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Abstract 
Surface permeability significantly impacts the urban environment. Specifically, impermeable 

surfaces result in runoff, which in turn causes flooding and pollution. Left unchecked, impermeable 
surfaces can lead to hazardous conditions for unlucky city residents. These concerns are prominent in 
Philadelphia, and in response the municipal government has launched an ambitious plan to increase 
permeability by installing green infrastructure. This paper explores how spatial and demographic 
research can be combined to provide a holistic assessment of surface permeability across one of 
America’s largest cities. First, 2020 satellite imagery, provided by the United States Geological Survey 
(USGS), was used to classify permeable and impermeable surfaces over the entire city. Next, 
demographic data from the 2014-2018 American Community Survey (ACS)– household income, rent, 
and home value, all by census block group – were individually merged with the surface permeability 
classification to generate three overlays. For example,  surface permeability was correlated with 
household income     . Upon quantitative and qualitative examination of these overlays, it was found 
that impermeable surfaces are unevenly distributed and inequitably concentrated in Philadelphia’s less-
affluent communities. Overall, the methodology used in this research demonstrates a multi-disciplinary 
and reproducible procedure for joint environmental-demographic research. Additionally, the 
conclusions reached offer location-specific insights that can help inform Philadelphia’s future green 
infrastructure investments and runoff mitigation strategies. 

 
 

 
Introduction 
 

Surface permeability is often overlooked. Truth be told, ground observation is usually for 
avoiding puddles, or worse, the trails of a dog owner without a plastic bag. Even though surface 
permeability is easily forgotten, it is critical to the environmental health of cities. Impermeable surfaces 
which include common materials such as concrete, asphalt, gravel, and tar–lead to flooding and 
stormwater runoff. Runoff is particularly a problem in cities with combined waste-stormwater sewer 
systems: Philadelphia is such a city. When it rains, these sewers cannot handle the sheer volume of 
liquid and subsequently release excess untreated waste into local waterways. This process–called 
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combined sewer overflow (CSO)–is severely detrimental to human health and the environment. 
Flooding is also a major threat to cities, as demonstrated by the devastation wrought by Hurricane 
Katrina on New Orleans. Permeable surfaces protect against such environmental damage by absorbing 
stormwater and ensuring that sewers are not overwhelmed. As demonstrated by Hurricane Katrina, 
flood mitigation infrastructure is not equitably distributed across cities: Poorer neighborhoods are 
often left more susceptible to stormwater hazards. 

This study examines the relationship between surface permeability and socioeconomic factors 
in order to assess stormwater runoff and environmental justice across Philadelphia. In doing so, this 
paper asks the reader to consider this question: What would equitable surface permeability in 
Philadelphia look like? While there is no concrete answer provided in the following pages, this research 
demonstrates that surface permeability is spatially and demographically unequal across Philadelphia. 
While it is unrealistic to expect 100 percent permeable surfaces in any urban environment, the 
dominance of impermeable surfaces in Philadelphia, especially within lower-income communities, is 
cause for concern. 

 
 

Literature Review 
 
 Many common elements of the environment can be considered green infrastructure (GI), 
including street trees, lawns, and public parks. Thus, assessing GI requires a detailed survey of land 
characteristics (Xu et al., 2018). In these surveys, remote sensing observation is more efficient than 
land-based techniques. Remotely sensed imagery can be collected in many ways, the most common 
being satellites such as the NASA/USGS Landsat missions. A wide variety of remote sensing 
techniques have been applied to surface permeability research in urban and suburban settings. Many 
indices have been developed to identify permeable land characteristics, such as vegetation, in 
remotely sensed imagery (Labib & Harris, 2018; Okujeni et al., 2018; Padmanaban et al., 2019; 
Taramelli et al., 2019). 

