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Introduction: 
The subset sum problem is a well-known member of the NP-
complete complexity class: given a set of integers A and 
some constant c, is there some subset of A which sums to c?  
 

There have been no known algorithms or methods to solve 
the value-unbounded, general-case subset sum problem in 
polynomial time. A naive algorithm performs in exponential 
time by cycling through the possible subsets of A until it has 
either seen all subsets or found one that sums to c. A 
common pseudo-polynomial algorithm employs a dynamic 
programming method whose complexity is polynomial with 
respect to the length of the set and the range of the inputs, 
O(n(M-N)), where n is the length of the set and M-N is the 
range of inputs; however, this solution is not truly 
polynomial, as it is polynomial with respect to M-N, which 
is exponential in its number of bits. Approximate algorithms 
exist which can be modified to find exact solutions; 
however, they too degrade to being exponential in the 
number of bits required to represent elements in the set.  
 

In contrast to pre-existing algorithms, the method described 
here does not concern itself with the various subsets that 
exist within the input set, but rather searches the solution 
space of a set of linear constraints when applied to an input 
set to deduce if a solution can exist; this method is a strategy 
which may be employed to find solutions satisfying the 
constraints of the subset sum problem in time polynomial 
with respect only to the length of the input, having general-
case applicability on the basis of universally occurring 
properties in sets satisfying the problem. 
 
Conventions, Definitions, and Properties: 
Given a set A of n greater than four elements and an instance 
of subset sum for a constant c, satisfied by a subset S of 
length greater than 2 (the algorithm first catches trivial cases 
for S of length 1 or 2), index A as follows:  

 
 

The strategy outlined will conform A to a set of linear 
constraints which will reveal a subset sum-satisfying subset 
if one exists. To this end, define a subset membership vector 
m specific to A such that the ith value in m is 1 if the ith 
element of A is an element of a given subset S of A summing 
to c, 0 otherwise. If such a subset S exists, m exists and 
encodes S within A.  
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If S exists, the four following linear constraints surrounding A, 
S, and m will be satisfied:  
1. S sums to c.  

 
 

2. S has finite length t.  

 
 

3. There exists an index r for which the rth element of A is or 
is not in S.  

 
 

4. There exists an index s for which the sth element of A is or 
is not in S.  

 
 

Using the above constraints, an underdetermined system Z can 
be constructed in the parameters of the constraints listed:  
 

 

 

The algorithm given below explores the solution spaces of a 
polynomial number of forms of Z to construct the 
characteristic membership vector m for some subset S of A 
summing to c if one exists. The convention for the 
determining solution space of Z(A, t, r, vr, s, vs) is to first form 
an equivalent set representation A’ by interchanging index 3 of 
a with index r, interchanging index 4 with index s in A, and 
solving Z(A’, t, 3, vr, 4, vs) for m’ equal to m with likewise 
index permutations using matrices.  

 
To represent the solution space of Z(A’, t, 3, vr, 4, vs), the 
outlined algorithm follows the convention of expressing 
solution space with respect to a particular solution of the 
system and any linear combination of the null space of the 
multiplier of Z(A’, t, 3, vr, 4, vs).  
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The followed solution convention is simple forward 
elimination, followed by back-substitution. The particular 
solution is chosen such that all free variables (the rank of the 
multiplier of the system is 4; given its representation, the 
free variables are a’5, . . . a’n) are assumed to be zero. The 
null space is then composed of n-4 special solutions each 
respectively assuming one unique mi, i = 5, . . ., n to be 1, all 
other mj to be 0. This convention then allows m’ for any A’ 
to be expressed as follows:  

 

(10) 

The prescribed convention thus provides a representation of 
the solution space that may be explored to determine if a 
valid m’ satisfying subset sum exists for a given Z(A’, t, 3, 
vr, 4, vs): each vector of the null space can be contributed to 
m’ one or zero times, and, together, the sum of the particular 
solutions and applicable vectors of the null space will take b1 
and b2 (the non-zero and non-one values in the particular 
solution unique to the values of the first two elements and 
the chosen vr and vs) to 0 or 1. For any solution space for 
which this applies, the resulting m’ will be a vector of 0s and 
1s encoding the membership of S. Due to the form found as 
a result of convention of this method, the first four elements 
of A’ are referred to as the current window, the first two 
elements are the balance elements, and the second two 
elements are the pivot elements.  

