Poliovirus Receptor CD155 Over-Expression Effect on Migration in C6 Glioma Cells

Zahra Bhaiwala^{1,*}, Christine Marshall²

¹Columbia College, Columbia University, New York, NY 10027, ²Phillips Academy, Andover, MA, 01810

Abstract

Cell migration plays a key role in brain cancer invasion, an early step in metastasis, and proteins that regulate migration are often up-regulated in tumor cells. The poliovirus receptor CD155 has recently been shown to affect migration levels of select malignant glioma strains, fueling the exploration of treating brain cancer with oncolytic virus recombinants. In the beginning phase of experimentation, we analyzed the migratory behavior of control C6 gliomas through two rounds of transfilter assays. In order to explore the function of CD155 in glioma migration, we then conducted two over-expression experiments with the use of a full-length cDNA expression vector and compared the resulting migration rates to control data. We found that an average of 304.25 control cells cross our transfilters after 5.5 hours, and an average of 354.5 cells transfected with the PVR expression vector. Our results reflected a 16.5% increase in cell migration due to an increased presence of the protein CD155. In order to confirm that CD155 was expressed in the rat C6s, we subsequently conducted two Western Blots: one comparing control C6s and transfected C6s, and the other running control C6s next to a human

U87 glioma control cell line. The blots establish that CD155 is indeed present in both of these human and rat strains of glioma, and that our over-expression was successful.

Key words: Glioblastoma multiforme; tumor migration; poliovirus receptor CD155; protein over-expression.

Introduction

After the human brain completes its development soon after birth, the vast majority of its cells enter the G0 phase, in which they never divide again. One exception to this rule is when a brain

tumor develops as a result of abnormal, unregulated growth of cells. The atypical brain cells re-enter the in these tumors. The position of the tumor is also crucell cycle because of alterations in any of a large number of genes that control cell division and growth. Astrocytomas and oligodendrogliomas are types of gliomas that are the most common primary tumors of the adult brain. Primary brain tumors arise from cells of the brain itself rather than traveling, or metastasizing, to the brain from another location in the body like other known forms of cancer. Tumors are generally classified in four grades, with grade 1 being the most benign and grade 4 being the most malignant. Signs that the tumor is growing rapidly include cells undergoing division (mitosis), the presence of newly-formed blood vessels (angiogenesis), and evidence that the tumor is outgrowing its blood supply (necrosis). Typically, malignant gliomas show an area of central necrosis surrounded by a highly cellular rim of viable tumor. Malignant gliomas have remained resistant to therapy and are capable of spreading long distances within the brain (Madsen, 2006).

In glioblastoma multiforme (GBM), the most aggressive form of brain cancer, tumor cells disperse so exten-

sively that common treatment approaches such as surgical resection or radiation therapy are not effective in checking progression. Unfortunately, significant infiltration of normal brain matter is not limited to the most malignant of tumors. The invasive behavior expressed by all levels of malignant gliomas has limited the effectiveness of local therapies and contributes to the high mortality rate seen cial. Brain stem gliomas are particularly difficult to treat, regardless of their grade. The brain stem is such a complicated and delicate part of the brain that completely removing the tumor is highly unlikely. Unfortunately, high doses of radiation are not recommended for treatment, as this may cause too much damage to the normal brain stem (Giese, 2003).

Having an agent that blocks migration is key to managing glioblastoma multiforme. Interventions to control the spreading of glioblastoma multiforme have the potential to slow the clinical course of the disease and improve

*To whom correspondence should be addressed: Columbia College, Columbia University, New York, NY 10027. zsb2104@columbia.edu