In environmental justice research, spatial context is essential. High resolution geographical 
analysis enables correlations to be made between environmental characteristics and demographic 
factors (Weigand et al., 2019). Spatial context is especially important in cities because metropolitan 
areas have dense and diverse landscapes. In highly populated regions, environmental data are often 
aggregated over too large of an area. These data then lose their resolution and specificity. Detailed 
spatial context helps researchers to minimize the ecological fallacy of using group data to draw 
conclusions about an individual member of the group. Throughout cities, surface permeability and 
environmental justice are unquestionably linked. Comparatively impermeable neighborhoods 
experience more flooding and runoff–and suffer from more combined sewer overflows into local 
waterways. A recent storm that produced one-quarter inch of rain on the ground led to trash and 
raw sewage flowing down Frankford Creek, which lies in an impermeable semi-industrial region of 
Philadelphia (Kummer, 2019). Recent studies have reported correlation between surface 
permeability, exposure to flooding-based contamination, and socioeconomic status (Sansom et al., 
2016).  

Philadelphia happens to be a national leader in water management. Notably, the city is taking 
a completely GI-based approach toward addressing their outdated, yet unfortunately typical, 
combined sewer system (Dolowitz et al., 2018; Fitzgerald & Laufer, 2017). Specifically, in 2011, the 
municipal government committed to a 25-year $2-billion plan called Green City Clean Waters, which 
aims to create over 9,500 acres of new permeable surfaces (City of Philadelphia, 2014). The city’s 
proactive decision to focus so heavily on GI implementation was atypical among its peers. In 
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contrast, Washington D.C. proposed an unrealistically expensive gray infrastructure approach that 
would have separated the sewer system into waste and stormwater components (Bauers, 2012). A 
New York-based study found that GI can be cheaper than gray infrastructure even without 
accounting for additional benefits of GI such as heat island mitigation (Montalto et al., 2007). 

While Green City Clean Waters is definitely a positive for Philadelphia, stormwater 
management concerns are still pervasive in the city. For example, the 2019 incident in Frankford 
Creek left the waterway muddy brown and highly contaminated with hazards such as fecal bacteria 
(Kummer, 2019). This incident shows that, despite Philadelphia’s efforts, a clear need still exists for 
further GI implementation and surface permeability research. Small storms continue to wreak havoc 
by introducing hazardous conditions in Philadelphia’s communities. 
 

Creating a Supervised Classification 
 
 A supervised classification1 can efficiently identify permeable, impermeable, and water surfaces 
across Philadelphia. A high-quality satellite image of Philadelphia with minimal cloud cover is required 
for this process. I downloaded the selected image from the USGS EarthExplorer. The image was 
taken on September 8, 2020, by the Landsat 8 satellite.2 Clouds covered 14 percent of the full image 
but none of Philadelphia. I trimmed the downloaded image and converted it to a raster3 in which each 
pixel contained surface reflectance values for ten electromagnetic bands.4,5 Figure 1 is an image 
constructed from the three electromagnetic bands in the visible light spectrum (blue, green, and red).6 
This representation mimics what human eyes would see if looking upon Philadelphia from above. 
 
 

 
1 A supervised classification is a type of machine learning task that automatically partitions data based on pre-determined 

categories. 
2 Landsat 8 was launched in 2013, orbits the Earth every 99 minutes, and collects imagery with 30 meter by 30 meter 

resolution. 
3 A raster is a matrix of pixels in which each pixel contains specific information. 
4 Specifically, I used the following bands: coastal aerosol, blue, green, red, near infrared, shortwave infrared 1, shortwave 

infrared 2, cirrus, thermal infrared 1, and thermal infrared 2. 
5 I performed the trimming and raster conversion in ArcGIS. 
6 I performed the image construction in R. 
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Figure 1. True Color Composite of 2020 Landsat 8 Satellite Imagery 
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 Next, I collected ground-truthed training data and placed them into a shapefile.7,8 I directly 
confirmed these individual training points as either permeable, impermeable9, or water. In total, I 
confirmed 418 permeable points, 342 impermeable points, and 212 water points for a total of 972 
training data points. Figure 2 is a map displaying the locations of all 972 training points. 
 

  

 
7 I created the shapefile in ArcGIS. 
8 While collecting training data for spatial analysis, accurate ground truthing is essential. If, for example, 50 impermeable 

training points were actually water bodies, the model’s ability to classify surfaces would be directly compromised. 
9 In this instance of ground-truthing, impermeable surfaces consisted entirely of vegetation elements. Therefore, 

permeable elements such as porous pavement were not classified as permeable. This is a limitation of a satellite-imagery 
based supervised classification. 
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Figure 2. Training Points Confirmed Through Personal Observation 
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After collecting the required imagery and training data, I wrote a supervised classification 

script (see Appendix).10 Using a decision tree structure, I computed predictions of surface 

permeability across Philadelphia. Figure 3 shows a generalized example of the decision tree.11 Figure 

4 maps the resulting classification of surface types. 