The algorithm below attempts to reveal and exploit solution 
space properties which may exist universally among all sets 
for some window configuration if the set satisfies subset 
sum to form m’. If the found properties are, in fact, 
universal, the algorithm outlined is an exact, general-case 
algorithm for the subset sum problem.  

In order to determine, view, and exploit these properties, the 
algorithm utilizes a construct which will be called a 
directional contribution table. A directional contribution 
table is a tabulation of the contributions of the elements of 
the null space towards bringing the balance values of the 
particular solution towards 0 or 1. A directional contribution 
table D tabulates the contribution of a given vector in the 
null space of Z towards paired balance targets and is defined 
with respect to the solution space (as expressed in the 
previously given convention) of a system S(Z) and given 
target values of the balance points within the particular 
solution.  
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(11) 

 

For a given set A satisfying subset sum, there appears to exit a 
window configuration for which in Z(A’, t, 3, vr, 4, vs) and 
D(S(Z), t1, t2), t, vr, vs, t1, and t2 apply to an extant S, 
characterized by specific properties within D. The following 
(possibly non-exhaustive) property has been determined and is 
employed by the algorithm to determine m’ encoding S within 
A’:  

(A) If the length of S is 4, m’ is the exact solution of S(Z) 
when the elements of the window are the elements of S and 
membership variables are set appropriately. If the length of S 
is 5, m’ is the exact solution of S(Z) plus the vector 
representing the column of D for which D1,i and D2,i are both 1 
when membership variables are set appropriately. In all other 
cases for a set A of length greater than four, m’ may be formed 
by taking the vectors represented by each column i for which 
the absolute value of D3,i is less than one.  

Justification of Properties: 
Within the parameters of the convention listed above, manual 
algebraic reduction in the general case yields the following 
closed forms for the variables of the particular solution of 
S(Z), the null space of S(Z), and values within the directional 
contribution table:  

 
 

 

 

 

 

 

 

 

( 

 
(17) 

 
 

 
(19) 
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Property (A) is to say that an instance of a subset S of A 
summing to c exists under the following constraints:  

(1) The length of S is four, and when the elements of S are 
set as the window of A’, m’ is found encoding S within A.  

Assume all members of S are the current window of A’, and 
set membership to t1 = 1, t2 = 1, vr = 1, vs = 1.  
 

 

 

 

 

 

 

 

Thus, the particular solution of S(Z) for this configuration is 
  

 

encoding S and showing (1) to be true. The above also 
extends to show that (1) is true for any instance of S having 
length less than four for which all elements of S are within 
the window of A’ and membership is set appropriately.  

The length of S is 5, and when all but one element of S is set 
as the window of A’, m’ encoding S within A’ is found by 
adding to the particular solution the vector of the null space 
corresponding to D1,r = D2,r = 1.  

Assume four members of S are the current window of A’, 
and set membership to t1 = 1, t2 = 1, vr = 1, vs = 1.  
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Solving for the values in the directional contribution table:  

 

 

 

 

showing (2) to be true. The above may also be generalized for 
any S having length less than or equal to five for which all but 
one element of the subset exists within the window and 
membership is set appropriately.  

(3) In all other cases, S of length t >5 of A exists if and only if 
there exists a window configuration and membership 
assignment t1, t2, vr, vs such that there exists a set I, length t’ = 
t - t1 - t2 - vr - vs satisfying D3,Ij <1 and ΣD1,Ij= ΣD2,Ij  = 1 for 
all j in the range of the length of I.  

Suppose that such a window exists. It is given that 
  

 

and  

 

Using the closed forms derived earlier in this section: 
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Repeating the same process as was used in the justification 
of (1), m’ is derived encoding S within A’:  
 

 

 

 

Thus, if such a window exists, a S of A’ of length t exists and 
is encoded by the derivable m’.  

Suppose S of length t of A’ exists. Let  
 

 

 

 

 

Call window W = {A’1, A’2, A’3, A’4} and define 
membership of the window as follows:  
 

 

 

Under this membership assignment,  
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Likewise,  
 

 

 

 

Thus, if S of A exists, ΣD2, Ij = ΣD1,Ij = 1.  