42

Invasion and Migration of Malignant Gliomas

Tissue invasion by malignant gliomas is a multi-step ology of RNA viruses. process. Central to this is the ability of transformed cells There are three serotypes of poliovirus, PV1, PV2, and to crawl through the extracellular matrix. The initial PV3, each with a slightly different capsid protein. The capsid proteins define cellular receptor specificity and vistep requires receptor-mediated adhesion of tumor cells to matrix proteins, followed by a second phase of degrus antigenicity. PV1 is the most common form encounradation of the matrix by tumor-secreted proteases. The tered in nature, however all three forms are extremely ability of invasive glioma cells to navigate these diverse infectious. Wild polioviruses can be found in approxianatomic structures and molecular substrates raises the mately 10 countries. PV1 is highly localized to regions question of whether specific mechanisms and phenotypes in India, Pakistan, Afghanistan, and Egypt, but followof invasive cells are involved in dispersion following speing outbreaks of poliomyelitis in 2003–2004 it remains cific pathways (Gillespie, 1999). widespread in West and Central Africa. Wild poliovirus Gliomas typically invade the brain by migrating long type $\hat{2}$ has probably been eradicated; it was last detected in October 1999 in Uttar Pradesh, India. Wild PV3 is found in parts of only five countries (Nigeria, Ni-

distances through white matter tracts and by infiltrating cortex and subcortical gray matter structures. When migrating through brain white matter, gliomas move in a ger, Pakistan, India, and Sudan) (Merrill, 2004). manner remarkably similar to that previously described Poliovirus, like other picornaviruses, is characterfor neural progenitor cells. Given the submicrometer size ized by a single positive strand genomic RNA. Inof the extracellular spaces that are present in the tightfection occurs via the fecal-oral route; meaning that ly packed neuropil of the brain, most other motile cells one ingests the virus, which then replicates within would likely find it impossible to migrate because there the alimentary tract. In 95% of cases only a primary, would be no room to allow a lamellipodium to form. The transient presence of the virus in the bloodstream unique form of motility shared by gliomas and neural prooccurs (called a viremia) and the poliovirus infection is asymptomatic. In about 5% of cases, the genitors reflects adaptations that these cells have to make to a uniquely challenging environment with small effecvirus spreads, and replicates in other sites such as tive pore sizes (Beadle, 2008). One of these adaptations brown fat, the reticuloendothelial tissues, and musis in how glioma cells use myosin II, the major source of cle. This sustained replication causes a secondary viremia, cytoplasmic contractile force (Gillespie, 1999). Myosin and leads to the development of minor symptoms such II is absolutely required for migration in the brain, where as fever, headache and sore throat. Paralytic poliomyelitis its major role is to push the bulky nucleus and cell body occurs in less than 1% of poliovirus infections. Paralytic through the small pores found within the brain matrix. disease occurs when the virus enters the central nervous This feature distinguishes glial cells from other cancers system (CNS) and replicates in motor neurons within the because other cancers do not require myosin II for the spinal cord, brain stem, or motor cortex, resulting in the collapse of their nucleus. The progenitor-like motility of selective destruction of motor neurons; leading to either glioma cells represents a method of migration that is spetemporary or permanent paralysis and, in rare cases, to cifically adapted for traversing the densely packed neurorespiratory arrest and death (Pliaka, 2007). There are two pil of the mature brain (Beadle, 2008). key mechanism by which poliovirus evades the immune system. First, it is capable of surviving the highly acidic Poliovirus conditions of the gastrointestinal tract, allowing the virus to infect the host and spread throughout the body via the Poliovirus, among other human pathogenic viruses, is being studied increasingly along with the development of lymphatic system. Second, because it can replicate very novel therapeutic agents against malignant glioma. Poquickly, the virus overwhelms the host organs before an liovirus, the causative agent of poliomyelitis, is classified immune response can be mounted. In addition, there are within the enterovirus genus of the family Picornavirimore than two such mechanisms; additional ones include dae. Poliovirus is composed of a RNA genome and a proinhibition of RNA and protein synthesis, and inhibition tein capsid. The genome is single-stranded positive-sense of protein secretion, both of which interfere with the IFN RNA genome that is about 7500 nucleotides long, while respsonse. Fully assembled poliovirus leaves the confines

CUSI

the viral particle is about 30 nanometers in diameter with icosahedral symmetry. Because of its short genome and its simple composition, poliovirus is widely regarded as the simplest significant virus. First isolated in 1909 by Karl Landsteiner and Erwin Popper, poliovirus has become one of the most well-characterized viruses, and has become a useful model system for understanding the bi-

Copyright: © 2011 The Trustees of Columbia University, Columbia University Libraries, some rights reserved, Porter, et al. Received Jan. 2, 2011. Accepted Jan. 26, 2011. Published April 1, 2011.