 

Figure 3. Example of Decision Tree Structure 

  

 
10 I wrote the supervised classification script in R. 
11 In the generalized example, each condition represents a reflectance value. The model bases its prediction on the 

reflectance values of the training points. For example, in Pixel Q, if Band 2’s reflectance is greater than X and Band 2’s 
reflectance in permeable-surface training points is almost always greater than X, then Pixel Q is predicted to be a 
permeable surface. 
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Figure 4. Supervised Classification of Surface Permeability in Philadelphia (2020) 
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As shown in figure 5, impermeable surfaces outnumber permeable surfaces in Philadelphia 

by nearly 2:1. Impermeable surfaces especially outnumber permeable surfaces in central and south 

Philadelphia. In the northwest and northeast regions, permeable surfaces are relatively more 

common. These northern regions represent the sections of Philadelphia that are beginning to blend 

with suburban landscapes. 

To confirm the accuracy of the classification, I compared the predicted permeability with the 

original training data. The following is an example of this comparison in question form: For a 

training point that was confirmed in-person as an impermeable surface, was an impermeable surface 

predicted by the machine learning model? For this criterion, the model was shown to be 99.59 

percent accurate: Of the 972 training points, 968 were predicted correctly. One water training point 

 

Figure 5. Surface Area Breakdown of 2020 Supervised Classification 
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and three permeable training points were incorrectly predicted as impermeable. As another 

validation method, I calculated the sensitivity12 and specificity13 for each category (see table 1). 

 Permeable Impermeable Water 

Sensitivity 100.00% 98.84% 100.00% 

Specificity 99.46% 100.00% 99.87% 

Table 1. Sensitivity and Specificity of the Supervised Classification 

 

Demographic Analysis 
 

This study searches for connections between surface permeability and socioeconomic factors 

in order to consider issues of environmental justice and neighborhood affordability. Specifically, this 

study examines a total of three community demographic indicators: household income, rent, and 

property values.14 I obtained the census block group for each indicator from the American 

Community Survey 2014-2018 5 Year Estimates. I then converted this data to raster outputs and 

separated the block groups into three categories: low, medium, and high (see figures 6, 7, and 8 

 
12

 Sensitivity definition: (number of true positives) / (number of true positives + number of false negatives) 
13

 Specificity definition: (number of true negatives) / (number of true negatives + number of false positives) 
14

 These indicators, while useful, are not a complete portrait of any community. A limitation of this demographic 

analysis is that it is impossible to create a complete depiction of an urban community using such indicators. 
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below). The break points were chosen to create roughly equal amounts of area in each 

category.15Figure 6. Median Household Income from the 2014-2018 American Community Survey 
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Figure 7. Median Rent from the 2014-2018 American Community Survey 
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Figure 8. Median Home Value from the 2014-2018 American Community Survey
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Correlating Surface Permeability with Demographic Data 

I combined the supervised classification with each of the demographic 

factors using the raster calculator feature in ArcGIS. For this process, I assigned 

numerical values to both the surface permeability and demographic indicator 

categorizations. Then I multiplied the values together to create distinct product 

values. 

In order to perform this comparative analysis, both the surface permeability 

and demographic indicator raster datasets must have the same pixel size.16 An 

important issue was then revealed. The Census Bureau aggregates its demographic 

data by block group, each of which is much larger than 30 m by 30 m. The block-

group-based data can easily be apportioned into a 30 m by 30 m raster, but the initial 

block-group aggregation lowers the overall spatial resolution of this comparative 

analysis. Therefore, individual-building-level insights are unavailable. Within the 

scope of this study, this problem could not be worked around. Sufficiently recent 

single block or residence-based demographic data are not publicly available.17 

 Once distinct categories were created for each correlation, the three maps 

shown in figures 9, 11, and 13 were created: Surface Permeability Correlated with 

Median Household Income, Surface Permeability Correlated with Median Rent, and 

Surface Permeability Correlated with Median Home Value. For each map, I graphed 

surface areas for the distinct permeability/demographic categories (figures 10, 12, 

and 14). 

