complication as it is not essential. For more on Lp spaces,
see [Axl19, Chap. 7–8].

Example 4.3. The matrix coefficients C(G)ρ are all continuous functions,
and hence their squares are integrable over the compact set G. Thus, we have

C(G)ρ ⊆ L2(G) for all ρ.

♢

Example 4.4. For a finite group, we know that L2(G) ∼= C[G], since the
integral is just summing over each group element. Thus, an element f looks
like

f =
∑
h∈G

f(h)h.

Therefore,

gf =
∑
h∈G

(gf)(h)h =
∑
h∈G

f(g−1h)h =
∑
h∈G

f(h)gh.

In other words, L2(G) is just the regular representation of G, which should not
be too surprising given the analogy with the group algebra. ♢

Example 4.5. For the group U(1), L2(U(1)) can be identified as all square-
integrable functions on the circle, since U(1) ∼= S1, together with the translation
action f(x) 7→ f(x− θ). ♢

The reason to choose square integrability, rather than just normal integra-
bility, is that it will allow us to promote L2(G) from just a Banach space to a
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Hilbert space, i.e., a space with an inner product. Indeed, we can define

⟨f, g⟩ =
∫
G

fg dx ,

which is guaranteed to exist by the complex polarization identities. However,
before continuing with its representation theory, it is worth digressing to discuss
the product structure of L2(G).

4.2. Convolutions. Without being too rigorous, we can think about an
element f ∈ L2(G) as a “weighted integral” of elements of G

f =

∫
G

f(g)g dg .

From this, we can calculate the product of two elements as

f1 ∗ f2 =
∫
G

∫
G

f1(h)f2(g)hg dhdg =

∫
G

Å∫
G

f1(h)f2(h
−1g) dh

ã
g dg .

Looking at the coefficient of g in this expression thus motivates the following
definition for the convolution.

Definition 4.6. Let G be a compact group. Then, for any f1, f2 ∈ L2(G),
we define the convolution

(f1 ∗ f2)(g) =
∫
G

f1(h)f2(h
−1g) dh .

Remark 4.7. One should prove that this convolution does actually obey
the regular associativity and distributivity laws of a product. This is a good
exercise in analysis.

Also, note that if G is not discrete, ∗ does not technically have an identity
element. However, as we will discuss, one can still approximate an identity
element using L2(G) functions.

Note that the convolution is not, in general, abelian (which should not
be a surprise, considering G need not be). As such, there are two natural
operations we can extract from the convolution by fixing one of the two factors.
Specifically, we will write

Lh(f) = h ∗ f and Rh(f) = f ∗ h for h, f ∈ L2(G).

These operations are, in general, very well behaved. Specifically, we have the
following collection of technical results from functional analysis, which are only
partially reproduced as they are not the focus of this article.

Proposition 4.8. Let h ∈ L2(G), and define h̃(x) = h(x−1). Then we
have that

(1) Lh and Rh are continuous compact operators;
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(2) (Lh)
∗ = Lh̃ and (Rh)

∗ = Rh̃ . In particular, if h = h̃, then Lh and Rh

are self-adjoint.

Proof.

(1) The continuity of both Lh and Rh follows easily enough by applying
the Cauchy–Schwarz inequality to show that

∥Lh(f)(g)∥ =

∥∥∥∥∫
G

h(x)f(x−1g) dx

∥∥∥∥ ≤ ∥h∥∥f∥,

and similarly for Rh. Compactness, on the other hand, is more tech-
nical, but can be done by noting that the convolution is an integral
operator with a compactly supported kernel; the interested reader can
find the full details in [Mor19, Chap V.4] or [vdB93, Sec. 8].

(2) We prove this for Lh, as the proof for Rh is nearly identical.

⟨Lhf1, f2⟩ =
∫
G

h ∗ f1f2 dx

=

∫
G

∫
G

h(y)f1(y
−1x)f2(x) dy dx

=

∫
G×G

h(y−1)f1(x)f2(y−1x) dy dx (x → yx and y → y−1)

=

∫
G

f1(x)

ï∫
G

h(y−1)f2(y
−1x) dy

ò∗
dx

= ⟨f1, Lh̃f2⟩.

Thus, if h = h̃, then Lh = Lh̃ is equal to its adjoint.

□

Despite being very nicely behaved, however, the convolution does have one
major weakness: its lack of an identity element. This is rather annoying, as
it means that L2(G) with ∗ as the product is a non-unital ring. However, as
alluded to, we can still approximate an identity element as well as we need to.

Lemma 4.9. Given any f ∈ L2(G), there is a sequence of functions hn
such that

(1) hn = h̃n ;
(2) ∥hn∥ = 1;
(3) f ∗ hn → f as n → ∞.

Proof. Denote by rx right multiplication by x, i.e., rxf(y) = f(yx).
Now, let ϵ > 0, and choose a neighborhood of the identity U ⊆ G such

that U = U−1 and ∥rxf − f∥ < ϵ for all x ∈ U , which is possible by continuity
of the group multiplication. Define hϵ =

1
Vol(U)1U . Then hϵ = h̃ϵ and ∥hϵ∥ = 1
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by definition. Furthermore, we have

f ∗ hϵ(g)− f(g) =
1

Vol(U)

∫
G

f(x)1U (x
−1g) dx− f(g)

=
1

Vol(U)

∫
G

f(gx)1U (x
−1) dx− 1

Vol(U)

∫
U

f(g) dx

=
1

Vol(U)

∫
U

(rxf)(g)− f(g) dx .

Thus, we can conclude that

∥f ∗ hϵ − f∥2 = 1

Vol(U)2

∫
U×U

((rx)f − f)((ry)f − f) dx dy

≤ 1

Vol(U)2

∫
U×U

∥(rx)f − f∥∥(rx)f − f∥ dx dy

=
1

Vol(U)2

∫
U×U

ϵ2 dx dy

= ϵ2.

In particular, if we take the sequence hn := h2−n , we get an approximation to
the identity. □

4.3. The Peter–Weyl theorem. We can finally come to our first major re-
sult, the titular Peter–Weyl theorem. This, as mentioned earlier, is really just
a generalization of the Artin–Wedderburn theorem to compact groups, giving
us a decomposition of L2(G), the equivalent to C[G], into simpler spaces given
by the irreducible representations of G.

We will still need one more theorem before proving Peter–Weyl: the spec-
tral theorem for compact self-adjoint operators. However, we will just be stating
this result, as it is purely a result from functional analysis.

Theorem 4.10 (Spectral theorem). Let T : V → W be a compact self-
adjoint operator between Hilbert spaces. Then V decomposes as an orthogonal
direct sum

V = Ker(T )
⊕
λ∈Λ

Eλ,

where Λ ∈ R∗ is a discrete set of eigenvalues, and the Eλ are orthogonal, finite-
dimensional eigenspaces.

Proof. See [Mor19, Chap. V.6] or [Axl19, Chap. 10D]. □

Having finally gone through all the preliminaries, we present the Peter–
Weyl theorem.
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Theorem 4.11 (Peter & Weyl, 1927). Let G be a compact group, and “G
the set of finite irreducible representations of G. Then

L2(G) ∼=
⊕̂
ρ∈“G C(G)ρ,

where “⊕ denotes the closure of the direct sum.

Proof. We will denote

R(G) =
⊕̂
ρ∈“G C(G)ρ

for convenience. The proof will consist of two steps: showing that every finite
subrepresentation of L2(G) occurs in R(G), and showing that this implies that
the complement of R(G) is trivial.

For the first step, consider some arbitrary finite representation V of G.
Without loss of generality, we may take V to be irreducible, since any finite
representation is semisimple by Corollary 3.7. Our strategy will be to show that
the image of any inclusion map u : V → L2(G) commuting with the action of
G is in fact contained in R(G), i.e., is in the span of all matrix coefficients. To
do so, take some v ∈ V and let f ∈ L2(G). We then have

(u(v) ∗ f̃)(g) =
∫
G

u(v)(h)f(g−1h) dh

=

∫
G

u(v)(gh)f(h) dh

= ⟨u(v) ◦ g, f⟩

= ⟨u(ρ(g−1)v), f⟩

= ⟨ρ(g−1)v, u∗(f)⟩.

This is a matrix coefficient for the dual representation of ρ, so it is in R(G).
Now, if we take a sequence of f̃n approximating the identity, we can then
conclude that

u(v) ∗ f̃n → u(v) ∈ R(G).

We are now ready to complete our proof of the theorem. To that end,
consider an element f ∈ R(G)⊥. If we now consider any element h ∈ L2(G)

such that h = h̃, we know that Rh is a self-adjoint compact operator. As such,
L2(G) decomposes as

L2(G) = Ker(Rh)
⊕
i

Eλi
,

where the Eλi
are finite-dimensional. As such, they are all in R(G), so f is

orthogonal to them. In particular, f ∈ Ker(Rh), i.e., f ∗ h = 0. Again, taking
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now a sequence hn that approximates the identity, we conclude that f = 0,
completing the proof. □

5. Applications to S1 and S3

After all of that work, we are finally ready to discuss some concrete appli-
cations of all of this theory to Fourier-type decompositions on n-spheres. We
will only handle the cases S1, S2, and S3 in this article, as the general case
needs more sophisticated tools. The cases of S1 and S3 are easiest to han-
dle thanks to the fact that these two spheres actually have group structures;
namely, we have S1 ∼= U(1) and S3 ∼= SU(2) as discussed previously. As such,
we will discuss them first.

5.1. U(1) and S1 . The case of S1, though not particularly revolutionary in
its conclusion, is still a wonderful and simple example of the Wedderburn-type
decomposition we are trying to do. Moreover, it provides the framework with
which we can approach more general cases.