Open-Access Publication | http://cusj.columbia.com

of its host cell 4 to 6 hours following initiation of infec- shh and gli transcription factors have been implicated in tion in cultured mammalian cells. The mechanism of viral release from the cell is unclear, but each dying cell can release up to 10,000 polio virions (Merrill, 2004)

CD155/PVR

VIROLOGY

The cellular life cycle of poliovirus is initiated by binding to the cell surface receptor CD155. The virion is taken up via endocytosis, and the viral RNA is released. Translation of the viral RNA occurs by an IRES-mediated mechanism. The polyprotein is then cleaved, yielding **Oncolytic Applications** mature viral proteins. The positive-sense RNA serves as template for complementary negative-strand synthesis, producing double-stranded replicative form (RF) RNA. Many positive strand RNA copies are produced from the erty related to the fact that tumor cells often have aberrant single negative strand. The newly synthesized positivesense RNA molecules can serve as templates for translation of more viral proteins, or can be enclosed in a capsid to form progeny virions. Lysis of the infected cell results in release of infectious progeny virions.

The presence of CD155 is thought to define the animals that can be infected by poliovirus. CD155 has only been thought to be on the cells of humans, higher primates, and Old World monkeys. Poliovirus is however strictly a human pathogen, and does not naturally infect any other species. CD155 is a Type I transmembrane glycoprotein in the immunoglobulin superfamily. Commonly known as Poliovirus Receptor (PVR) due to its involvement in the cellular poliovirus infection in priestablishment of intercellular adherens junctions between epithelial cells. Like many other receptor

molecules used by picornaviruses, CD155 is a long, highly glycosylated, single-span surface molecule. While its predominant function is related to cellular adhesion and activation, CD155 also activates natural killer cells and has been reported to play a role in cell motility and tumor cell invasion. It consists of 3 successive Ig-like domains (D1, D2, and D3), a transmembrane domain and a Cterminal cytoplasmic domain. The human CD155 gene is expressed in $\hat{4}$ splice variants (α , β , γ , and δ) of which 2 variants (β and γ) are lacking the transmembrane domain and are released from the cell subsequent to their expression. The CD155 α and CD155 δ isotypes differ only in established glioma cell lines used in preclinical evaluatheir cytoplasmic domains and can both function as PV receptors Zhang, 2008).

CD155 protein binds specifically to the extracellular matrix component vitronectin. Confirming the activity pattern of the CD155 promoter in the developing spinal cord, morphogenic factors active in the floor plate and notochord—the transcription factors sonic hedgehog (shh) and its downstream gli effectors-strongly activate the CD155 promoter and induce CD155 expression. Both

the oncogenesis of neuroectodermal tumors. Thus, the role of shh and gli transcription factors in CD155 gene regulation suggested that CD155 expression may occur ectopically in neuroectodermal malignancies. Evidence for CD155 expression in neuroectodermal tumors stems mainly from studies of neuroectodermal tumor cell lines that are susceptible to oncolytic poliovirus-based agents (Solecki, 2002).