  

 
16

 In this case, the pixel size will be 30 meters (m) x 30 meters (m). 
17

 Unaggregated census data becomes public 72 years after its collection. 



15  Consilience 

Figure 9. Spatial Overlay Combining Surface Permeability and Household Income 

Data 
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Figure 10. Surface Area Breakdown of Surface Permeability Correlated with Median 

Household Income 

 

In the correlation between permeability and income, the two most common 

categories are Impermeable, Medium Income and Impermeable, Low Income. 

This result shows the disproportionately large presence of impermeable surfaces in 

the neighborhoods of less affluent residents. Land falling in these two categories 

surrounds Center City in a semicircular pattern that extends from south Philadelphia, 

through west Philadelphia, and up into lower north Philadelphia. The circular pattern 

is cut off to the east by the Delaware River. Permeable, High Income and 

Impermeable, High Income areas form certain distinct patches. The most notable 

Impermeable, High Income patch is Center City. A clear patch of Permeable, 

High Income land can be seen in northwest Philadelphia. Another is observed in 
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the northeast. While income cannot be called a predictor of permeability, a clear 

correlation exists. 
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Figure 11. Spatial Overlay Combining Surface Permeability and Rent Data 
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Figure 12. Surface Area Breakdown of Surface Permeability Correlated with Median 

Rent 

The correlation between surface permeability and median rent features 

numerous distinctly homogenous patches. Impermeable, Medium Rent areas 

dominate in surface area, and clusters of this category can be seen most clearly 
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affluent residents (signified by lower rent) is observed: A correlation between 

permeability and rent certainly exists. 
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Figure 13. Spatial Overlay Combining Surface Permeability and Home Value Data 
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Figure 14. Surface Area Breakdown of Surface Permeability Correlated with Median 

Home Value 

 
The correlation between surface permeability and median home value shows 

the largest homogenous patches of all three correlation maps. Impermeable, 

Medium Value regions lead in surface area and are distributed expansively through 
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Having analyzed the correlation between permeability and three demographic 

factors, a general trend may be noted: Impermeable surfaces in less-affluent 

neighborhoods surround an impermeable affluent central district. Permeable affluent 

neighborhoods are concentrated in northwest and northeast Philadelphia. 

Figure 15 shows the sum of each correlation category over all three 

demographic factors. For example, the Impermeable, Medium category is 

calculated by adding together the Impermeable, Medium Household Income and 

Impermeable, Medium Rent and Impermeable, Medium Home Value areas. 

As shown in figure 15 and table 2, high values for the demographic factors are 

closely split between permeable and impermeable surfaces: 51 percent of the high-

demographic-factor areas are permeable. Medium values of the demographic factors 

possess the largest difference between permeable and impermeable surfaces: 28 

percent of medium-demographic-factor areas are permeable. 36 percent of low-

demographic-factor areas are permeable. Table 2 shows for the summed surface area 

of all three demographic indicators, the difference between permeable and 

impermeable areas. The imbalance toward impermeable surfaces in the medium and 

low demographic factor categories is clear. 
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Figure 15. Surface Area Breakdown of Surface Permeability Correlated with All 

Three Demographic Indicators 
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Permeable, Medium minus Impermeable, Medium -160,695,500 m2 
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Table 2. Difference Between Permeable and Impermeable Surface Area over each 

Demographic Factor Category 
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Discussion 

What does it mean for surface permeability to be equitably distributed across 

Philadelphia? Should there be a comparable ratio of permeable to impermeable 

surfaces for each demographic category? There is no “correct” answer to this query. 

However, the dominance of impermeable surfaces in low and medium demographic 

factor categories suggests a degree of urban environmental inequity.  

This spatial-demographic analysis does not provide a blanket answer as to 

how surface permeability correlates with the three selected demographic factors in 

Philadelphia. At the finest level, neighborhood specific assessments are possible. For 

example, Center City Philadelphia can be characterized as both affluent—in this case 

defined as majority high income, high rent, and high home value—and covered with 

mostly impermeable surfaces. 