Theorem 5.1 (Fourier, 1807). The space L2(S1) decomposes as

L2(S1) ∼=
⊕̂
n∈Z

C(U(1))n ∼=
⊕̂
n∈Z

Ceinθ.

More concretely, a function f ∈ L2(S1) can be written as

f(θ) =
∑
n∈Z

f̂(n)einθ with f̂(n) =
1

2π

∫ 2π

0

f(θ)e−inθ dθ .

Proof. Note that U(1) ∼= S1. Furthermore, by our classification of the
irreducible representations, the span of matrix coefficients is clearly just

C(U(1))n ∼= C exp(inθ).

Thus, applying Theorem 4.11 gives us the first statement.
For the more concrete realization, note that we already know f decomposes

as a sum:
f =

∑
n∈Z

ane
inθ.

We can then use Theorem 3.10 to isolate what an is. Specifically, taking the
inner product with the matrix coefficient mn = e−inθ = m−n, and recalling
that dg = dθ /(2π), gives us that

1

2π

∫ 2π

0

f(θ)e−inθ dθ =
1

2π

∫ 2π

0

∑
k∈Z

akmkmn dθ =
∑
k∈Z

akδkn = an.

□
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5.2. Representation theory of SU(2). As we noted previously, SU(2) can
be viewed as the manifold S3. Thus, to get a Fourier theory on S3, it would
be sufficient to determine the matrix coefficients of representations of SU(2).
Before we can do that, however, we need to actually determine the irreducible
representations themselves.

In order to find these irreducible representations, note that there is a nat-
ural action of SU(2) on C2 given by

g

ñ
z1
z2

ô
=

ñ
α β

−β α

ô ñ
z1
z2

ô
=

ñ
αz1 + βz2
−βz1 + αz2

ô
.

A slight reframing of this involves considering z = (z1, z2) as variables for
a 2-variable polynomial p1(z) = az1 + bz2. With this reframing, we get a
representation

(gp1)(z) = p1(g
−1z),

the inverse being necessary to respect associativity. This can be generalized by
considering higher-degree polynomials. Namely, if we let Pn be the space of all
≤ n degree complex polynomials in 2 variables, we get a representation

(gpn)(z) = pn(g
−1z) for pn ∈ Pn.

This representation, unfortunately, is not irreducible. Indeed, consider the
subspace Pn of all homogeneous degree n polynomials, i.e., the polynomials
such that

pn(λz) = λnpn(z).

Then this subspace is invariant under the SU(2) action, as

(gpn)(λz) = pn(g
−1λz) = pn(λg

−1z) = λn(gpn)(z).

The natural question to ask is whether this new representation is irreducible.
The answer, as we will prove, is yes.

Proposition 5.2. The SU(2) representation on Pn is irreducible for every
n ≥ 0. In particular, there is a representation ρn of dimension n+ 1 for every
n ≥ 0.

Proof. Our proof will attempt to use Corollary 3.8 by showing that any
endomorphism A of Pn commuting with the action of SU(2) is a scalar.

To start our proof, note that the polynomials pk = zk1z
n−k
2 form a basis of

Pn for 0 ≤ k ≤ n. Now, consider the special elements

uθ =

ñ
e−iθ 0

0 eiθ

ô
∈ U(1) ⊆ SU(2).

These elements are of note, as

uθpk = (eiθz1)
k(e−iθz2)

n−k = eiθ(2k−n)pk.
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Namely, the pk are eigenvectors of uθ with respective eigenvalues eiθ(2k−n). As
such, in the basis of the pk, we have

ρn(uθ) = diag
(
e−iθn, e−iθ(n−2), . . . , eiθn

)
.

By choosing θ small enough, these eigenvalues are all distinct, so the pk also
generate all the eigenspaces of uθ. Since A is assumed to commute with SU(2),
it must map each of these eigenspaces to itself. Thus,

Apk = λkpk for 0 ≤ k ≤ n.

We now want to show that λk = λ0 for all k. To do so, consider the new
elements

rθ =

ñ
cos θ − sin θ

sin θ cos θ

ô
∈ U(1) ⊆ SU(2).

We can then look at the action of rθ and A on p0 = zn1 . Specifically, we have

Arθp0 = A(cos θz1 + sin θz2)
n

= A
n∑

k=0

Ç
n

k

å
(cos θ)k(sin θ)n−kzk1z

n−k
2

=
n∑

k=0

Ç
n

k

å
(cos θ)k(sin θ)n−kApk

=
n∑

k=0

λk

Ç
n

k

å
(cos θ)k(sin θ)n−kpk.

On the other hand, since Arθ = rθA, we also get

rθAp0 = λ0rθp0 =
n∑

k=0

λ0

Ç
n

k

å
(cos θ)k(sin θ)n−kpk.

Comparing these two expressions, we can indeed conclude that λ0 = λk for all
0 ≤ k ≤ n. Thus, A = λ0I is a scalar, and we conclude that ρn is irreducible.

□

Corollary 5.3. For every n ≥ 0, SU(2) has an irreducible character χn

given by

χn(uθ) =
n∑

k=0

eiθ(2k−n).

Proof. Note that, by the spectral theorem for finite vector spaces, any
element of SU(2) is conjugate to a diagonal matrix of the form uθ defined
previously. Thus, it is sufficient to define the characters on this subspace.

Now, consider again the basis pk = zk1z
n−k
2 of Pn. We already saw that

ρn(uθ)pk = eiθ(2k−n)pk,
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from which we can conclude that the trace of ρn(uθ) is

χn(uθ) =
n∑

k=0

eiθ(2k−n).

□

The previous corollary tells us that the span of the characters of SU(2) is
dense in the even periodic functions. Specifically, denoting χn(θ) := χn(uθ),
we can express cos(nθ) for n ∈ Z as

1 = χ0 and cos(θ) =
1

2
χ1(θ) and cos(nθ) =

1

2

(
χn(θ)− χn−2(θ)

)
,

which are dense in the even periodic L2 functions by Theorem 5.1. In fact,
this observation allows us to conclude that the ρn we defined give all of the
irreducible representations of SU(2).

Proposition 5.4. The ρn enumerate all irreducible representations of
SU(2).

Proof. Let ρ be a representation with character χ. Note that χ is com-
pletely described by its restriction to the uθ, since characters are invariant
under conjugation and any SU(2) matrix can be diagonalized. Furthermore,
since uθ is conjugate to u−θ, we must have χ(−θ) = χ(θ). In other words, χ is
just an even function on the unit circle. Thus, by Theorem 5.1, χ decomposes
as a sum of cos(nθ) terms. However, we just saw that cos(nθ) can be expressed
in terms of the χn. Thus, χ can be expressed as a sum of the χn. In particular,
χ contains at least one of the χn, so χ is either one of them or is reducible. □

5.3. SU(2) and S3 . Now that we have a concrete realization and under-
standing of all of the irreducible representations of SU(2), an application of
Theorem 4.11 achieves our stated goal.

Proposition 5.5. The space L2(S3) ∼= L2(SU(2)) decomposes as

L2(S3) ∼=
⊕̂
n≥0

C(SU(2))n.

However, this is not really a satisfying result. Indeed, while this is certainly
a valid decomposition of the functions on S3 into smaller algebras, it is not clear
at all what the spaces C(SU(2))n look like, or how they even relate to functions
on S3. Thus, to get a better understanding, we need to put a bit more effort
into studying the matrix coefficients of SU(2).

Recall that the link between SU(2) and S3 we had was based on mappingñ
α β

−β α

ô
7→ (x1, y1, x2, y2) ∈ S3 where α = x1 + iy1, β = x2 + iy2.
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As such, it would make sense to consider the matrix coefficients as functions of
α and β. For example, we can consider the actionñ

α −β

β α

ô
pk =

(
αz1 + βz2

)k(
−βz1 + αz2

)n−k
=: Fk(α, β)

as a polynomial in α, β, α, and β. Note that this is particularly convenient, as
these 4 variables are linearly related to the variables x1, y1, x2, and y2.

There are now three insights that allow us to give a more concrete picture
of C(SU(2))n. The first is that, since the pk are a basis of Pn, a basis for
C(SU(2))n is given by

Fm
k (α, β) := zn−m

1 zm2 coefficient of
(
αz1 + βz2

)k(
−βz1 + αz2

)n−k
,

where 0 ≤ m, k ≤ n.

Example 5.6. Consider the space P2. We have

F0 =
(
αz1 + βz2

)2
= α2z21 + 2αβz1z2 + β2z22

F1 =
(
αz1 + βz2

)(
−βz1 + αz2

)
= −αβz21 + (αα− ββ)z1z2 + αβz22

F2 =
(
−βz1 + αz2

)2
= β

2
z21 − 2αβz1z2 + α2z22 .

Thus, the Fm
k , which form a basis for the space of matrix coefficients, are

Fm
k 0 1 2

0 α2 2αβ β2

1 −αβ αα− ββ αβ

2 β
2 −2αβ α2

.

♢

The second observation is that Fk is still real-homogeneous of degree n,
i.e.,

Fk(λα, λβ) =
(
λαz1 + λβz2

)k(
−λβz1 + λαz2

)n−k
= λnFk(α, β)

for λ ∈ R. Thus, we can also interpret the matrix coefficients as some subspace
of the homogeneous polynomials of degree n in 4 real variables, if we choose to
write α, β, and their conjugates in terms of the xi and yi.
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Example 5.7. Continuing the previous example, we get these degree 2 ho-
mogeneous polynomials:

α2 = x21 + 2ix1y1 − y21 α2 = x21 − 2ix1y1 − y21

β2 = x22 + 2ix2y2 − y22 β
2
= x22 − 2ix2y2 − y22

2αβ = 2(x1x2 + y1y2) + 2i(x1y2 + x2y1) −αβ = −x1x2 + y1y2 + i(x1y2 − x2y1)

αβ = x1x2 − y1y2 + i(x1y2 − x2y1) −2αβ = −2(x1x2 + y1y2) + 2i(x1y2 + x2y1)

αα− ββ = x21 + y21 − x22 − y22.

