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ABSTRACT 
Summary: We here develop and implement a Clonal Fraction Hid-
den Markov Model (CFHMM), to leverage positional information in 
classifying Tumor CNVs and their corresponding clonal fraction from 
log-ratio-normalized Tumor/Normal sequencing data. In simulated 
data, this approach shows accurate calling of CNVs for high-fraction 
mutations, and improvement in calling over a naïve clustering 
benchmark across the board, as well as useful purity estimation for 
dominant clones.   
 
Availability and Implementation: Source code and documentation 
is freely available at https://github.com/7lagrange/FCNV implement-
ed in R, with all major operating systems supported.  
 
Contact: azo2104@columbia.edu 
 
Supplementary Information:  
Additional tables and figures available at   
https://docs.google.com/document/d/1ohbjWaZ20jXX3Tc64BASuZP
WmpnE_ybfwfMjU9jb0mU/edit?usp=sharing 

1 INTRODUCTION  
Copy Number Variations (CNVs) are duplications or deletions of 
genome segments, of length greater than one kilobase by conven-
tion, which occur normally in the genome but have also been high-
ly implicated in tumor genomes (Zhang). It is therefore important 
to accurately classify CNVs in tumor genome data. This can be 
done by modeling next-generation sequencing data, where a natu-
ral model to apply is the Hidden Markov Model, with transition 
matrix of copy number or CNV states and emission of normalized 
read-counts (Zhao).  However, admixture of normal cells in a tu-
mor sample (Gusnanto) and heterogeneity of distinct clones within 
a tumor (Oesper) complicate analysis, such that apparent copy-
number for any given genome region may appear fractional and be 
misclassified. This, in addition to the loss of prior location-specific 
variability information that can occur after tumor/normal normali-
zation, is an issue that must be addressed for improved application 
of a Hidden Markov approach to CNV classification.    

In our CFHMM model, we implement a 15-state model, with a 
commonly used 5-copy-number (0,1,2,3,4) set for tumor and ex-
tremes-removed 3-copy-number (1,2,3) set for normal cells, where 
a normal diploid state of 2 is the most common. We derive an av-
erage purity prior from raw log-ratios, from which a set of 15 
strong emission distribution priors are constructed that preserve 
variability information for a given tumor/normal state-pair. 

  
*To whom correspondence should be addressed.  

CFHMM runs modified unsupervised Viterbi training on the data 
to give posterior state classifications that, if accurate, may also 
provide clonal fraction information for each CNV mutation.    

2 METHODS 
We evaluate the accuracy of our model on simulated whole-
genome-sequencing data for which the hidden tumor and normal 
copy-number states are known. The tumor and normal genomes are 
segmented into kilobase-length bins for which copy number is 
generated by Markov Chain with adjustable parameters favoring 
remaining at the same copy number from one bin to the next and 
providing equiprobable transition to any other copy number. 60 
million reads, corresponding to 10X deep sequencing in (Myers) 
are randomly distributed into these bins with probability weighted 
by copy number. Clonal fraction k in the tissue for a given bin is 
randomly selected from a parameter list of options, where we ran 
several tests with two-tumor-clone data and one with three-tumor-
clone data. Log-Normalization proceeds from read-count data as:  
 	
      (1) 
 
Where, conversely: 
 
      (2) 
 
The purity prior k for input into CFHMM is taken as the mean of 
values from equation 2, assuming normal state 2 and using only 
extreme log-ratios over the equation 1 values for pure (k=1) tumor 
state 3, or under the threshold for pure tumor state 1. With this 
prior, since the read-counts are Poisson distributed, the log-
normalized emission data can be normally approximated in a way 
that preserves variability information dependent on location along 
the genome as: 
 
      (3) 
 
Where p1 and p2 are tumor and normal state, respectively, and n is 
the number of reads. From here, a Hidden Markov Model is creat-
ed with a 15-state Transition matrix and modified for continuous-
emission such that the Emission matrix contains a mean and vari-
ance for each of the 15-states. The Viterbi algorithm is then: 
 
                   (4) 
 
With probability of state m at position n captured in Xm(n), state 
transition probability captured in T, and log-ratio emission distri-
butions captured with mean and standard deviation in E. This is 
applied for classification in unsupervised training with a modified 
version of the standard iterative Viterbi algorithm (Durbin), where 
the Maximization step in EM for the continuous-emission-matrix E 
uses Bayesian update (Lynch) on the normal distributions: 
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After 15-state classification, a posterior purity estimate for each 
bin where tumor state is not equal to normal state can be derived 
from equation 2, and this distribution can be plotted to visualize 
clonal fraction, as well as k-means-clustered to group mutations 
belonging to the same clone sub-population. This is compared in 
simulated data to the known fractions and the accuracy is evaluat-
ed. For CNV-state classification, the 15-state model is compressed 
by grouping of equivalent states into a 6-state model (see Table 1). 
    
