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Abstract 
 Determining the circuitry of the neocortex requires an understanding of its components, which in 
turn necessitates a classification scheme of neocortical neurons. The neocortex consists primarily of 
excitatory pyramidal neurons (~80% of neocortical neurons) and inhibitory interneurons (~20% of 
neocortical neurons). Neocortical interneurons are ideally positioned to control circuit dynamics. GABAergic 
interneurons, in particular, largely contribute to the vast morphological and physiological variability of the 
cortex. However, much is still not known regarding these interneurons.  Here we use unsupervised learning 
methods, such as PCA followed by k-means analysis, to create quantitative and unbiased classification 
schemes. We explored the use of affinity propagation, a novel exemplar-based method of cluster analysis, to 
quantitatively classify a diverse set of 337 neocortical interneurons. Each neuron was characterized by whole-
cell recordings done by patch-clamping and complete 3D anatomical reconstructions. It was revealed that 
each interneuron subtype is characterized by a unique set of morphological and electrophysiological features 
that allowed for specialized function within the neocortical circuit. Affinity propagation may then be used to 
classify neurons, the first step to reverse engineer a neocortical circuit. 
 
Introduction 

Developmental neuroscience is an 
emerging field that harnesses powerful 
computational and mathematical techniques to 
model the brain. The goal of our research is to 
build a classification scheme of all neocortical 
neurons in a major effort to determine the 
circuitry of the neocortex.  

The neocortex is the top layer of the 
cerebral hemispheres and is about 2 to 4 mm 
thick. It is composed of six layers, labeled I to VI 
(with I being the outermost layer and VI being the 
innermost layer). Along with the archicortex and 
paleocortex, the neocortex is one of three 
components of the cerebral cortex, accounting for 
76% of the volume of the cerebral cortex.  The 
neocortex is one of the most significant 
components of the brain and is involved in higher 
mental functions such as perception, memory, 
imagination, language, and music.  

Since the neocortex participates in such a 
vast array of computational tasks, it is often 
compared to a parallel computer, which can carry 
out multiple calculations simultaneously. The 
underlying principle of parallel computing is that 
large problems can be divided into smaller ones, 
which are then solved concurrently or “in 

parallel.” In other words, many computing 
elements are wired together and then operate in 
parallel. Furthermore, for every computing 
element added, it is often necessary to add new 
wires from the new addition to existing elements.  
Thus, the number of wires increases much more 
rapidly than the number of computers: 3 wires for 
3 computers, 6 wires for 4 computers, 10 wires for 
5 computers, and so on.  

Extending this analogy to the brain, we 
would need a brain the size a football field to 
encompass billions of neurons (biological 
computing elements) that are all wired together. A 
real brain however selectively wires neurons 
together, omitting any unneeded wires (axons) for 
proper function. This simple mathematical 
analogy hints at many aspects of the brain. For 
instance, as mammals grow larger with evolution, 
the brain similarly increases in size, and the “cost” 
of wires grows severe. Neuroanatomical studies 
have quantitatively shown that the number of 
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axons varies greatly region to region in the brain; 
some areas are heavily linked to others with 
massive axon tracts while others are far less 
strongly linked.  

Many strides have been made in 
understanding the formation and function of 
neocortical circuits using detailed morphological 
and electrophysiological analyses of the neurons. 
Each of these model circuits differ greatly in form 
and content, however, because they each have 
different theoretical and experimental 
considerations. For historical reasons, many early 
neocortical circuit models are based on data from 
cat and primary visual cortex. In recent years, the 
rat somatosensory cortex has grown in 
prominence as a tool for understanding the cortex.  

The idea of a canonical circuit has 
previously been applied to aspects of the 
vertebrate brain and spinal cord. It is highly 
relevant to questions of evolution, development, 
and homology of form and function. Supporting 
this idea is the close similarities in basic 
organization across vertebrate brains. Similarly, 
recognizable neuronal subtypes have been found 
across the neocortices of different mammalian 
species15. For these reasons, we hypothesize the 
existence of a canonical cortical microcircuit and it 
implements a relatively simple computation.  