Viral oncolvsis has been recently recognized as a new development in the treatment of malignant glioma. Oncolytic viruses must specifically target tumor cells, a propinnate immune reponses. The first reported incidences of viral oncolysis, over a century ago, were due to nonintended exposure to naturally occurring viruses or after administration of live attenuated vaccine strains. In the last twenty years, new prospects for genetically manipulating viruses have opened possibilities for increasing the tumor specificity and lowering the toxicity of oncolytic viral agents. These efforts have given rise to oncolytic adenoviruses, herpesviruses, reoviruses, vesicular stomatitis virus, and most recently, polioviruses. The antineoplastic effects of oncolytic viruses are subject to multifaceted interactions with the host cell. The primary prerequisite for viral oncolysis is expression of cellular receptors mediating viral entry in malignant cell types. In preparation for clinical applications using oncolytic viruses, analysis mates, CD155's normal cellular function is in the of viral receptor expression in the target tissue is highly desirable in order to select tumor types and patients most likely to respond favorably to therapeutic intervention.

Cell adhesion molecules of the immunoglobulin superfamily are aberrantly expressed in malignant glioma. Amongst these, the human poliovirus receptor CD155 provides a molecular target for therapeutic intervention with oncolytic poliovirus recombinants. Analysis of 6 cases has indicated that CD155 over-expression is commonly associated with high-grade malignant glioma (HGL). CD155 expression levels in tumor tissues corresponded to those in primary tissue cultures derived from the tumors. Furthermore, CD155 expression in primary glioma explant cultures was equivalent to that found in tions of oncolvtic poliovirus recombinants. Poliovirus has been genetically modified through insertion of regulatory sequences derived from human rhinovirus type 2 to selectively replicate within and destroy cancerous cells. Successful oncolysis with the use of poliovirus infection depends directly on the presence of CD155 in targeted tumors (Sloan, 2005).

Poliovirus has a plus-strand RNA genome, the translation of which depends on a tissue-specific internal ribo-

Medium (DMEM) with 4.5 g/L glucose, L-glutamine, somal entry site (IRES) within the 5' untranslated region of the viral genome, which is active in cells of neuronal and sodium pyruvate supplemented with 10% Fetal Boorigin and allows translation of the viral genome without vine Serum and 1X Penn Strep (Mediatech). Cells were incubated at 37°C in a NAPCO Series 8000 WJ CO2 ina 5' cap. Non-transductional targeting involves altering the genome of the virus so it can only replicate in cancer cubator under a humidified 5% CO2 atmosphere. Cells were passaged every seven days onto fresh poly-L-lysinecells. This can be done by either transcription targeting, where genes essential for viral replication are placed uncoated T75 flasks, and medium was changed every three der the control of a tumor-specific promoter, or by atdavs. tenuation, which involves introducing deletions into the viral genome that eliminate functions that are dispens-Transfection of cDNA expression vector able in cancer cells, but not in normal cells. Gromeier et We obtained glycerol stocks of E. coli transformed with al. replaced the normal poliovirus IRES with a rhinovirus a 4.395 kb pCMV-SPORT6 expression vector (Image IRES, altering tissue specificity (Gromeier, 2000). The re-ID: 3902226, American Type Culture Collection), which sulting PV1(RIPO) virus was able to selectively destroy used a 50 µg/µl ampicillin marker and was stored indefimalignant glioma cells, while leaving normal neuronal nitely at -80°C. DNA was isolated according to standard cells untouched. plasmid preparation procedures and absorbance was mea-Although the poliovirus itself has been demonstrated sured at 260 nm via spectrophotometer (BioMate).