♢

The final observation is that, as a 4-variable real function, Fk(x1, y1, x2, y2)

is actually harmonic. If we write

∆ =
∂2

∂x21
+

∂2

∂y21
+

∂2

∂x22
+

∂2

∂y22
= 4

∂2

∂α∂α
+ 4

∂2

∂β∂β
,

the symmetry of the two terms defining Fk makes it easy to check that it
is harmonic. Moreover, since Fk is harmonic, each of the Fm

k is too. We
have therefore established that the matrix coefficients C(SU(2))n are actually
homogeneous harmonic polynomials of degree n on R4. These polynomials are
so important, in fact, that it is worth giving them a special symbol.

Definition 5.8. Let

Hm
n = {p ∈ Pn(Rm)|∆p = 0},

i.e., the space of all harmonic homogeneous polynomials of degree n on Rm.

Example 5.9. The space H4
2 is simple enough that one can manually enu-

merate the possibilities. Doing so shows that H4
2 is 9-dimensional, with basis

x21 − y21, x
2
2 − y22, x

2
1 − x22, x1y1, x1x2, x1y2, y1x2, y1y2, x2y2.

♢

Curiously, the previous examples show that H4
2 and C(SU(2))2 actually

have the same dimension and are thus the same space. It turns out this is a
general phenomenon: C(SU(2))n is not only a subspace of H4

n, but is in fact
equal to it. Proving this is most easily done by noting both of these spaces have
dimension (n+1)2. For C(SU(2))n, this follows immediately from the fact that
the n + 1 elements pk form a basis of Pn. On the other hand, to see that H4

n

has dimension (n + 1)2, consult Appendix A. In any case, putting everything
together, we finally get the proper hyperspherical decomposition on S3.
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Theorem 5.10 (S3 hyperspherical decomposition). The space L2(S3) ∼=
L2(SU(2)) decomposes as

L2(S3) ∼=
⊕̂
n≥0

H4
n|S3 ,

where |S3 denotes restriction to S3 ⊆ R4 . Furthermore, the coefficients in this
decomposition can be calculated as

Fn
ij = ⟨f,mij⟩SU(2) =

∫
S3

f mn
ij dµ for 0 ≤ i, j ≤ n.

Remark 5.11. The invariant metric µ on SU(2) is, unfortunately, rather
complicated, so we will not be writing it down explicitly.

6. Applications to S2

Our final task is to tackle spherical decompositions on S2. This is hindered
by the fact that S2 has no obvious group structure; in fact, it can be shown
that there is no way to give S2 a group structure compatible with its geometry
(see [Lee18]). For this reason, we will need to change our approach slightly.

The most important insight is that, while S2 is not a group itself, it is
certainly acted upon very naturally by many groups. In particular, the group
SO(3) of three-dimensional rotations has a natural action on the 2-sphere. This
action is transitive, i.e., the orbit of every point is all of S2 but is not faithful.
Indeed, the stabilizer of any point is a subgroup of SO(3) isomorphic to SO(2).
This is easy to see geometrically: any rotation that fixes a particular point
on the surface of the sphere must be a rotation through that point, and so
these collectively form a group of two-dimensional rotations. Thus, by the
orbit-stabilizer theorem, we have an identification

S2 ∼= SO(3)/ SO(2).

This identification now gives us a useful way to think about L2(S2).
Namely, consider a function f ∈ L2(SO(3)) that is SO(2) invariant. Then,
f can just be defined on SO(3)/ SO(2)-cosets, which we just saw are isomor-
phic to S2. On the other hand, any function f ∈ L2(S2) can be lifted to a
function f ∈ L2(SO(3)) that is SO(2) invariant, so we have established an
isomorphism

L2(S2) ∼= L2(SO(3))SO(2),

where the superscript SO(2) denotes the subspace of SO(2)-invariant functions.
But now note that we can understand L2(SO(3)) very well using Theorem 4.11,
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and taking an SO(2)-invariant subspace commutes nicely with the decomposi-
tion we had. Indeed, we have

L2(SO(3))SO(2) =

ï ⊕̂
ρ∈ŜO(3)

C(SO(3))ρ

òSO(2)

=
⊕̂

ρ∈ŜO(3)

(
C(SO(3))ρ

)SO(2)
.

Because of this, we see that we should try to understand the irreducible repre-
sentations of SO(3) in order to understand L2(S2).

6.1. From SU(2) to SO(3) representations. To derive the irreducible repre-
sentations of SO(3), we will use a classical result that SU(2) is the double-cover
of SO(3). Intuitively, this means that there is a way of mapping SU(2) onto
SO(3) such that a 2π rotation in SO(3) corresponds to the map −I in SU(2).
The precise proof and details of this result are not so important for us (see
[vdB93, Sec. 20] for the details). All that matters is that there is a surjective
homomorphism

ϕ : SU(2) → SO(3) with kerϕ = ±I.

The existence of this homomorphism allows us to use what we already know
about SU(2) representations, namely Proposition 5.4, to completely character-
ize SO(3) representations.

In particular, consider an irreducible representation ρ̃ of SO(3). We can
then lift this to a representation ρ = ρ̃ ◦ ϕ of SU(2) where −I acts as the
identity. Since ρ̃ is irreducible, ρ must be as well, so we can conclude that
ρ = ρn for some n ≥ 0. But if n is odd, then

ρ(−I)p(z) = p(−z) = (−1)np(z) = −p(z),

so −I does not act as the identity. Thus, n = 2k is even, and we have that ρ̃

is given by projecting ρ2k onto SO(3). We thus get the following proposition.

Proposition 6.1. The irreducible representations of SO(3) are given by

ρ̃k = ρ2k ◦ ϕ−1 for some k ≥ 0.

In particular, SO(3) has an irreducible representation of dimension 2k + 1 for
every k ≥ 0.

Remark 6.2. One should reasonably object that ϕ−1 is not actually defined,
since ϕ is not injective. Instead, by ϕ−1, we mean any right inverse of ϕ (i.e.,
a map such that ϕ ◦ ϕ−1 = idSO(3), which exists since ϕ is surjective). That
the ρ̃k do not depend on the choice of right inverse then follows from the fact
that the only ambiguity in ϕ−1(g) is a ± freedom, which is irrelevant since
ρ2k(−g) = ρ2k(g).

Having this description of the irreducible representations, we can also ask
what the characters of SO(3) are. To do so, note that complexifying SO(3)
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and applying the complex spectral theorem shows that any element of SO(3)

is conjugate to a matrix

Rθ =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 ,

which form an SO(2) subgroup. Furthermore, while we will not show it, the
preimage of Rθ under ϕ is given by

uθ/2 =

ñ
e−iθ/2 0

0 eiθ/2

ô
,

where we are treating the range of θ as [0, 4π) to make this “inverse” continuous.
Intuitively, this is just the fact that a full 2π rotation in SO(3) corresponds to
the map −I in SU(2). With this in hand, we can calculate the characters.

Corollary 6.3. The character of ρ̃n is given by

χ̃n(Rθ) =
n∑

k=−n

eiθk.

Proof. We have

χ̃n(Rθ) = χ2n(uθ/2) =
2n∑
k=0

eiθ(2k−2n)/2 =
2n∑
k=0

eiθ(k−n) =
n∑

k=−n

eiθk.

□

6.2. Harmonic polynomials and SO(3) representations. While we now have
both the characters and descriptions of the irreducible representations, it is still
worth thinking about a more direct realization of them. Namely, our current
scheme requires lifting elements of SO(3) to SU(2), and then acting on complex
2-variable polynomials, which is rather involved. Ideally, we would directly
relate SO(3) representations to functions of 3 real variables.

To do so, we will draw some further inspiration from the case of SU(2)

representations and consider the homogeneous harmonic polynomials H3
n on

R3. Since the Laplacian is invariant under rotations, there is a natural action
of SO(3) on these polynomials given by

gp(r) = p(g−1r).

As shown in Appendix A, H3
n is 2n+1 dimensional, the same as ρ̃n. This begs

asking if these two representations are, in fact, isomorphic. Indeed, they are.

Proposition 6.4. The representations (Ṽn, ρ̃n) from Proposition 6.1 and
(H3

n, pn) of SO(3) are isomorphic. In particular, the H3
n also exhaust the irre-

ducible representations of SO(3).
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Proof. Since the Ṽi exhaust all irreducible representations of SO(3), we
must have

H3
n =

⊕
i∈I

Ṽmi

for some indexing set I. Comparing dimensions, we have that

2n+ 1 =
∑
i∈I

2mi + 1.

In particular, we just need to show that mi ≥ n for some i and we are done.
To do so, we can compare the characters

χ(Rθ) =
∑
i∈I

mi∑
k=−mi

eiθk.

Now, notice that if we can show pn(Rθ) has an eigenvalue einθ, then the sum
on the right must include an einθ term as well, since a character is just the sum
of eigenvalues. This would in turn show that one of the mi is greater than n,
as that is the only way an einθ term could appear.