To create a neocortical circuit model, a 
classification scheme must first be established to 
outline the components of the cortex. In the past, 
cell type classification was qualitative and led to 
inconsistent subtypes. In recent years, the 
standard method for classification of neurons has 
been quantified through unsupervised cluster 
analysis2, 4, 7, 8, 9, 11, 12. Unsupervised cluster analysis 
is the classification of a set of data or objects into 
subsets (clusters) so that the data in each subset 
shares a common feature without any prior 
knowledge. One widely-used technique has been 
Ward’s method with hierarchical clustering. 
Hierarchical agglomerative clustering is a bottom-
up technique and begins by grouping the two 
“closest” cells as defined by the algorithm, and 
then continues to join the next “closest” cells and 
so forth. This method does not require specifying 
the number of clusters in advance and generates 
smaller clusters that may be helpful for discovery. 
However, one of the main disadvantages of 
hierarchical clustering is that once two cells are 
linked, they remain joined together in the final 
hierarchy. Moreover, hierarchical clustering is 

susceptible to a chaining effect in which objects 
may be “incorrectly” assigned to a cluster at an 
early stage instead of being grouped in new 
clusters.  

Additional clustering techniques include 
k-means analysis k-metoids analysis, and affinity 
propagation. In k-means, each cluster is 
represented by the center of the cluster and in k-
metoids analysis, each cluster is represented by 
one of the objects in the cluster. Affinity 
propagation is one of the most recently developed 
unsupervised clustering techniques. Each data 
point is viewed as a node in a network, and real-
valued messages are transmitted between the data 
points until a set of exemplars and corresponding 
clusters is determined by the algorithm. Thus, at 
any point in time, the magnitude of each message 
reflects the current affinity that one data point has 
for choosing another data point as its exemplar, 
hence the name of “affinity propagation”6.  

In this work, we explore the application 
of affinity propagation to classification of 
neocortical neuronal subtypes. The algorithm was 
used to blindly classify a test dataset of four 
interneuron subtypes. The dataset included 
unlabeled cells in addition to known cells, the 
latter serving as a ground truth. The dataset is 
comprised of 67 morphological variables and 20 
electrophysiological variables describing (1) 
parvalbumin-positive (PV+) basket cells (BC), (2) 
PV+ chandelier cells (ChC), (3) somatostatin-
positive (SOM+) Martinotti cells (MC), and (4) 
SOM+ non-Martinotti cells (non-MC) as 
previously described in research12. We found that 
affinity propagation generates a fair classification 
in separating these four known interneuron 
subtypes and may be a powerful classification tool 
in discovering or defining neuronal cell types. 
 
Materials and Methods 
Preparation of Brain Slices  

Acute brain slices were prepared from 
Nkx 2.1, G42, or GIN mice, with an average of 15 
postnatal days (range P13 – P25). Mice were 
immediately decapitated, the brain was removed 
and then immediately placed in a cold sucrose 
cutting solution (222 mM sucrose, 2.6 mM KCl, 
27 mM NaHCO3, 1.5 mM NaH2P4, 0.5 mM 
CaCl2, 3 mM MgSO4, bubbled with 95% O2, 5% 
CO2). Coronal slices of 300 μm thickness were cut 
using a Vibratome and then transferred to a 

NEUROSCIENCE 



Columbia Undergraduate Science Journal  Open-Access Publication | http://cusj.columbia.edu 

   Spring 2014 | Volume 8                                 24 

holding chamber at room temperature with 
oxygenated ACSF (126 mM NaCl, 3 mM KCl, 3 
mM MgSO4, 1 mM CaCl2, 1.1 mM NaH2PO4, 26 
mM NaHCO3, and 10 mM dextrose, bubbled with 
95% O2, 5% CO2). The slices were left to 
equilibrate with the room temperature for at least 
30 minutes. Slices were then transferred to a 
recording chamber with the perfusion of ACSF 
bubbled with 95% O2, 5% CO2.  
 