in previous studies to have an oncolytic effect in certain One day prior to transfection, the cells were trypsintypes of gliomas, it is still somewhat unclear what the ized from the T75 flask and added to 10 mL of growth actual role of the receptor CD155 might have, if any, in medium. The mixture was then spun in a tabletop centrithis relatively new discovery of cancer treatment through fuge (2000rpm for 5 minutes) and resuspended in 5 mL viral infection. In glioblastoma, the most aggressive form of antibiotic-free growth medium. Cells were trituof brain cancer, tumor cells disperse so extensively that rated and then counted by inserting 10 µl into a hecurrent treatment approaches such as surgical resection mocytometer and approximately 5x105 cells were or radiation therapy have little effect in checking proplated into 60 mM tissue culture dishes containing gression. The survival of patients with malignant gliomas, 3 ml of growth medium. and a median survival time of patients with malignant In two separate sterile eppendorf tubes, the apgliomas is still anticipated as a bleak 12 to 14 months. propriate amount of DNA (based on absorbance Invasive cells remaining after the surgical resection sigvalue) and 20 µl of Lipofectamine 2000 reagent nificantly contribute to the demise of the patient. Any were diluted in 50 µl of serum-free medium. Both successful treatment will have to treat the invasive portubes were mixed gently and incubated for 5 mintion of the tumor and the core lesion. Specifically targetutes at room temperature. The tubes were combined, incubated for another 20 minutes and the ing invasive glioma cells remains an interesting concept entire mixture was added to the transfection dishes. 6 because invasiveness must be a common characteristic of most tumor cells remaining after surgical resection. Behours after transfection, the media was changed to regucause it has been increasingly shown that glioma invasion lar growth media (DMEM + 10% FBS + P/S). Cells were is regulated by distinct trigger mechanisms, downstream allowed to grow for 48 hours prior to transfilter assays. effector molecules of the invasion process represent the best treatment targets. It has been previously found that Transfilter Migration Assay CD155/PVR was highly expressed in both U87 human In preparation for the migration assay, the C6 cells were glioma cells and primary glioblastoma tumor tissue, and trypsinized from the tissue culture dishes, added to 5 mL that inactivation of CD155/PVR reduced cell migration growth medium, and spun at 1600 rpm for 5 minutes. in vitro (Sloan, 2005). These findings suggest a novel role Cells were resuspended in 1-2 mL of serum-free medium for CD155/PVR in regulating motility and has prompted and kept on ice. 3µm pore Fluoroblok transfilters (BD me to explore this function further in the C6 rat glioma Biosciences) were coated with 10% type 1 rat tail collacells we have here in lab by conducting an over-expresgen (BD Biosciences) in sterile de-ionized water at 37°C sion experiment to mirror the relationship that has been for 1 hour. 500 µl of serum-containing growth medium was added to the bottom of each well beneath the filter to found in the knockdown experiments. stimulate migration in a single direction (top to bottom). Materials and Methods Cells were counted and the number was adjusted so that 5x105 cells were added to the top of each transfilter in a Cell Culture 200 µl mixture. Cells were left in the incubator to run on

CUSI

C6 rat glioma cell lines (Canoll Lab, Columbia Univerthe filters for 5.5 hours. sity) were cultured in Dulbecco's Modification of Eagle's Post-migration, cells were fixed in 4% paraformalde-

Figure 1 C6 Control cells remaining on top of the Figure 2 C6 Control cells at the bottom of filter after a 5.5 hour migration period.

filter after 5.5 hour migration period.

Figure 3 PVR-Transfected cells at the bottom of filter after 5.5 hour migration period.

phate-buffered saline (PBS) at room temperature, the cells

were stained with the nuclei stain hoechst (Calbiochem/EMD) at a 1000X dilution of 10µg/10µl for 30 minutes at 4°C. The cells were washed again 3 times with PBS and then plated onto glass coverslips for analysis.

VIROLOGY

Data Analysis

The number of nuclei on the bottom of each of both control filters was counted in two low power fields (25X) of a Zeiss Axioplan microscope and averaged. The nuclei on the top of the filters was also

counted in two low power fields and averaged in order to further assess the rate of migration in normal C6 cell lines.

Lysates

Lysis Buffer (RIPA buffer) was prepared (1 M ph 8 Tris, 5 M NaCl, 20% NP40, 10% SDS, distilled H20 up to 50 mL) and stored at 4°C. 5X Running Buffer (7.5 g Tris, 47 g Glycine, 25 mL 10% SDS, distilled H20 up to 500 mL), 5X Transfer Buffer (9.5 g Tris, 47 g Glycine, distilled H20 up to 500 mL), and 10X TBS (6 g Tris, 44 g NaCl, dH20 up to 500 mL, pH 7.4) were prepared and kept at room temperature.