To show this, consider the polynomial Yn(r) = (y+iz)n. This is a harmonic
homogeneous polynomial of degree n. Indeed, it is holomorphic as a function of
y+iz, and it is a standard result of complex analysis that the real and imaginary
parts of holomorphic functions are harmonic when regarded as functions of two
real variables. Furthermore, we have

pn(Rθ)Yn =
(
y cos θ − z sin θ + i(y sin θ + z cos θ)

)n

=
(
eiθy + ieiθz

)n

= eiθnYn,

completing the proof. □

6.3. SO(3)/SO(2) and S2 . Now that we have a very concrete understand-
ing of the representations of SO(3), the only thing stopping us from determining
a decomposition of L2(S2) is an understanding of the spaces

C(SO(3))SO(2)
n .

To do so, let us first consider the general case of a space

C(G)Hρ for H ⊆ G.

This is, by definition, just the space of matrix coefficients invariant under the
H-action. Letting V be the vector space of ρ, we can further say that the
space of matrix coefficients is isomorphic to the endomorphisms of V , since
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they match dimension. As such, we can interpret C(G)Hρ as the subspace of
End(V ) invariant under the H-action, i.e., the endomorphisms

A ∈ End(V ) such that Ah = A for h ∈ H.

Using now the unitary structure of V , we conclude that A = 0 on the orthogonal
complement of V H , the subspace of V fixed by H. Indeed, we could otherwise
restrict to a subspace of (V H)⊥ where A is invertible and conclude that H

acts as the identity, a contradiction. Thus, restriction to V H now induces an
isomorphism

C(G)Hρ
∼= Hom(V H , V ).

Example 6.5. If we take H = {1} to be the trivial subgroup, we are just
asserting a homomorphism

C(G)ρ ∼= C(G)Hρ
∼= Hom(V H , V ) ∼= End(V ).

If we take ρ to be the trivial representation, on the other hand, and let H be
any subgroup, we are asserting that

C ∼= C(G)H1
∼= Hom(CH ,C) ∼= C.

♢

Applying this to the case of C(SO(3))
SO(2)
n , we see that we really just need

to study

Hom(Ṽ SO(2)
n , Ṽn) ∼= Hom(PSO(2)

2n ,P2n).

However, recall from earlier that the preimage of SO(2) in SU(2) is just U(1).
Furthermore, the U(1) action on P2n was given by

uθpk = eiθ(2k−2n)pk.

This action is trivial only when k = n, so the space PSO(2)
2n

∼= PU(1)
2n is actually

just one-dimensional, i.e., is just C. In particular, we have

C(SO(3))SO(2)
n

∼= Hom(C, Ṽn) ∼= Ṽn
∼= H3

n.

Thus, we have finally proved our main result on the decomposition of L2(S2).

Theorem 6.6 (S2 spherical decomposition). The space L2(S2) ∼= L2(SO(3))SO(2)

decomposes as

L2(S2) ∼=
⊕̂
n≥0

H3
n|S2 .

Furthermore, the coefficients in this decomposition can be calculated as

Fn
i = ⟨f,mn

i ⟩S2 =

∫
S2

f mn
i dµ for |i| < n.
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Remark 6.7. One might wonder why we are allowed to freely restrict H3
n

to S2. However, this restriction actually loses no information, as

p(r) = p(rr̂) = rnp(r̂) for p ∈ H3
n.

In particular, p is already determined by its values on S2.
Also, as it turns out, the relevant metric dµ to use for the integration is

indeed the standard metric on a sphere dΩ, though we will not prove this.

7. Conclusions

The results we obtain here are about as far as we can go with just the
Peter–Weyl theorem. However, there are definitely many ways to extend these
results. For starters, any practical decomposition of functions on S2 would ide-
ally involve spherical polar coordinates, as these are the most natural. Indeed,
it is possible to derive an explicit formula giving a basis of H3

n in terms of polar
coordinates. For a reference, see [vdB93, Sec. 31].

Generalizing the decompositions discussed here to even-higher-dimensional
spheres is also certainly possible. Indeed, just from the results we obtained, one
might already guess that a decomposition into harmonic homogeneous polyno-
mials is always possible. This is indeed the case, though a full proof certainly
requires much more work. One way to approach this generalization would be
to realize that we can always consider Sn as a quotient

Sn ∼= SO(n+ 1)/ SO(n)

and apply similar techniques as we did in Section 6. This path of generalization
actually has connections to very current mathematical research, such as the
Langlands program (see [GR06]).

On the other hand, one could also consider the idea of further generalizing
the Peter–Weyl theorem. Unfortunately, a full generalization to even all locally
compact groups is much more difficult. However, the special case of abelian
locally compact groups is well understood thanks to Pontryagin duality, which
an interested reader can find more about in [Rud17, Chap. 1.7]. This route
then gives, for example, the Fourier transform on R, among other things.
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Appendix A. Dimension of Hn
m

Letting P (Rn) be the space of all polynomials on Rn, we will consider the
subspaces

Pn
m = {p ∈ P (Rn)|p(λr) = λmp(r)} and Hn

m = {p ∈ Pn
m|∆p = 0}.

To start, we calculate the dimension of Pn
m.

Proposition A.1.

dimPn
m =

Ç
n+m− 1

n− 1

å
.

Proof. A basis for Pn
m is given by the monomials

xα1
1 xα2

2 . . . xαn
n with α1 + α2 + · · ·+ αn = m.

In particular, the number of such monomials is just the number of ways to write
m as the sum of an n-tuple of nonnegative integers. This is just the classical
stars-and-bars problem from combinatorics, with solution

(n+m−1
n−1

)
. □

Having determined the dimension of Pn
m, we can now determine the di-

mension of Hn
m by cleverly decomposing it into lower-dimensional homogeneous

polynomial spaces.

Proposition A.2.

dimHn
m = dimPn−1

m + dimPn−1
m−1.

Proof. Consider some p = p(x1, x2, . . . , xn) ∈ Hn
m. We can expand this as

a sum around x1, giving

p =
m∑
k=0

fk(x2, . . . , xn)

k!
xk1.

Note that fk is a homogeneous polynomial, now of degree m−k; in other words,
fk ∈ Pn−1

m−k. Taking the Laplacian, we get

∆p =
m∑
k=2

fk
k!

k(k − 1)xk−2
1 +

m∑
k=0

xk1
k!

(
∆′fk

)
=

m−2∑
k=0

fk+2

k!
xk1 +

m∑
k=0

xk1
k!

(
∆′fk

)
,

where the ∆′ Laplacian excludes the x1 coordinate. Analyzing the second term
a bit more, we see that if k = m,m− 1, then fk is a polynomial of degree 0 or
1, so the Laplacian must vanish. Thus, we get

∆p =
m−2∑
k=0

xk1
k!

(
fk+2 +∆′fk

)
.
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In particular, if p is harmonic, we must have

fk+2 +∆′fk = 0 for 0 ≤ k ≤ m− 2.

Thus, specifying f0 and f1 determines p. Namely

Hn
m

∼= Pn−1
m ⊕ Pn−1

m−1,

which proves the proposition. □

Corollary A.3.

dimHn
m =

Ç
n+m− 2

n− 2

å
+

Ç
n+m− 3

n− 2

å
.

Example A.4. If we take n = 3, we get

dimH3
m =

Ç
m+ 1

1

å
+

Ç
m

1

å
= 2m+ 1,

proving the claim that H3
m and Ṽm have the same dimension. ♢

Example A.5. If we take n = 4, we get

dimH4
m =

Ç
m+ 2

2

å
+

Ç
m+ 1

2

å
=

(m+ 2)(m+ 1)

2
+

(m+ 1)m

2

=
(m+ 1)(2m+ 2)

2

= (m+ 1)2,

proving the claim that H4
m and C(SU(2))m have the same dimension. ♢
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Elliptic bootstrapping and the nonlinear
Cauchy–Riemann equation

By Jessica J. Zhang

Abstract

The goal of this paper is to deduce a nonlinear elliptic regularity re-

sult from a linear one. In particular, elliptic bootstrapping is a powerful

method to determine the regularity of a solution to a partial differential

equation. We apply elliptic bootstrapping and linear elliptic regularity to

the nonlinear Cauchy–Riemann equation. In doing so, we generalize the

fundamental analytic result that holomorphic functions are automatically

smooth. In particular, we show that, under certain conditions, the same is

true for so-called J-holomorphic functions. We conclude by discussing how

this nonlinear regularity result relates to ideas in symplectic geometry.

Suppose we have a Ck (i.e., k-times continuously differential) function

F : Rn → Rn. Suppose furthermore that we have a C1-solution to the nonlinear

ordinary differential equation

ẋ = F (x).

Roughly speaking, we see that x should have “one more derivative” than F (x)

via the following argument: Notice that F (x) ∈ C1, so ẋ ∈ C1 too. But

this implies that x ∈ C2. Thus F (x) is actually in C2, so that ẋ ∈ C2 too.

This implies that x ∈ C3, and so on. We may continue this until we get that

F (x) ∈ Ck, so x ∈ Ck+1. After this, even though x ∈ Ck+1, we cannot conclude

that F (x) ∈ Ck+1 since F is only Ck. Thus we see that x is differentiable at

least one more time than F is.

This is the essence of elliptic bootstrapping, namely by using the regularity

of the coefficients of some differential equation in order to improve the regu-

larity of any solution to that differential equation. (By “regularity,” we simply

mean “smoothness,” or “how many times the function can be differentiated.”)

Following the presentations in McDuff–Salamon [MS12, Appendix B] and

Wendl [Wen15, Section 2.11], we give a more nontrivial example of elliptic

bootstrapping.