There are several broad themes that can be extracted from the three 

correlation maps and associated bar graphs and tables. More affluent neighborhoods 

are concentrated in the center of Philadelphia and in the northwest and northeast 

corners. In the heart of Philadelphia, land is almost completely impermeable: Center 

City and the surrounding neighborhoods are densely developed, with only a 

scattering of public green spaces such as Rittenhouse Square Park. This central 

region appeals to those who desire high-density living, seek minimal distance to 

Philadelphia’s economic center, and can afford the associated costs of living. On the 

other hand, in Philadelphia’s largely affluent northwest and northeast corners, land is 

largely permeable. This fact can perhaps be explained by identifying these outer 

neighborhoods as the transition point between the city and its less-developed 

suburbs. Wealthy residents of these northern areas still need to be close to 
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Philadelphia’s economic center, yet they also are looking to escape problems 

associated with high-density urban living. In between these two affluent sections is a 

semicircle that contains the bulk of lower-income, lower-rent, and lower-home-value 

communities. 

As shown in table 2, Philadelphia’s wealthiest communities are about equally 

divided between permeable and impermeable surfaces. However, this division is not 

random within wealthy communities: The wealthy central neighborhoods are 

predominantly impermeable, while the wealthy outlying communities are generally 

permeable. On the other hand, in medium and low-demographic-factor 

communities, impermeable surfaces far outnumber permeable surfaces. Generally, it 

is much likelier to encounter a permeable surface in an affluent community than in a 

lower income community. 

The overall increase in permeability with distance from the city center is 

reflective of Philadelphia’s historical development. The older more central regions 

were developed in an era when surface permeability was not considered a priority. 

The variations of socioeconomic status with distance from the center are consistent 

with Burgess’s concentric zone model (Burgess, 1924). Together, these patterns in 

permeability and demographics yield the correlations observed in this study, in which 

the relatively affluent choose between the impermeable city center or a permeable 

outlying zone. Thus, wealthy residents have the option to live in the dense and 

impermeable Center City or in the permeable neighborhoods bordering 

Philadelphia’s northern suburbs. Less wealthy residents have few alternatives besides 

living in the impermeable semicircle that envelops Center City. 
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Is permeability an indicator of the cost of living and neighborhood 

affordability? What kind of value can be attributed to permeable surfaces? The 

answers vary from neighborhood to neighborhood. In regions bordering the 

suburbs, permeable land appears to be highly coveted. Residents of these areas likely 

have more space and therefore value permeable open green space such as private 

lawns and backyards. In the more densely developed portions of Philadelphia, 

permeability is not a clear distinguishing factor between affluent regions such as 

Center City and the less-affluent southern neighborhoods. 

In summary, the most notable patterns that can be identified are as follows. 

1) Philadelphia’s Center is largely impermeable and affluent. 2) Moving away from 

the city’s center, the land is still largely impermeable but less affluent. 3) Nearing the 

border between suburbs and city in Philadelphia’s northwest and northeast corners, 

the proportion of permeable and affluent neighborhoods increases. 

 

Conclusion 

This research has revealed a spatially and socially uneven distribution of 

permeable surfaces across Philadelphia. Specifically, permeable surfaces are 

concentrated in the relatively affluent northwest and northeast corners of the city. 

While the methods of this study were conducted successfully and the research 

questions were addressed, there is potential for further research on this topic. 

Extensions of this work could begin by incorporating more demographic factors into 

the correlation analysis. As stated in the Demographic Analysis section, household 

income, rent, and home value do not paint a complete portrait of any community. 

Demographic factors such as race, ethnicity, land value, and highest attained level of 
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education might be illuminating. Additionally, non-demographic variables such as 

land use and proximity to Center City could show illuminating correlations with 

surface permeability. 

 In the future, the methods of this study can be used to assess surface 

permeability in other cities besides Philadelphia. For example, as mentioned in the 

literature review, New York City and Washington D.C. have concerns regarding 

surface permeability, runoff, and combined sewer systems. At present, this study can 

help planners and government officials in Philadelphia to assess permeability with 

high spatial resolution and create narratives relating environmental and demographic 

data. Supervised learning tasks and correlations with demographics can help identify 

ideal locations for investments in GI that equitably benefit both affluent and lower 

income communities. 