Transgenic Mouse Lines  

To identify different types of 
interneurons, we used three transgenic mouse 
lines. First, we used the G42 line that labels PV+ 
cells2. PV+ cells are rapid spiking interneurons 
with basket or ChC morphology. We are able to 
identify basket cells from chandelier cells by their 
distinctive morphologies and threshold spiking 
responses. In addition, the chandelier cells have 
specially shaped axon arbors, in which axon 
terminals form distinct arrays called “cartridges” 
that we can visualize via GFP17. The Nkx2.1 line 
labels a population of interneurons that express 
the transcription factor Nkx 2.1, which includes 
interneurons that migrate from the medial 
ganglionic eminence (MGE), most notably 
ChCs17. A significant proportion of the ChC cells 
were found at the top of layer II, close to the layer 
I border, in both the G42 and Nkx 2.1 lines17. 
Finally, we used the GIN line to label SOM+ 
cells12. SOM+ cells are regular spiking 
interneurons with diverse morphology. In 
previous work, we determined three unique 
subtypes of SOM+ interneurons in GIN mice 
based on morphology and physiology: Martinotti 
cells and two novel subtypes12. As a result, we 
now distinguish between Martinotti cells (MC) and 
two novel subtypes (non-MC). 
 
Electrophysiology Recordings  
Brain slices were placed in a recording chamber at 
room temperature with a constant supply of 
oxygenated ACSF. Pipettes of 3-7 MΩ resistance 
were pulled from borosilicate glass. Whole cell 
recordings of cells were obtained using patch-
clamping. Only cells with a healthy resting 
membrane potential (between -55 and -80 mV) 
were selected for recording.  
 
Electrophysiological Analysis  

20 variables were measured for each neuron by 
analysis of the recordings in MATLAB. The 
Petilla terminology scheme was used to name each 
variable describing firing and passive properties1. 
See Appendix 1 for descriptions.  
 
Histological Procedure  
Neurons were filled with biocytin by a patch 
pipette. Slices were kept overnight in 4% 
formaldehyde in 0.1M phosphate buffer (PB) at 
4°C. Slices were then rinsed three times for five 
minutes per rinse on a shaker in 0.1M PB. They 
were then placed in 30% sucrose mixture (30g 
sucrose dissolved in 50 ml ddH2) and 50 ml 0.24M 
PB per 100 ml) for 2 hours and then frozen on 
dry ice in tissue freezing medium. The slices were 
kept overnight in a -80°C freezer. After 
defrosting, the slices were rinses in 0.1M PBthree 
times, twenty minutes each, to remove tissue 
freezing medium. Slices were then incubated in 
1% hydrogen peroxide in 0.1M PB for thirty 
minutes to pretreat the tissue. They were then 
rinsed twice in 0.02M potassium phosphate saline 
(KPBS) for twenty minutes. Afterwards, the slices 
were kept overnight in Avidin-Biotin-Peroxidase 
Complex. The slices were next rinsed three times 
in 0.02M KPBS ((0.7 mg/ml 3,3”- 
diaminobenzidine, 0.2 mg/ml urea hydrogen 
peroxide, 0.06M Tris buffer in 0.02M KPBS) ) for 
20 minutes each. Each slice was observed under a 
light microscope and then mounted onto a slide 
using crystal mount. 
 