Table 1. State compression table. 

 state 1 2 3 4 5 6 

T/N 0/1, 
0/2, 
0/3 

1/2, 
1/3, 
2/3 

1/1, 
2/2, 
3/3, 
4/4 

3/2, 
4/3 

4/2, 
2/1 

3/1, 
4/1 

15-state tumor-normal model is reduced by posterior resolution of ambigui-
ties to 6 distinct CNV states. 1-full deletion, 2-partial deletion, 3-normal, 4-
partial amplification, 5-homozygous amplification, 6-large amplification.  

As a benchmark for accuracy of CNV state classification, a naïve 
thresholding method is used, where thresholds are drawn at the 
log-ratio values from equation 1 with purity prior k and T/N states 
0/2, 2/3, 4/3, 4/2, and 3/1, and a genome location is classified into 
one of the six compressed states as whatever interval of these 
thresholds its log-ratio falls inside of. There is no equivalent 
benchmark for posterior purity from the HMM model, as this is the 
primary innovation of our method, so it is evaluated on its own.    

3 RESULTS 
Simulated data was run for ten matched tumor-normal genomes, 
with all parameters but purity kept constant at default value. The 
first trial was homogeneous tumor admixed with normal cells at 
0.9 clonal fraction. Each of the next eight trials contained two 
equiprobable purity values, with a dominant 0.9 fraction clone and 
a secondary subset of fraction ranging from 0.85 to 0.5 at intervals 
of 0.05. A final heterogeneous tumor trial was run with three equi-

probable mutation fractions of 0.9, 0.7, and 0.5. In terms of state 
classification accuracy, each trial showed correct classification for 
clones represented in 0.7 or higher proportion of the tumor sample 
with accuracy over 99.9%. This is significantly higher than the 
approximately 70% accuracy seen in the naïve thresholding 
benchmark. Both methods, however, lose accuracy for rarer CNV 
mutations, although our CFHMM method remains more accurate 
than the benchmark across the board (see Fig. 1). 
 
Accuracy of posterior purity estimates (+/ 0.01 of true value) was 
also better for high-fraction CNVs, showing around 80% accuracy 
in all trials for the dominant clone and accuracy decreasing to 56% 
for 0.5 purity. Posterior purity estimates show clear peaks at the 
true purities for k greater than or equal to 0.7, usefully depicting 
tumor heterogeneity, but retaining only the dominant-clone peaks 
for tumors with rarer admixed mutations, such as the 3-state trial 
tumor, where states 0.9 and 0.7 were well-described and classified 
with high accuracy, but 0.5 was not (see Table 2). 
 
Table 2. Three-State 0.9, 0.7, 0.5 Purity Trial 

Purity states HMM state 
accuracy 

Thresholding 
state accuracy 

HMM purity 
accuracy 

.9 0.9995894 0.6706574 0.8174977 

.7 0.9992959 0.5384039 0.7150379 

.5 0.649813 0.3955961 0.4992132 
Accuracy is shown per purity state for the HMM classification, threshold-
ing classification, and HMM-derived purity.  
   
Areas for future work include the implementation of Baum-Welch 
rather than Viterbi training for HMM learning (Durbin), in order to 
ensure globally optimal solution, as well as the application of the 
algorithm to real matched cancer sequencing datasets for further 
validation. In addition, the breakdown of the method for low-
fraction CNVs is a limitation than should be addressed, possibly by 
iterative exclusion of classified dominant mutation sites, so that the 
new prior on subsequent runs of the algorithm is pulled toward 
lower purity, so long as the limitation for the Markov assumption 
presented by resulting holes in the data can be addressed.   
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Fig 1. CFHMM v Threshold accuracy for dominant and rare 
clones.   
 