Peering into the future, this study aligns with Philadelphia’s goal to become a 

smarter city. In 2019, the municipal government released a document called the 

SmartCityPHL Roadmap, which outlines the applications, objectives, and values of 

local urban technology solutions. This paper’s methodology can be extended to 

inform green-tech assessments of the environmental and health concerns associated 

with impermeable surfaces. 

 If the reader is to come away from this paper with one takeaway, it would be 

that surface permeability in Philadelphia cannot be described in one blanket 

statement. As explained in the literature review, permeable surfaces in the form of 

GI appear in many variations. Surface permeability has a complicated correlation 

with household income, rent, and home values in Philadelphia. In broadest terms, 

permeable surfaces are not proportionally distributed among affluent and lower 
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income communities. Despite the complex nature of these findings, the author –and 

hopefully the reader–have come away from this research with a more holistic and 

extensive understanding of surface permeability in Philadelphia. 
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Appendix 
Script for Supervised Classification of Surface Permeability 

Programming Language: R 

Integrated Development Environment: RStudio 

__________________________________________________________________

____________ 

# clear the global environment 

rm(list=ls()) 

# set the working directory 

setwd("C:/Users/Classification") 

 

##### 

# load libraries 

library(raster) 

library(tidyverse) 

library(sf) 

library(rpart) 

library(caret) 

library(forcats) 

library(rpart.plot) 

library(rasterVis) 

library(mapedit) 

library(mapview) 

library(magrittr) 

library(ggplot2) 

 

##### 

# 2020 imagery preparation and processing 

 

# bring in 2020 satellite imagery as individual bands 

band1 <- raster("2020_Data/band1.tif") 

band2 <- raster("2020_Data/band2.tif") 

band3 <- raster("2020_Data/band3.tif") 

band4 <- raster("2020_Data/band4.tif") 

band5 <- raster("2020_Data/band5.tif") 

band6 <- raster("2020_Data/band6.tif") 

band7 <- raster("2020_Data/band7.tif") 

# band8 <- raster("2020_Data/band8.tif") # band 8 omitted because 

of an incompatible extent 

band9 <- raster("2020_Data/band9.tif") 

band10 <- raster("2020_Data/band10.tif") 

band11 <- raster("2020_Data/band11.tif") 

 
# stack the bands into a multi-band raster 

image <- stack(band1, band2, band3, band4, band5, band6, band7, # 

band8,band9, band10, band11) 

 

# print image properties 

nlayers(image) 

crs(image) 

res(image) 

 

##### 
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# create initial plots of 2020 imagery 

 

# plot the true color composite 

par(col.axis="white",col.lab="white",tck=0) 

plotRGB(image, r = 4, g = 3, b = 2, 

        stretch = "lin", main = "2020 True Color Composite") 

 

# export the true color composite to the working directory 

trueColor <- stack(band2, band3, band4) 

path <- "2020_truecolorcomposite.tif" 

writeRaster(trueColor, filename=path) 

 

# plot the false color composite 

par(col.axis="white",col.lab="white",tck=0) 

plotRGB(image, r = 5, g = 4, b = 3, 

        stretch = "lin", main = "2020 False Color Composite") 

 

##### 

# preparation for predictive modeling 

 

# read-in training data 

training_points <- st_read("2020_Data/training_points.shp") 

 

# extract the spectral values for each training point 

training_points <- as(training_points, 'Spatial') 

df <- raster::extract(image, training_points) %>% 

  round() 

 

# create spectral profiles of each classification category 

(permeable, etc.) 

profiles <- df %>%  

  as.data.frame() %>%  

  cbind(., training_points$id) %>%  

  rename(id = "training_points$id") %>%  

  na.omit() %>%  

  group_by(id) %>%  

  summarise(band1 = mean(band1), 

            band2 = mean(band2), 

            band3 = mean(band3), 

            band4 = mean(band4), 

            band5 = mean(band5), 

            band6 = mean(band6), 

            band7 = mean(band7), 

            # band8 = mean(band8), 

            band9 = mean(band9), 

            band10 = mean(band10), 

            band11 = mean(band11)) %>%  

  mutate(id = case_when(id == 1 ~ "permeable", 

                        id == 2 ~ "impermeable", 

                        id == 3 ~ "water")) %>%  

  as.data.frame() 

head(profiles) 