© 2024 Zhang, Jessica J. This is an open access article distributed under the terms of

the Creative Commons BY-NC-ND 4.0 license.
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In particular, one astonishing fact of complex analysis is that holomor-

phic functions are automatically smooth. Another way to phrase this is that

“solutions to the Cauchy–Riemann equation are smooth.” It turns out that

this rests on a certain property of the Cauchy–Riemann equation known as

ellipticity. While the general theory of elliptic partial differential equations is

beyond the scope of this article, we will explore a generalization of the Cauchy–

Riemann equation and prove via elliptic bootstrapping that its solutions are

also automatically smooth.

One way to generalize holomorphic functions is to define a so-called com-

plex manifold. An n-dimensional complex manifold is simply a 2n-dimensional

smooth manifold whose transition functions are holomorphic. Much as how

we may talk about smooth functions on a smooth manifold, we may also talk

about holomorphic functions on a complex manifold. A holomorphic function

on a complex manifold is smooth: Locally, a complex manifold is exactly Cn.

But smoothness is a local condition, so the question of smoothness of holomor-

phic functions on a complex manifold reduces to the question of smoothness

of holomorphic functions on Cn.

There is, however, a further generalization of holomorphic functions to

spaces known as almost complex manifolds. These manifolds arise naturally out

of symplectic geometry, and they come with their own notions of holomorphic

curves, often called J-holomorphic or pseudoholomorphic curves. These curves

are solutions to the nonlinear Cauchy–Riemann equation, which generalizes

the typical Cauchy–Riemann equations in complex analysis. We will prove

via elliptic bootstrapping that, under relatively relaxed conditions, any J-

holomorphic curve is automatically smooth.

We will discuss almost complex manifolds in Section 1. We will spend Sec-

tion 2 introducing the Sobolev spaces W k,p, which can be thought of as spaces

of functions “admitting k−n/p derivatives.” In the end, using a bootstrapping

argument, we will prove in Theorem 3.1 that, if the almost complex structure

on an almost complex manifold is smooth, then any associated holomorphic

curve is also smooth. In particular, we deduce a nonlinear elliptic regularity

result from a linear one, which we state without proof. Finally, in Section 4, we

will briefly and informally discuss the importance of this result in the context

of symplectic geometry. We assume some familiarity with manifolds, multi-

variable calculus, and Lp-spaces. It would be helpful also to have seen some

facts about complex analysis and partial differential equations.

1. J -holomorphic curves

An almost complex structure is a vector bundle homomorphism

J : TX → TX such that J2 = − id on the tangent spaces. We denote the set
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of Cℓ-almost complex structures on a manifold X by J ℓ(X); if ℓ = ∞, we also

write J (X) := J∞(X).

Example 1.1. Let X = Cn with coordinates zj = sj+ itj , and consider the

standard complex structure J0 on Cn, which is defined on each tangent space

TpCn = Cn as

J0

Ç
∂

∂sj

∣∣∣∣
p

å
=

∂

∂tj

∣∣∣∣
p

, J0

Ç
∂

∂tj

∣∣∣∣
p

å
= − ∂

∂sj

∣∣∣∣
p

.

(From now on, we omit the subscript |p, which only serves to denote which

tangent space J0 is acting on.) In other words, we may write J0 in matrix

form as

J0 =

Ç
0 −1
1 0

å
,

where 1 is the n× n identity matrix. ♢

Many manifolds do not admit any almost complex structure at all. Indeed,

we have the following proposition.

Proposition 1.2. Suppose that X is an almost complex manifold, i.e.,

that it is a smooth manifold equipped with an almost complex structure J . Then

X is even-dimensional and orientable.

Proof. Say dimX = n. If p ∈ X, then Jp : TpX → TpX is a vector space

isomorphism between n-dimensional vector spaces such that J2
p = − id, which

has determinant (−1)n. Thus (−1)n = (det Jp)
2 ≥ 0, and so n = 2k is even.

To show orientability, consider an arbitrary Riemannian metric h on X.

Define g(v, w) := h(v, w) + h(Jv, Jw), so that

g(Jv, Jw) = h(Jv, Jw) + h(J2v, J2w) = h(Jv, Jw) + (−1)2h(v, w) = g(v, w).

Then define the ω(v, w) := g(v, Jw). Note that this is skew-symmetric since

ω(w, v) = g(w, Jv) = g(Jw, J2v) = −g(Jw, v) = −ω(v, w)

by symmetry of g. On the other hand, we know that ω(v,−Jv) = g(v, v) ≥ 0,

with equality if and only if v = 0. Thus ω is a nondegenerate 2-form. Then

the k-th wedge product ωk is a nowhere vanishing 2k-form. But a nowhere

vanishing top form defines an orientation, so we are done. □

Consider a compact two-dimensional smooth manifold Σ equipped with an

almost complex structure j. (It turns out, in fact, that for this low-dimensional

case, such a manifold is necessarily a complex manifold, in the sense that it

admits coordinate charts with holomorphic transition functions [Don11, Theo-

rem 22]. In general, however, almost complex does not imply complex, though

the opposite is true.)
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Our main object of study will be so-called J-holomorphic curves from

(Σ, j) to the almost complex manifold (X, J). In particular, if u ∈ C∞(Σ, X)

satisfies

du ◦ j = J ◦ du,
then we call it a J-holomorphic curve.

We may now define an operator

∂J : C∞(Σ, X) → Ω0,1(Σ, u∗TX)

u 7→ 1

2
(du+ J ◦ du ◦ j)

taking a smooth map u : Σ → X to a complex antilinear 1-form on Σ with

values in the pullback tangent bundle

u∗TX = {(p, v) : p ∈ Σ, v ∈ Tu(p)X}.

By complex antilinear, we mean that it anticommutes with the almost complex

strucutres; that is, we say ω ∈ Ω0,1(Σ, u∗TX) if J ◦ ω = −ω ◦ j. This operator
∂J is often called the del bar operator. Then we have the following equivalent

characterization of J-holomorphic curves.

Lemma 1.3. A smooth map u : (Σ, j) → (X, J) is J-holomorphic if and

only if ∂J(u) = 0.

Proof. Recall that J2 = − idTX . Furthermore, we know that u is J-

holomorphic if and only if du ◦ j = J ◦ du, which is in turn true if and only if

J◦du−du◦j = 0. Now−J is an isomorphism with inverse J , so J◦du−du◦j = 0

if and only if

du+ J ◦ du ◦ −j = −J (J ◦ du− du ◦ j) = 0,

i.e., if and only if ∂Ju = 0. This proves equivalence of our two definitions of

J-holomorphic curves. □

Remark 1.4. To understand the ∂J operator more explicitly, note that at

each point p ∈ Σ, we have

∂J(u)(p) =
1

2

(
dup + Ju(p) ◦ dup ◦ jp

)
.

Now dup : TpΣ → Tu(p)X; this codomain is exactly the fiber of u∗TX over the

point u(p) ∈ X. On the other hand, we know that jp is an endomorphism of

TpΣ, while Ju(p) is an endomorphism of Tu(p)X. Thus Ju(p) ◦ dup ◦ jp makes

sense, and also maps from TpΣ to Tu(p)X. In particular, this is what it means

to be a form “on Σ with values in u∗TX.”

Now to verify that ∂J does indeed take values in Ω0,1(Σ, u∗TX), it suffices

to show that

J ◦ ∂J(u) = −∂J(u) ◦ j.
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(This is, indeed, what it means to be a complex antilinear form.) But we see

that

2J ◦ ∂J(u) = J ◦ du+ J2 ◦ du ◦ j = −J ◦ du ◦ j2 − du ◦ j = −2∂J(u) ◦ j,

where all we use is the fact that J2 = − idTX and j2 = − idTΣ.

Example 1.5. Let {Uα, ϕα} be holomorphic coordinate charts on Σ. That

is to say, the maps ϕα : Uα → C are diffeomorphisms such that ϕα ◦ ϕ−1
β

are holomorphic maps of (open subsets of) C. Recall that the almost complex

structure on Σ is induced by these coordinate charts and the complex structure

J0 on C. Then u : (Σ, j) → (X, J) is J-holomorphic if and only if each

uα := u ◦ ϕ−1
α : (C, J0) ⊇ (ϕα(Uα), J0) → (X, J)

is J-holomorphic. Letting the coordinates of ϕα(Uα) ⊆ C be z = s+ it, we see

that

∂Juα =
1

2
(duα + J ◦ duα ◦ J0)

=
1

2
∂suαds+

1

2
∂tuαdt−

1

2
J(uα)∂suαds ◦ J0 +

1

2
J(uα)∂tuαdt ◦ J0.

Notice, however, that

(ds ◦ J0)
Å
∂

∂s

ã
= ds

Å
∂

∂t

ã
= 0, (ds ◦ J0)

Å
∂

∂t

ã
= ds

Å
− ∂

∂s

ã
= −1.

Thus ds ◦ J0 = −dt. Similarly, we may check that dt ◦ J0 = ds. We find that

∂Juα =
1

2
(∂suα + J(uα)∂tuα) ds+

1

2
(∂tuα − J(uα)∂suα) dt.

It follows that uα is J-holomorphic if and only if ∂suα + J(uα)∂tuα = 0.

Now suppose that Σ and X are both simply C equipped with the standard

holomorphic structure. Write u = f + ig : C → C. Then the condition that u

is J-holomorphic is exactly that

(∂sf + i∂sg) + J0(∂tf + i∂tg) = (∂sf + i∂sg) + (i∂tf − ∂tg) = 0.

In other words, a curve u : C → C is J0-holomorphic exactly when it satisfies

the Cauchy–Riemann equations

∂sf = ∂tg, ∂sg = −∂tf,

i.e., when it is holomorphic. Because of this, the operator ∂J is often called

the nonlinear Cauchy–Riemann operator. ♢
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2. Sobolev spaces and weak equivalence

Our eventual goal is to have a statement of regularity for the nonlinear

Cauchy–Riemann equation. However, this regularity result requires that we

define a more general kind of space, known as a Sobolev space.