Three-Dimensional Neuron Reconstruction and 
Morphological Analysis  
Three-dimensional reconstructions of successfully 
filled and properly stained neurons were done 
using Neurolucida software (MicroBrightField). 
The neurons were viewed with a 100x oil objective 
on an Olympus BX51 upright light microscope. 
Differential interference contrast (DIC) 
microscopy was employed to see otherwise 
invisible features of the sample. The neuron’s 
processes were traced manually while the program 
recorded the coordinates of the tracing, thus 
creating a three-dimensional reconstruction. In 
addition to the neuron, the pia and white matter 
were drawn. The Neurolucida Explorer program 
was used to measure 67 morphological variables 
of the reconstruction describing somatic, 
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dendritic, and axonal properties. See Appendix 2 
for descriptions. 
 
Affinity Propagation  
Affinity propagation is a clustering algorithm 
based on “passing messages” between data 
points6. It aims to combine the advantages of 
affinity-based clustering and model-based 
clustering. Affinity propagation is similar to k-
metoid clustering in that both algorithms output 
“exemplars” that either serve as representative 
data or the centers of the clusters. Unlike k-
metoid clustering, the exemplars are not chosen 
randomly in affinity propagation. Affinity 
propagation takes an input of real-valued 
similarities between data points, where the 
similarity s(i,k) indicates how appropriate a data 
point is to serve as an exemplar for data point i. 
Negative Euclidean distance is used to measure 
similarity to minimize squared error: for points xi 
and xk, s(i,k) = −||xi − xk||2. The key 
advantage of affinity propagation is that it does 
not require the number of clusters to be specified 
beforehand, unlike k-means cluster analysis. 
Instead, affinity propagation takes as input a real 
number s(k,k) for each data point k, such that data 
points with larger values of s(k,k) are more likely 
to be selected as exemplars.  

There are two types of messages 
exchanged between data points. The first type 
called the “responsibility” r(i,k), is sent from data 
point i to candidate exemplar point k, and 
represents how well-suited point k is to serve as 
the exemplar for point i, compared to all other 
potential exemplars for point i. The second type, 
called the “availability” a(i, k), is sent from 
candidate exemplar point k to point i, and reflects 
the compiled evidence for how appropriate it 
would be for point i to choose point k as its 
exemplar, taking into account the support from 
other points that point k should be an exemplar. 
r(i,k) and a(i, k) can be viewed as log-probability 
ratios. Initially, the availabilities are initialized to 
zero: a(i, k) = 0. Then, the responsibilities are 
computed as: 

 
Availabilities will eventually fall below 

zero as points are assigned to other exemplars. 
This will decrease the effective values of the input 
similarities, removing candidate exemplars from 
the competition.  

Whereas the competition is data-driven 
for responsibilities and all the candidate exemplars 
compete for the ownership of a data point, the 
availability update gathers evidence from data 
points as to which candidate exemplar would 
make a good exemplar. The availability a(i,k) is set 
to the self-responsibility plus r(k, k) plus the sum 
of the positive responsibilities candidate exemplar 
k receives from other points: 

 
Self-availability a(k, k) reflects evidence 

that k is an exemplar based on positive 
responsibilities sent to candidate exemplar k from 
other points: 

 
To evaluate the quality of a clustering 

produced by affinity propagation, we considered 
two aspects:  
(1) the number of points that are correctly 
classified  
(2) the number of clusters  

With affinity propagation, we make the 
assumption that the identities of the exemplars are 
known, and so the number of correctly classified 
points may artificially increase. Therefore, we 
compute the classification accuracy as the ratio 
between correctly classified points (excluding the 
exemplars) and the total number of points 
(excluding the exemplars). In addition, a low 
number of clusters is preferred.  
 
Results 
Database of three known interneuron subtypes  

We explored the use of affinity 
propagation to classify neocortical interneurons 
based on their morphological and physiological 
properties. In order to test the affinity propagation 
algorithm, we used a dataset where the identities 
of the neurons were known from previous 
studies12, 13, 17. More specifically, we used a 
physiology database that contained 337 
interneurons distributed as: 57 somatostatin-
positive cells (SOM+), 87 chandelier cells (ChC), 
and 193 parvalbumin-positive cells (PV+). The 
morphology database consisted of 111 
interneurons distributed as: 24 ChC, 55 SOM+ 
and 32 PV+. Lastly, there were 51 neurons in a 
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database that consisted of both morphology and 
physiology variables, formed by an intersection of 
the two databases. Its distribution was: 12 PV+, 
16 SOM+ and 23 ChC.  
 