0.5 mL of EDTA was added to 4.5 mL of lysis buffer to make a 10X stock of protease inhibitor cocktail. The cocktail was then diluted 1:10 in lysis buffer (50µl to 450µl). Cells were washed twice with PBS and 250µl of the lysis buffer mixture was added directly to the tissue culture dish. Cells were scraped and pipeted to an epindorph tube, vortexed for 10 seconds and returned to ice, and then vortexed for 30 seconds. Cells were then spun for ten minutes at 1600 rpm and the supernatant

hyde at 4°C for 20 minutes. After 3 washes with phos- was pulled off into a new epindorph. The lysates were snap-frozen with liquid nitrogen and stored at -80°C until quanitation.

Western Blot Analysis

CD155 expression levels were determined by using a Western blot procedure. 24 µl protein lysate was mixed with 8 µl 4X sample buffer (20 mL 40% Glycerol, 4 g SDS, .01 g .02% Bromophenol-blue, 5 mL beta-mercaptoethanol (BME), 45mL dH20) and boiled for ten minutes. 10% stacking and separating acrylamide gels were prepared according to PAGE Recipe Calculator (Chang Bioscience) and placed into the chamber (VWR), followed by the addition of 1X running buffer up to the brim of the apparatus. The protein mixture, along with Prestained Standard (BioRad) was then loaded into the wells and run at 110V for approximately two hours. After the gel was run, it was placed directly into 1X transfer buffer. The nitrocellulose was prewet in sterile water to activate and the gels were subjected to overnight electrophoretic transfer (.03amp) following standard procedures. Membranes were rinsed in sterile water and then blocked with 50 mL of Tris-buffered saline Tween-20 with 0.25 g BSA (TBSTB) + 5% milk for one hour on the shaker at room temperature. After soaking, the blots were treated with Anti-Necl-5 rat monoclonal antibody Clone 1A8-8 (Gift of Dr. Yoshimi Takai, stored at -80°C) diluted 1:1000 in TBSTB and incubated overnight at 4°C. After the removal of the primary antibody and 3 consecutive ten-minute washes of TBST, the last with TBSTB + 5% milk, the membranes were treated with secondary Anti-Mouse IgG-Alkaline phosphatase antibody produced in goat (SIGMA, stored at 4°C) diluted 1:10,000 in TBSTB and set on the shaker for 1 hour. After three thorough rinses of the blots with TBST, they were treated with BM

Purple (Roche) until the appearance of protein bands-260, and 287, respectively. The numbers of cells after which they were stored at 4°C in TBST. transfected with the PVR expression vector that transversed the matrix were 327, 367, 332, and 392. The average of migrating control cells was 304.25, in comparison with the transfection aver-With two successful Western Blots (See Figures 5 and increase of 16.5%. By conventional standards ac-6), we were able to formulate a comprehensive picture of C6 glioma migration influenced by transfection of PVR. To determine if increased synthesis of CD155 afof 0.0957), this difference is not considered to be remarkably significant. It is important to note, fects the migration of C6 glioma cells, we captured two images of each control and transfection well, as well as however, that the second round of transfilter assays one field each of the cells remaining on the top of the yielded a 32.4% increase in glioma migration as a filter (See Figures 1, 2, 3). It was not immediately prevaresult of the transfection (See Figure 4).