Loosely speaking, if k ≥ 0 is an integer and p ≥ 1 is a (possibly infinite)

real number, then the Sobolev space W k,p(Ω) on some open set Ω ⊂ Rn is

defined to be the set of Lp-functions u whose k-th derivatives exist and are

also p-integrable. In this context, we often call Ω a domain.

While the above definition of W k,p(Ω) is a helpful way of thinking about

the space, it is not entirely accurate. In particular, we require only that a

function in W k,p(Ω) admit so-called weak derivatives, as opposed to the usual

derivatives, which are accordingly known as strong derivatives.

Suppose u : Ω → R is a locally integrable function for a domain Ω ⊂ Rn.

Let α = (α1, . . . , αn) be a multi-index of nonnegative integers αi. Then the

α-th weak derivative Dαu of u is a locally integrable function satisfying∫
Ω

u(x)∂α(ϕ(x)) dx = (−1)α1+···+αn

∫
Ω

Dαu(x)ϕ(x) dx

for every compactly supported smooth function ϕ ∈ C∞
0 (Ω). Integration by

parts implies that the above equation is always satisfied if uα is the usual

derivative. As such, this definition effectively asks that a weak derivative

behave like the usual derivative under integration. Indeed, because integrals

ignore what happens on a measure zero set, one may think of a weak derivative

as a function which is the derivative almost everywhere.

Example 2.1. Let Ω = R, and define u(x) = |x|. This is locally integrable

and admits the weak derivative

Du(x) =


−1 if x < 0,

r if x = 0,

1 if x > 0.

Here r can be any real number. (In fact, any function which differs from

the above formula for Du at a measure zero set is a weak derivative for u.)

Furthermore, this weak derivative itself is p-integrable for any p, so that u(x) ∈
W 1,p(Ω). In fact, because u has further weak derivatives (namely functions

which are 0 for x ̸= 0), we actually have u(x) ∈W∞,p(Ω). ♢

At this point, it is natural to wonder why we introduce the relatively

complicated Sobolev spaces, rather than using Ck spaces, for example. The

primary advantage is that Sobolev spaces are complete, which implies many

theorems including Theorem 2.2 below. Indeed, we may define the Sobolev
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norm

∥u∥Wk,p(Ω) :=

Ñ∑
|α|≤k

∥Dαu∥pLp(Ω)

é1/p

,

at least when p ̸= ∞. Here the sum over |α| ≤ k indicates that we are summing

over all multi-indices of length at most k. (When p = ∞, we may take the

norm to be the maximum of the L∞-norms of Dαu, where α again ranges over

all multi-indices of length at most k.) It turns out that this gives another

way to define the Sobolev space W k,p(Ω), namely as the completion of C∞(Ω)

under the Sobolev norm ∥·∥Wk,p(Ω), at least when k ̸= ∞.

This definition of a Sobolev space generalizes to spaces of maps between

manifolds, so that we may also define, for example, the space W k,p(Σ, X) to

be the completion of C∞(Σ, X) under the W k,p-norm. For more information,

one may look at [Wen15, pp. 126–128], for example.

To prove our regularity result, we will use a couple facts about Sobolev

spaces.

Theorem 2.2 (Sobolev embedding theorem). Suppose Ω ⊂ Rn is a bounded

C1 domain. If kp > n, then there is a continuous inclusion W k,p(Ω) ↪→ C0(Ω).

If kp < n, then there is a continuous inclusion W k,p(Ω) ↪→ Lq(Ω), where

q = np/(n− kp).

The proof of this is rather difficult, but we will simply take it for granted

here. An interested reader may find it as Theorem 6 in [Eva10, Section 5.6.3].

As a note, it is actually enough to have Ω be a bounded Lipschitz domain; since

we will mostly be working with balls, however, we may restrict our attention to

C1 domains. Furthermore, the Sobolev embedding theorem actually says more

than what we have mentioned here. In particular, it shows that, for certain

k and p, this is actually a compact inclusion. We will not require that fact,

however.

Because Σ is two-dimensional, we will primarily work with domains in

C = R2; thus, when we apply the Sobolev embedding theorem, we will generally

have n = 2. In this n = 2 case, we have the following corollary of Hölder’s

inequality, which gives us our first use of the Sobolev embedding theorem and

will be used in the proof of Theorem 3.3.

Lemma 2.3 ([MS12, Lemma B.4.5]). If p > 2 and 1 < r ≤ p and Ω ⊂ R2

is any open set, then f ∈ W 1,p(Ω) and g ∈ W 1,r(Ω) together imply that fg ∈
W 1,r(Ω).

Proof. It is enough to show that D(fg) = f(Dg)+ (Df)g ∈ Lr given that

Df ∈ Lp and Dg ∈ Lr. The Sobolev embedding theorem implies that that
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W 1,p(R2) ↪→ C0(R2), so that f(Dg) ∈ C0 · Lr ⊂ Lr. Thus it is sufficient to

show that (Df)g ∈ Lr.

Since 1 < r ≤ p, there exists q = pr/(p− r) ∈ (0,∞] so that 1/p+ 1/q =

1/r. Now consider the following generalization of Hölder’s inequality:

∥uv∥Lr ≤ ∥u∥Lp ∥v∥Lq .

In particular, it follows that

∥(Df)g∥Lr ≤ ∥Df∥Lp ∥g∥Lq .

Notice that g,Dg ∈ W 1,r implies that g,Dg ∈ W 1,r′ for any r′ ≤ r. Thus

without loss of generality r < 2, and so g ∈ Lq by the Sobolev embedding

theorem. Now since p > 2, we know that q = pr/(p− r) < 2r/(2− r), and so

W 1,r ⊂ Lq, proving the lemma. □

Before turning to the statement and proof of our elliptic regularity result

for J-holomorphic curves, we return to and generalize the notion of a weak

derivative. Recall that we asked a weak derivative to behave the same way as

the usual derivative under integration. In general, we may call two functions

weakly equivalent if they behave the same way under integration. That is

to say, if f, g ∈ L1(Ω) satisfy ∫
Ω

uϕ =

∫
Ω

vϕ

for every compactly supported smooth function ϕ ∈ C∞
0 (Ω), then we call f

and g weakly equivalent.

Finally, we take a moment here to standardize certain notation. In general,

we will always use C∞
0 to refer to compactly supported smooth functions,

rather than simply functions which vanish near infinity. We sometimes call

an element ϕ ∈ C∞
0 a test function. Furthermore, when we say that Ω is a

domain, we will always assume that Ω is a C1 bounded open set in R2.

3. Elliptic regularity

With these results in mind, we are now ready to state and deduce the

following elliptic regularity result for the nonlinear Cauchy–Riemann equation.

We closely follow [MS12, Appendix B.4] here.

Theorem 3.1 (Elliptic regularity, [MS12, Theorem B.4.1]). Suppose k ≥
2 is an integer, and p > 2 is a real number. If j ∈ J (Σ), J ∈ J k(X), and

u ∈ W 1,p(Σ, X) is J-holomorphic, then u ∈ W k+1,p(Σ, X). In particular, if J

is smooth, then so too is any J-holomorphic curve u.

Note that it is enough to prove this result locally, since being W k+1,p is

a local condition. Thus, in this local setting, we may rephrase the theorem as
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follows: Suppose Ω ⊆ C is open. Let J be a Ck-almost complex structure on

R2n. (This J is obtained by pushing forward the original Ck-almost complex

structure on X by a smooth local coordinate map.) Suppose furthermore that

u ∈W 1,p
loc (Ω,R

2n) satisfies

∂su+ J(u)∂tu = 0.

Then u ∈W k+1,p
loc (Ω,R2n). (Notice that we use local integrability here, since u

need not satisfy any particular constraints at the boundary of Ω.)

Note that J is a Ck-almost complex structure on R2n, where k ≥ 2. Thus

J ◦ u is a W 1,p
loc -almost complex structure on the domain of u, namely Ω. In

particular, we have J ◦ u ∈ W 1,p
loc (Ω,R

2n×2n). Note now that u is a (J ◦ u)-
holomorphic map. If we can use this to show that u was actually in W 2,p

loc , then

we would have that J ◦ u is actually a W 2,p
loc -almost complex structure, and so

on. We would be able to continue this process on until W k,p
loc . This argument is

known as elliptic bootstrapping, and is used often to improve the regularity

of solutions to elliptic partial differential equations.

In particular, it would be enough to prove the following.

Theorem 3.2. Suppose Ω ⊆ C is an open, bounded, C1 domain and J ∈
W k,p

loc (Ω,R
2n×2n) satisfies J2 = −1. If ∂su+J∂tu = 0 then u ∈W k+1,p

loc (Ω,R2n).

To prove this local version of elliptic regularity, we must first weaken our

hypotheses somewhat. First, instead of requiring that ∂su + J(u)∂tu = 0,

we must allow ∂su + J(u)∂tu = η for some suitably regular η : Ω → R2n.

Furthermore, we will actually want to consider u ∈ Lq for some q, but the

expression ∂su is not well-defined in this case, since u is only integrable. Indeed,

we want the notion, discussed in Section 2, of taking weak derivatives. For

clarity we will explicitly state what weak equivalence means in this context.