Affinity propagation classification of interneuron 
morphologies  

The analysis of the morphology database 
resulted in 2 clusters (Figure 1). The first cluster 
consists of 84 neurons while the second cluster 
had 27 neurons. The first cluster had an exemplar 
of member 42, a SOM+ interneuron. It consists 
of: 22 ChC, 32 SOM+ and 30 PV+. Even though 
this cluster has an exemplar of SOM+ subtype, 
this cluster encompasses all the PV neurons with 
an accuracy of 93.75%. However, it only classifies 
26.19% of the SOM+ interneurons correctly. The 
second cluster consists of: 2 CC, 23 SOM+ and 2 
PV+. Its exemplar is member 83, a SOM+ 
neuron. Thus, 85.9% of the SOM+ neurons were 
correctly classified. This suggests that the second 
cluster with an exemplar of member 83 is truly 
representative of SOM+ neuronal subtype while 
the first cluster is representative of the PV 
subtype.  
 
 

 
Figure 1: Using 20 electrophysiological variables, 
110 interneurons were classified into 2 clusters by 
affinity propagation where the exemplars are 
members 42 and 83. 
 
 
Affinity propagation classification of interneuron 
physiologies  

The analysis of the physiology database 
revealed 3 distinct clusters (Figure 2). The first 
cluster consisted of 57 SOM+ neurons with an 

exemplar of member 21, also a member of the 
SOM+ subtype. Hence, 100% of the SOM+ 
neurons were correctly classified by the affinity 
propagation algorithm. The second cluster 
consisted of 8 PV+ and 87 CC neurons, where the 
exemplar was a part of the CC class (member 
322). It correctly classified 90.80% of the CC 
neurons. The third cluster consisted of 142 CC 
and 51 PV+ and had an exemplar of 326, a 
member of the PV class. While the exemplar was 
representative of the PV+ subtype, only 26.42% 
of the PV+ neurons were correctly classified.  
 
 

 
Figure 2: Using 67 electrophysiological variables, 
337 interneurons were classified into 3 clusters by 
affinity propagation where the exemplars are 
members 21, 322, and 326. 
 
 
Affinity propagation classification of interneuron 
joint databases  

The analysis of the interneuron joint 
database resulted in 2 clusters (Figure 3). The first 
cluster consisted of: 6 PV, 8 SOM, and 17 CC. 
The exemplar was member 4, a member of the PV 
subtype. It correctly classified a mere 19.37% of 
PV neurons. The second cluster consisted of: 6 
PV, 8 SOM, and 6 CC. The exemplar was member 
38, a member of the CC subtype. Only 30% of the 
CC neurons were correctly classified. 
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Figure 3: Using 67 morphological variables and 
20 electrophysiological variables, 50 interneurons 
were classified into 2 clusters by affinity 
propagation where the exemplars are 4 and 48. 
 
 
Discussion 
Affinity propagation: An Exploratory Tool for 
Classification of Neural Data  