Results

age of 354.5. Our data reflect an average percent cording to a statistical T-test (two-tailed P-value lent through qualitatively assessing cell numbers that a In the first Western Blot, which compared CD155 substantial increase in cell migration occurred between protein levels in C6 control cells to C6 cells transfected the control and transfected cells, but a detailed count rewith the PVR over-expression vector, we could confirm from the location of the bands (around 40 kDA, just like vealed an increase. The nuclei counts for the control fields were 315, 355, the mass of CD155) that the antibody did recognize the

Image Content	DNA Absorbance (µg/ul)	Nuclei Count	Avg. of Assay 1 Control: 335 Tfect: 347
			Asia Democrat In anagoni 2,50/
_			Avg Percent Increase: 3.5%
Control 1A		315	
Control 1B		355	Avg of Assay 2 Control: 273.5 Tfect: 362
Control 2A		260	Avg Percent Increase: 32.4%
Control 2B		287	
Tfect 1A	.3	327	Avg of All Control: 304.25 Tfect: 354.5
Tfect 1B	.3	367	Avg Percent Increase: 16.5%
Tfect 2A	.4	332	
Tfect 2B	.4	392	Two-tailed P value = 0.0957

human protein and that it is in fact present in the cells. Because the band on the right, the transfected band, is so much darker, we can also assume that our over-expression last term was successful and that any impact on migration we saw was directly correlated to the up-regulation of CD155 in the C6 cells (Figure 5). In the second Western Blot, which compared C6 and U87 control glioma cells, we can observe two distinct, dark bands (again located around 40 kDA) (Figure 6). This is a strong indication that both C6 and U87 glioma cells naturally contain comparable and substantial levels of CD155 protein.

Discussion

VIROLOGY

We were attempting to mirror the results of a reputable knockdown study conducted by the Department of Physiology at Tufts University School of Medicine, (Boston, Massachusetts) and the Department of Neurobiology at Yale University School of Medicine (New Haven, Connecticut). This study showed that a knockdown of

CD155 by FALI in U87MG cells resulted in a significant (16 to 22%) decrease in trans-well migration (Sloan, 2005). Because the siRNA expression vector was not available to conduct a knockdown experiment, our study would be used to perhaps mirror the relationship that has been found previously in the knockdown of CD155.

We expected that over-expression of CD155 would significantly increase migration based on the expression of protein levels indicated by Western Blot analysis. If the over-expression were successful, we would expect that the knockdown that we were

unable to conduct out of lack of a RNAi expression vector would also decrease migration.

Despite our predictions earlier in the year, there did not appear to be a tangible visible difference between the

control pictures and the transfected pictures for this experiment as a whole. One may notice that in general the transfected cell fields were clearer, and that the control fields contained a lot of processes (especially in Transfilter Assay 1) (Figure 3). This could be possibly interpreted as the presence of CD155 speeding up the growth of cells. If a knockdown in U87 glioma decreased migration of cells, we could infer that CD155 possibly enhances the tumor and may serve as a catalyst for tumor growth. CD155 does not appear to affect the shape or size of the cells.

Without the Western Blots, which were conducted towards the end of our study, we were not able to detect whether or not the transfection substantially increased the presence of CD155 or by how much. This led us to question whether or not CD155 was actually present in C6 cells. We supposed that pursuing this inquiry would allow us to make further distinction between C6 cells and human strain glioma. At the very least, we would find our results to confirm an expected difference between rat and human models.

We predicted that increased CD155 expression in glioma cells was important for migration of the tumor cells in vivo. While our results indicate promise, only two successful experimental replicates were conducted and the variation observed was large-precluding a sound conclusion on the role of CD155 in migration. An additional control, a transfection with a plasmid encoding another protein, would be needed to add to future experiments in order to determine if increased synthesis of any other protein would have the same effect on migration. We would also hope to obtain the siRNA in order to knock down PVR, which was not available at the time.

The challenge we faced during this experiment was the fact that CD155 is thought to be a uniquely human protein, because poliovirus only naturally infects humans. While mice have been genetically engineered to produce