If u had had first derivatives, then we would know by integration by parts

that

(∗)
∫
Ω

¨
∂sϕ+ JT∂tϕ, u

∂
= −

∫
Ω

⟨ϕ, ∂su+ ∂t(Ju)⟩ = −
∫
Ω

⟨ϕ, η + (∂tJ)u⟩

for every test function ϕ ∈ C∞
0 (Ω,R2n), where JT denotes the transpose of

J : Ω → End(TR2n) = R2n×2n. To see this equality, we use the fact that∫
Ω

⟨∂sϕ, u⟩ = −
∫
Ω

⟨ϕ, ∂s⟩

by integration by parts, and that∫
Ω

¨
JT∂tϕ, u

∂
=

∫
Ω

⟨∂tϕ, Ju⟩

by definition of the transpose. Thus we will say that ∂su+ J∂tu = η weakly

when Equation (∗) is satisfied.
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We will prove the following proposition, which only assumes our weakened

hypotheses.

Proposition 3.3 ([MS12, Proposition B.4.9]). Consider a bounded C1

domain Ω ⊂ C. Let J ∈ W ℓ,p
loc (Ω,R

2n×2n) satisfy J2 = −1, where ℓ is a

positive integer and p > 2 is a real number. Suppose u ∈ Lp
loc(Ω,R

2n) and

η ∈ W ℓ,p
loc (Ω,R

2n) satisfy ∂su + J∂tu = η weakly, i.e., satisfy Equation (∗).
Then u ∈W ℓ+1,p

loc (Ω,R2n), and ∂su+ J∂tu = η almost everywhere.

This proposition proves Theorem 3.2, which in turn, as discussed earlier,

proves our global statement of elliptic regularity in Theorem 3.1.

Proof of Theorem 3.2. Suppose ∂su+J∂tu = 0, where J ∈W k,p
loc (Ω,R

2n×2n)

satisfies J2 = −1. Notice that η = 0 is, in particular, an element ofW k,p
loc (Ω,R

2n)

for every k. Now we apply Theorem 3.3 with η = 0 and ℓ = k. Since

u ∈ W 1,p
loc (Ω,R

2n) also belongs to Lp, it follows that u ∈ W k+1,p
loc (Ω,R2n),

as desired. □

Before we can prove Theorem 3.3, however, we must prove the following

statement. Its main purpose is that, when combined with the second part

of the Sobolev embedding theorem, this theorem “upgrades” regularity (for

certain q): Theorem 3.4 says an Lq function is actuallyW 1,r, while the Sobolev

embedding theorem says that, under certain conditions, this W 1,r function is

actually Lq′ for some q′ > q.

Proposition 3.4 ([MS12, Proposition B.4.6]). Let Ω ⊂ C be a bounded

C1 domain. Suppose p, q, r ∈ R+ ∪ {∞} such that

2 < p, 1 < r <∞,
1

p
+

1

q
=

1

r
.

Suppose further that J ∈W 1,p
loc (Ω,R

2n×2n) satisfies J2 = −1. Let u ∈ Lq
loc(Ω,R

2n)

and η ∈ Lr
loc(Ω,R2n) satisfy∫

Ω

¨
∂sϕ+ JT∂tϕ, u

∂
=

∫
Ω

⟨ϕ, η + (∂tJ)u⟩

for every ϕ ∈ C∞
0 (Ω,R2n). Then u ∈W 1,r

loc (Ω,R
2n) and ∂su+J∂tu = η almost

everywhere.

To prove this, we require one highly nontrivial fact, known as linear elliptic

regularity. In particular, recall that the Laplacian ∆u is simply ∂2u/∂s2 +

∂2u/∂t2. Then we have the following theorem.

Theorem 3.5 (Linear elliptic regularity, [MS12, Theorem B.3.1]). If ∆u

is weakly equivalent to ∂sf + ∂tg for some f, g ∈ Lr, then u ∈W 1,r.
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In some ways, this is the key fact which allows our proof of Theorem 3.1

to go through. We do not describe a proof here, but for some intuition for

this fact, notice that ∂sf, ∂tg have one fewer derivative than f and g do; of

course, since f, g ∈ Lr, we think of them as having “zero derivatives,” so we

can roughly think of ∂sf, ∂tg as elements of W−1,r. Then ∆u ∈W−1,r, and so

u, which has two more derivatives than ∆u, should belong to W 1,r.

Proof of Theorem 3.4. Let ψ ∈ C∞
0 (Ω,R2n) be arbitrary. Then set

ϕ := ∂sψ − JT∂tψ ∈W 1,p(Ω,R2n).

This belongs to W 1,p since J , hence its transpose JT , does. Notice that Equa-

tion (∗) is satisfied forW 1,p functions, too, since smooth functions are dense in

Sobolev spaces. In particular, recall our alternate definition of Sobolev spaces

as completions of C∞ under the Sobolev norm. As such, since Equation (∗)
behaves well under limits, we may consider W 1,p functions as well.

In particular, Equation (∗) is satisfied for this particular value of ϕ, even

though ϕ is not actually smooth. We may compute that

∂sϕ+ JT∂tϕ = ∂2sψ − ∂s
Ä
JT∂tψ

ä
+ JT∂t∂sψ − JT∂t

Ä
JT∂tψ

ä
= ∂2sψ − (∂sJ

T )(∂tψ)− JT∂s∂tψ + JT∂t∂sψ

− (JT )2∂2t ψ − JT (∂tJ
T )(∂tψ).

Notice that (JT )2 = (J2)T = −1. Furthermore, because J2 is constant, we

know that

0 = ∂t(J
2) = J∂tJ + (∂tJ)J.

The same holds when we take transposes, and so we conclude that

∂sϕ+ JT∂tϕ = ∂2sψ − (∂sJ)
T (∂tψ) + ∂2t ψ + (∂sJ)

TJT (∂tψ)

= ∆ψ − (∂sJ)
T (∂tψ) + (∂tJ)

TJT (∂tψ).

In particular, we find that∫
Ω

⟨∆ψ, u⟩ =
∫
Ω

¨
∂sϕ+ JT∂tϕ, u

∂
−
∫
Ω

¨
(∂tJ)

TJT∂tψ, u
∂
+

∫
Ω

¨
(∂sJ)

T (∂tψ), u
∂
.

Using the fact that u and η satisfy Equation (∗), we know that this first integral

is equal to

−
∫
Ω

⟨ϕ, η + (∂tJ)u⟩ = −
∫
Ω

¨
∂sψ − JT∂tψ, η + (∂tJ)u

∂
.
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Rearranging so that the left-hand terms in each of the inner products is either

∂sψ or ∂tψ, we see that∫
Ω

⟨∆ψ, u⟩ = −
∫
Ω

⟨∂sψ, η + (∂tJ)u⟩+
∫
Ω

⟨∂tψ, Jη + J ((∂tJ)u)⟩

−
∫
Ω

⟨∂tψ, J ((∂tJ)u)⟩+
∫
Ω

⟨∂tψ, (∂sJ)u⟩ .

Setting f := η + (∂tJ)u and g := −Jη − (∂sJ)u, we now see that∫
Ω

⟨∆ψ, u⟩ = −
∫
Ω

⟨∂sψ, f⟩ −
∫
Ω

⟨∂tψ, g⟩ .

At this point, we would like to use Theorem 3.5. By integration by parts,

the above equation tells us that ∆u = ∂sf + ∂tg weakly, as they behave the

same under integration. Now η ∈ Lr
loc by hypothesis. Furthermore, since

J ∈ W 1,p
loc , we know that ∂tJ ∈ Lp

loc. Since u ∈ Lq
loc, and 1/p + 1/q = 1/r, we

know that (∂tJ)u ∈ Lp
loc ·L

q
loc ⊆ Lr

loc. Hence f ∈ Lr
loc. Similarly we may check

that g ∈ Lr
loc.

Thus ∆u is weakly equivalent to ∂sf + ∂tg for f, g ∈ Lr
loc. Theorem 3.5

implies that u ∈W 1,r
loc , as desired. □

We now prove that Theorem 3.4 implies Theorem 3.3.

Proof of Theorem 3.3. We break this proof into three steps: First, assum-

ing k = 1, we will prove that u ∈ W 1,p. Second, we will prove that u ∈ W 2,p,

which completes the k = 1 case. Finally, we will prove the general case.

Step 1. J ∈W 1,p
loc , η ∈W 1,p

loc , u ∈ Lp
loc implies u ∈W 1,p

loc .

It is possible to find finite sequences {q0, . . . , qm} and {r0, . . . , rm} such

that the following four conditions hold:

p

p− 1
< q0 ≤ p, qm−1 <

2p

p− 2
< qm,

qj+1 :=
2rj

2− rj
, rj :=

pqj
p+ qj

.

In particular, we define rj so that 1/p+1/qj = 1/rj ; furthermore, the conditions

in the first line guarantee that rj ̸= 1,∞, so that Theorem 3.4 can be applied.

Furthermore, we define qj+1 so that Theorem 2.2 holds. Finally, we may verify

that the endpoints qm, rm are defined so that rm > 2 and r0, . . . , rm−1 < 2.

In particular, notice that 1 < p
p−1 < q0 ≤ p. Because u ∈ Lp

loc, it follows

that u ∈ Lq0
loc. Now by Theorem 3.4, we know that u ∈W 1,r0

loc . Because r0 < 2,

it follows by Theorem 2.2 that u ∈ Lq1
loc now.
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Continuing in this fashion, we see that u ∈ Lqm
loc, and so u ∈ W 1,rm

loc . But

now rm > 2. By Theorem 2.2 again, we now have that u ∈ C0, i.e., u is

continuous.

But C0 ⊂ L∞
loc, and so we now have that u ∈ L∞

loc. Furthermore, recall

that η ∈ W 1,p
loc , so it certainly belongs to Lp

loc as well. Applying Theorem 3.4

with q = ∞ and r = p now implies that u ∈ W 1,p
loc (Ω,R

2n), as desired. (Recall

that q may be ∞; only r must be finite.)