 

# plot the spectral profiles of each classification category 

across each band 

profiles %>%  

  select(-id) %>%  
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  gather() %>%  

  mutate(class = rep(c("Permeable", "Impermeable", "Water"), 

10)) %>%  

  ggplot(data = ., aes(x = fct_relevel(as.factor(key), 

                                       levels = c("band1", 

"band2", "band3", "band4","band5", "band6", "band7", # "band8", 

"band9", "band10", "band11")), y = value,  

                       group=class, color = class)) + 

  geom_point(size = 2.5) + 

  geom_line(lwd = 1.2) + 

  scale_color_manual(values=c("#e8cf7d", "#2a7332", "#0032a0")) + 

  labs(title = "Spectral Profiles", 

       x = "", 

       y = "Surface Reflectance") + 

  theme(panel.background = element_blank(), 

        panel.grid.major = element_line(color = "gray", size = 

0.5), 

        panel.grid.minor = element_line(color = "gray", size = 

0.5), 

        axis.ticks = element_blank()) 

 

# create a histogram of spectral profiles 

profiles %>%  

  select(-id) %>%  

  gather() %>%  

  mutate(class = rep(c("permeable", "impermeable", "water"), 

10)) %>%  

  ggplot(., aes(x=value, group=as.factor(class), 

fill=as.factor(class))) +  

  geom_density(alpha = 0.75) +  

  geom_vline(data = . %>% group_by(class) %>% summarise(grp.mean 

= mean(value)), 

             aes(xintercept=grp.mean, color = class), 

linetype="dashed", size=1) + 

  scale_fill_manual(values=c("#e8cf7d", "#2a7332", "#0032a0"), 

                    name = "class") + 

  scale_color_manual(values=c("#e8cf7d", "#2a7332", "#0032a0")) + 

  theme(panel.background = element_blank(), 

        panel.grid.major = element_line(color = "gray", size = 

0.5), 

        panel.grid.minor = element_line(color = "gray", size = 

0.5), 

        axis.ticks = element_blank()) + 

  labs(x = "Reflectance Value", 

       y = "Density", 

       title = "Density Histograms of Spectral Profiles", 

       subtitle = "Vertical lines represent mean group 

reflectance values") 

 

##### 

# predict surface permeability across Philadelphia for 2020 

 

# combine spectral values with their surface permeability class 

(permeable, etc.) 

df <- data.frame(training_points$id, df) 

model.class <- rpart(as.factor(training_points.id)~., data = df, 

method = 'class') 
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# plot a decision tree 

rpart.plot(model.class, box.palette = 0, main = "Classification 

Decision Tree", tweak = 1.1) 

 

# predict surface permeability across Philadelphia 

pr <- predict(image, model.class, type ='class', progress = 

'text') %>%  

  ratify() 

levels(pr) <- levels(pr)[[1]] %>% 

  mutate(legend = c("permeable", "impermeable", "water")) 

 

# plot it 

levelplot(pr, maxpixels = 1e6, 

          col.regions = c("#2a7332", "#e8cf7d", "#0032a0"), 

          scales=list(draw=FALSE), 

          main = "Supervised Classification of Imagery") 

 

# export the classification raster 

path2 <- "2020_classification.tif" 

writeRaster(pr, filename=path2) 

 

##### 

# model validation 

 

# compare the training data to the results of the model 

test <- raster::extract(pr, training_points) %>%  

  as.data.frame() %>%  

  rename(id = ".") 

 

testProbs <- data.frame( 

  obs = as.factor(training_points$id), 

  pred = as.factor(test$id) 

) %>%  

  mutate(correct = ifelse(obs == pred, 1, 0)) 

 

# plot a confusion matrix 

confMatrix <- confusionMatrix(testProbs$obs, testProbs$pred) 

confMatrix 

 