PVR, we had no predictions as to whether the C6 rat 2008. glioma cells would express CD155 at all. CD155 analysis has never been carried out before in C6 gliomas. Furthermore, the primary rat monoclonal antibody we used Research: 6960-6968. August 18, 2009. for our Western Blots was expected to react with Necl-5, the mouse origin of the protein-and not with the human origin CD155. We were essentially testing to see whether our rat gliomas do naturally express the human protein, and if the mouse antibody would recognize the Society of Clinical Oncology: 1624-1635. 2003. human homolog. Since the blots confirm that ČD155 is indeed present in C6 cells, in an amount comparable to that present in U87 human cells, we can confirm that the mouse and human homologs of the protein are similar. Indeed, CD155 and Necl-5 are referred to in combina-2076-2082. May 1999. tion within scientific dialogue and have virtually the same structure. Yet if the antibody treats CD155 and Necl-5 as the same protein, why is the poliovirus itself specific to humans? Not only do our findings shed light on the strict nature of specificity characteristic to viruses, but these June 6, 2000. results suggest that CD155 has more than one function besides being the human receptor for poliovirus, and in Madsen SJ, Sun CH, Tromberg BJ, Cristini V, concurrence with our assay counts, does effect migration De Magalha N, Hirschberg H. "Multicell Tumor on some level. Although some of our counts were not Spheroids in Photodynamic Therapy." Lasers in statistically significant, what we do see is that the second Surgery and Medicine: 555–564. 2006. assay with a higher concentration of DNA had an overall much larger percentage difference than the control. Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD, Gromeier M. "Poliovirus If we know that the C6 cells contain the human protein and their migration is influenced by it, we can now poreceptor CD155-targeted oncolysis of glioma." tentially use rats as a model for CD155/PVR oncolytic Neuro-oncology: 208-217. 2004. treatment in humans.

A study done by the Department of Molecular Genet-Pliaka V, Dedepsidis E, Kyriakopoulou Z, Papadopoulou I, Levidiotou S, Markoulatos P. "Use of ics and Microbiology at the State University of New York (Stony Brook, NY) demonstrated for the first time that mutational pattern in 5'-NCR and VP1 regions of polioviruses for molecular diagnosis." Molecular and Cellular highly attenuated poliovirus recombinants can infect and propagate in cell lines derived from malignant gliomas Probes: Vol. 21, Issue 4, 267-275. August 2007. and, most interestingly, halted tumor progression and eliminated tumors in athymic mice. They proposed that Sloan KE, Stewart JK, Treloar AF, Matthews RT, Jay susceptibility of these malignant cells to poliovirus may DG. "CD155/PVR enhances glioma cell dispersal by be mediated by expression of the CD155 gene in glial regulating adhesion signaling and focal adhesion dynamneoplasms (Gromeier, 2000). As our understanding of ics." Cancer Research: 10930–10937. December 1, 2005. the biology of brain cancer progresses, new knowledge about tumorigenesis and tumor biology can be used to Solecki DJ, Gromeir M, Mueller S, Bernhardt G, Wimmer E. "Expression of the Human Poliovirus Rediagnose, treat, and prevent this type of cancer. Our experiment may help to support the concept that oncolytic ceptor/CD155 Gene Is Activated by Sonic Hedgehog." poliovirus recombinants may be the next possible treat-The Journal of Biological Chemistry: 277, 25697-25702. ment for malignant glioma. April 30, 2002

References

Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoll P. "The Role of Myosin II in Glioma Invasion of the Brain." MBC: Vol. 19, Issue 8, 3357-3368. August

CUSI

Burgoyne AM, Phillips-Mason PJ, Brady-Kalnay SM, et al. "Proteolytic cleavage of protein tyrosine phosphatase mu regulates glioblastoma cell migration." Cancer

Giese A, et al. "Cost of Migration: Invasion of Malignant Gliomas and Implications for Treatment." American

Gillespie GY, Soroceanu L, Manning TJ, Gladson CL, Rosenfeld SS. "Glioma Migration can be Blocked by Nontoxic Inhibitors of Myosin II." Cancer Research:

Gromeier M, Lachmann S, Rosenfeld MR, et al. "Intergeneric poliovirus recombinants for the treatment of malignant glioma." Proc Natl Acad Sci USA: 6803–6808.

Zhang P, Mueller S. "Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses." PNAS: Vol. 105, no. 47, 18284-18289. November 2008.