Step 2. J ∈W 1,p
loc , η ∈W 1,p

loc , u ∈W 1,p
loc implies u ∈W 2,p

loc .

We will begin by showing the following lemma.

Lemma 3.6. If q, r > 1 such that 1/p+1/q = 1/r, and if u ∈W 1,q
loc , then u ∈

W 2,r
loc .

Proof. Fix such q and r. Then set

ũ := ∂su ∈ Lq
loc, η̃ := ∂sη − (∂sJ)∂tu.

Notice that ∂sη ∈ Lp
loc ⊂ Lr

loc, where we use the fact that p > r. Furthermore,

since 1/p+1/q = 1/r, we know that (∂sJ)∂tu ∈ Lp ·Lq
loc ⊆ Lr

loc. Thus η̃ ∈ Lr
loc.

It turns out that ũ and η̃ satisfy Equation (∗), in the sense that∫
Ω

¨
∂sϕ+ JT∂tϕ, ũ

∂
= −

∫
Ω

⟨ϕ, ∂sũ+ ∂t(Jũ)⟩ = −
∫
Ω

⟨ϕ, η̃ + (∂tJ)ũ⟩

for all smooth test functions ϕ. To see this, observe that the first equality

above follows directly from integration by parts. Thus it suffices to prove that

∂sũ+ ∂t(Jũ) = η̃ + (∂tJ)ũ

weakly. But the left-hand side is exactly equal to

∂sũ+ (∂tJ)ũ+ J∂tũ = ∂2su+ (∂tJ)∂su+ J∂t∂su.

On the other hand, using the definition for η̃ and the hypothesis that ∂su +

J∂tu = η weakly, it follows that the right-hand side is given by

∂s (∂su+ J∂tu)−(∂sJ)∂tu = ∂2su+(∂sJ)∂tu+J∂s∂tu−(∂sJ)∂tu = ∂2su+J∂s∂tu.

These two expressions are equal, since ∂s∂tu = ∂t∂su. Thus ũ and η̃ satisfy

Equation (∗), as desired.
But now we may apply Theorem 3.4 to conclude that ∂su = ũ ∈W 1,r. If

we could show that ∂tu ∈W 1,r
loc as well, then we would have u ∈W 2,r

loc , proving

the fact. But notice that

∂tu = J(∂su− η) ∈W 1,p
loc ·W 1,r

loc ⊆W 1,r
loc ,

where we use Theorem 2.3. This proves Theorem 3.6. □



112 JESSICA J. ZHANG

Now the same argument using qj and rj from Step 1 holds. In particular,

we eventually get that u ∈ W
2,rj
loc for each j; since rm > 2, it follows that u

is continuously differentiable, and hence belongs to W 1,∞
loc . But now applying

Theorem 3.6 with q = ∞ and r = p implies that u ∈W 2,p, as desired.

Step 3. J ∈W k,p
loc , η ∈W k,p

loc , u ∈ Lp
loc implies u ∈W k+1,p

loc .

We prove this inductively. In particular, suppose we have proven this step

for some k − 1 ≥ 1. Set ũ and η̃ as before, so that they satisfy Equation (∗)
again. Then we find that ∂su = ũ and ∂tu are both inW k−1,p

loc , so that u ∈W k,p
loc .

This completes the induction. □

We showed earlier that Theorem 3.3 implies Theorem 3.2. As discussed

toward the beginning of this section, Theorem 3.2 is a local statement of, and

thus implies, our main regularity statement.

4. The moduli space of J -holomorphic curves

In this section, we discuss J-holomorphic curves in the context of sym-

plectic geometry. This will be a relatively informal section; a small amount of

algebraic topology (namely the notion of a fundamental class of a surface in

homology) will be useful. We also briefly mention the first Chern class of a

vector bundle, though it is only tangential to the larger story here.

A symplectic form ω on a smooth manifold X is a closed, nondegenerate

2-form. Being closed means that dω = 0, while being nondegenerate means

that, for every nonzero tangent vector v ∈ TpX, there exists w ∈ TpX so that

ωp(v, w) ̸= 0. If ω is a symplectic form on X, then we call (X,ω) a symplectic

manifold. It turns out that any symplectic manifold has dimension 2n, and

ωn is a nonvanishing top form, i.e., a volume form, on X. Hence X is orientable

too.

Example 4.1. Consider the manifold R2n (or Cn). Define ωstd := dx1 ∧
dy1 + · · ·+ dxn ∧ dyn. Recall that d2 = 0, so

dωstd =
n∑

i=1

(ddxi ∧ dyi − dxi ∧ ddyi) = 0.

Thus ωstd is closed. On the other hand, it is nondegenerate because

ωstd(p)

Ç
∂

∂xi

∣∣∣∣
p

,
∂

∂yi

∣∣∣∣
p

å
= 1.

This is called the standard symplectic structure. In fact, Darboux’s the-

orem says that every 2n-dimensional symplectic manifold (X,ω) may be cov-

ered by coordinate charts in which the symplectic form may be written as

ω = dx1∧dy1+ · · ·+dxn∧dyn. In particular, every symplectic manifold (X,ω)



ELLIPTIC BOOTSTRAPPING 113

is locally symplectomorphic to the standard symplectic manifold (R2n, ωstd),

in the sense that there are local diffeomorphisms ϕ between open sets of R2n

and X such that ϕ∗ω = ωstd. ♢

Suppose now that J is an almost complex structure on X, i.e., is a map

J : TX → TX with J2 = −1. If ω(v, Jv) > 0 for every nonzero vector v

and ω(v, w) = ω(Jv, Jw) for every point p ∈ X and every pair of vectors

v, w ∈ TpX, then we say that J is ω-compatible. The set of ω-compatible,

Cℓ-almost complex structures is written J ℓ(X,ω). Furthermore, if ℓ = ∞,

then we omit the superscript.

Example 4.2. Recall the almost complex structure J0 for Cn from Theo-

rem 1.1. If v =
∑n

i=1

Ä
ai

∂
∂xi

+ bi
∂
∂yi

ä
is a nonzero vector in TpR2n, then we

may compute

ω(v, J0v) = ω

(
n∑

i=1

Å
ai

∂

∂xi
+ bi

∂

∂yi

ã
,

n∑
i=1

Å
ai

∂

∂yi
− bi

∂

∂xi

ã)
=

n∑
i=1

(
a2i + b2i

)
> 0.

(Another way to show ω(v, J0v) > 0 for all nonzero v is to compute ω(v, J0v) =

1 for all basis vectors v.) A similar computation shows that

ω(v, w) = ω(J0v, J0w),

and so J0 is ωstd-compatible. ♢

Let (X,ω) be a symplectic manifold with compatible smooth almost com-

plex structure J ∈ J (X,ω). Let (Σ, j) be a compact two-dimensional almost

complex manifold. For every homology class A ∈ H2(X;Z), define the space

M(A,Σ; J) := {u ∈ C∞(Σ, X) : [u] = A and ∂Ju = 0}.

Here [u] is simply the pushforward u∗[Σ] of the fundamental class of Σ. We call

this space the moduli space of J-holomorphic curves representing A. (The

phrase “moduli space” simply means that this is a space whose points cor-

respond to certain geometric objects—which, in this case, are J-holomorphic

curves.)

We will, however, focus on a slightly simpler moduli space, namely the

moduli space of all J-holomorphic maps representing A which are simple. In

particular, say (Σ′, j′) is another compact two-dimensional almost complex

manifold, and say u′ : (Σ′, j′) → (X,J) is J-holomorphic. Suppose furthermore

that there is a holomorphic branched covering ϕ : Σ → Σ′ so that u′ ◦ ϕ = u.

If, in this setting, we always have deg ϕ = 1, then we call u simple. A more

geometric way to think about simple J-holomorphic maps is as maps which do
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not “cover their image multiple times.” Then

M∗(A,Σ; J) := {u ∈ C∞(Σ, X) : [u] = A, ∂Ju = 0, and u is simple}

is the subset of M(A,Σ; J) consisting of simple J-holomorphic curves.

A priori, this moduli space has no manifold structure. Even if it were

clearly a manifold, it is not clear that it would be finite-dimensional. It turns

out, however, that we have the following theorem.

Theorem 4.3 ([MS12, Theorem 3.1.6]). For “generic” J ∈ J (X,ω), the

moduli space M∗(A,Σ; J) is a manifold of finite dimension.

Remark 4.4. By generic, we mean that J belongs to a set Jreg(X,ω) ⊂
J (X,ω) which contains an intersection of countably many open and dense

subsets of J (X,ω). Such a set is called residual. It is worth noting that,

often, the “natural” choice of J is not actually generic, and work must be done

in order to perturb J to be in this set Jreg(X,ω). Certain regularity criteria

are presented in [MS12, Section 3.3].

Remark 4.5. The theorem in [MS12] actually gives an exact formula for

the dimension of this moduli space, namely n(2− 2g) + 2⟨c1(TX), A⟩. Here g
is the genus of Σ and c1(TX) ∈ H2(X;Z) is the first Chern class. The inner

product is the standard pairing between cohomology and homology.

The proof of this theorem turns out to depend somewhat heavily on The-

orem 3.1. In particular, the theorem implies that, if J ∈ J ℓ, then the space

of W k,p J-holomorphic curves is independent of k, so long as k ≤ ℓ + 1. In

particular, the space of J-holomorphic curves of class W k,p is independent of k

whenever J is a smooth almost complex structure. This lets us work in W k,p-

neighborhoods when necessary; combined with completeness, this will allow us

to show that M∗(A,Σ; J) is a finite-dimensional smooth submanifold of the

space W k,p(Σ, X) of J-holomorphic curves u : Σ → X of class W k,p.
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