By (3), all D3,Ij for the window must satisfy  
 

 

Expanding the variables and simplifying, for δ1δ2 >0, 
  

 

and for δ1δ2 <0,  
 

 

It can be shown that the above is satisfied for some window 
configuration by showing that a tighter contained constraint is 
also satisfied for some window:  
 

 

 

Summing the D3,Ij,  
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The numerator and denominator of this expression are both 
polynomial with respect to t’ (the numerator is of degree 1, 
and the denominator of degree 2); given that t’ >1, all 
coefficients of t’ in the numerator appear as a product in the 
denominator, and all non-t’ constants in the numerator 
appear in the denominator, the result is bounded by (-t’, t’).  

Given that the above is bounded, viewing the second 
constraint, assert that  
 

 

Thus  
 

 

meaning  
 

 

Noting that  
 

 

it can be seen that a window configuration composed of the 
minima and/or maxima (and/or points whose values are set 
according to these) with membership appropriately set of si 
can be made among the set (or possibly created) to satisfy 
both these (and thus the primary) constraints.  

Additionally, note that if an initial ordering of the set is 
enforced in which the set is ordered by the absolute value of 
its elements (increasing or decreasing), enumerating and 
swapping all possible windows of A in a pair-wise order (1 
with 2, 1 with 3, . . ., 2 with 3; followed by pair 1 with pair 2 
.. . . pair 2 with pair 3) creates such a set ordering for which 
a window may satisfy  
 

 

in the same window assignment as the previous constraint.  

This shows, then, that if S of length t of A exists, there exists 
a window configuration and membership assignment t1, t2, 
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vr, vs such that there exists a set I, length t’ = t - t1 - t2 - vr - vs 
satisfying D3,Ij <1 and ΣD1,Ij = ΣD2,Ij = 1 for all j in the range 
of the length of I.  

Algorithm & Complexity: Available upon request to CUSJ. 
 
Discussion: 
A simple implementation of the algorithm was written in Java 
using 64-bit long integers and tested for accuracy to reveal 
efficacy of the algorithm. To test and explore the algorithm’s 
performance, a driver was implemented which generates 
random sets of integers of a given length n, having range -2n2 
to 2n2 and tests whether the set satisfies subset sum for c equal 
either to the sum of a randomly chosen subset or a random 
number unrelated to the set using (a) a conventional 
exponential algorithm and (b) the SUBSETSUM routine for n 
permutations of the set. Under the parameters of this test, 
failure occurs when the output of (b) differs from that of (a). 
For each n from 1 to 20, 1,000,000 such sets were generated 
and used to test the implementation of the algorithm. 
Following all 20,000,000 trials, the success rate was 100%, 
exhibiting precisely 0 failures. To further explore general-case 
applicability of the algorithm, a reduction to subset sum from 
3-SAT, another NP-complete problem, was implemented and 
tested, also exhibiting precisely 0 failures over all trials. 

The method can be reduced to an O(n4) approximation method 
by only using the subset of possible window configurations 
represented by shifting the entire set to the left (wrapping the 
element of the first index to the last position in the set) n times 
and repeating the CONSTRAIN procedure. Performing the 
same testing as was performed on the exact method as was 
outlined in section 2.2, yielding a success rate of 99.95% over 
20,000,000 trials. The fact that such accuracy is yielded from a 
derived approximation which performs in the somewhat 
practical time of O(n4) gives reason to believe that such a 
method may call into question the reliability of the assumption 
that “practically many” naturally occurring instances of NP-
complete problems cannot be solved in polynomial time.  

Conclusion: 
An algorithm has been made that reduces the conditions under 
which a given set satisfies the stipulations of the subset sum 
proposition to a set of linear relationships, answering question 
of whether a set satisfies subset sum may be answered in a 
number of steps strongly polynomial with respect to the length 
of the input. Following the justification, implementation and 
exploration of applications, as well as testing of this algorithm, 
a rate of accuracy and observed applicability was found that 
calls to question the reliability of assumption that “practically 
many” naturally occurring instances of NP-complete problems 
cannot be solved in polynomial time. 

 

 
 
 
 