In this study, we have explored the use of 
a new algorithm, affinity propagation, for the 
classification of neuronal data. We used a database 
of 337 neocortical GABAergic interneurons. 
Interneurons previously identified served as a 
ground truth, and acted as a measure for how 
accurate the algorithm was. The data was based on 
a collection of morphological and physiological 
data for each neuron. The classification accuracy 
we found was 0.56 for the Physiology database, 
0.45 for the Morphology database, and 0.40 for 
the combined Morphology + Physiology database. 
The accuracy consistently decreased with a smaller 
data set, containing less information on neurons. 
The affinity propagation algorithm is able to 
consistently distinguish somatostatin neurons as a 
unique class among all three databases. However, 
difficulty arose s when the algorithm is asked to 
differentiate between chandelier cells and 
parvalbumin cells. In the Morphology database 
and the combined database, the cells were 
grouped into a single cluster consisting of large 
components of both chandelier cells and 
parvalbumin cells as opposed to two distinct 
clusters. After simplifying the database to include 
only chandelier cells and parvalbumin cells, while 
excluding somatostatin-positive cells, the affinity 

propagation algorithm is able to separate the cells 
into two clusters but with low accuracy (< 0. 50 
for Physiology Database, the largest database was 
used).  
 The inability of the affinity propagation 
algorithm to separate chandelier cells and 
parvalbumin cells may be due to a number of 
potential reasons. One reason is that the 
chandelier cells and parvalbumin cells are 
morphologically and physiologically similar to one 
another.  Recent research shows that chandelier 
neurons are a subset of GABA-ergic cortical 
interneurons that are said to be parvalbumin-
containing and fast-spiking when 
innunostained16, thus distinguishing them from 
other GABAergic neurons, . Even though 
chandelier cells are truly distinct from other 
GABAergic neurons based on morphology with 
their unique axonal arbors, the affinity 
propagation algorithm correctly picks up this 
assumption. 

Our observations may also be explained 
by potential sources of error. With a smaller 
dataset, the affinity propagation algorithm greatly 
decreased in accuracy. An additional error found 
in the dataset was that some of the measurements 
of input resistance were incorrectly normalized. 
The values less than 1 for resistance are reported 
in Giga Ohms while the values greater than 20 are 
reported in Mega Ohms.  
 Despite the moderate success of affinity 
propagation algorithm, we have insufficient 
evidence to reject it as an exploratory tool for 
neuronal classification. With a large enough 
dataset encompassing a much greater number of 
interneuron subtypes, we may be able to improved 
classification by affinity propagation. Such a 
dataset is in progress as we are manipulating the 
Windows Application Programming Interface 
(API) in an effort to automate the extraction of 
morphological data from Neuroexplorer. We have 
automated the clicks necessary to obtain the data 
of 67 morphological variables from a single 
neuron but we would like to implement this for 
the entire extraction process. Our goal is to create 
a dataset encompassing an estimated 1000 
neurons of diverse interneuron subtypes, each 
characterized by an anatomical 3D reconstruction 
and whole-cell patch-clamp recording.  

One great issue with classification 
schemes of neocortical neurons is that many 
markers, often transcription factors, exist to label 
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interneuron subtypes while there are few known 
markers to label pyramidal neurons. Moreover, 
pyramidal neurons account for a much larger 
percentage of the neocortex compared to 
interneurons (~ 4x as much). In the future, we 
would like to create an algorithm that separates 
pyramidal neurons from interneurons and will 
continue to research ways to classify pyramidal 
neurons. Affinity propagation and additional 
machine learning techniques have the potential to 
serve as powerful exploratory tools to build such 
classification schemes. 
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Appendices 
Appendix 1: Electrophysiological Variables. 
Action potential properties measured from 
response to twice threshold, 500-ms current 
injection from first action potential (AP1) and 
second action potential (AP2). AP2 variables not 
listed as the same measurements were made for 
AP2 as listed for AP1. 

 
 
Appendix 2: Morphological Variables. 
Variables were extracted using the Neurolucida 
Explorer Program by MicroBrightField. 
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Appendix 3: Using 20 electrophysiological 
variables, 337 interneurons were visualized by 
creating the scatter plot matrix above of the two 
principal components of the neuronal data. 

 
 
Appendix 4: Using 20 electrophysiological 
variables, a color map was made of 337 
interneurons and hierarchical clustering was done, 
revealing 3 distinct clusters as did affinity 
propagation. 
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