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Abstract

This paper studies price actions in capi-

tal market as a random walk from limit theo-
rems. Through clear construction, we derive

algorithms from a series of theorems to cre-
ate standardized buy signals given a trader’s
committed frequency to participate in the
market.

1 Introduction

Security prices follow random walk. Although some
scholars doubt the concept of efficient market hypoth-
esis, there are fruitful amount of previous research ex-
ploring and studying this topic. Some notable papers
are by Fama and French [2], [3], [4], and [5]. Other
scholars such as Malkiel have also provided persua-
sive empirical evidence that we do observe data in
favor of efficient market hypothesis [6].

An important contribution from Yin (2017) [7] was
the idea and theoretical notion of optimal level in se-
curity prices. Their work raised a concept that the
anomaly prices can be corrected which was a notion
not yet discovered in the field of probabilistic price
analysis. We took this notion as a foundation and
further explore this field of security price random
walk. We discoyered that, a series of constructions
can be built to form standard normal distributions.
We will further prove these results (see Appendix)
and develop a series of trade-able signals from these
theories.

The hunger for this type of work is necessary for
the industry because conventional asset pricing mod-
els do not signal buyers when to involve in the mar-
ket. Moreover, for retail traders with a fixed trad-
ing frequency (assuming rational retail traders), it
only makes sense for them to participate in the “low”
prices consistent with their frequency. There is cur-
rently no models presenting us any algorithms in that
sort. This motivates us to formalize these algorithms
from theorems we developed and we aim to provide
traders a consistent buy strategy so that one can
trade, whatever strategy one trades, at a systemati-
cally low price.

2 Theoretical Framework

In this section, we first present, in §2.1, the architec-
ture of the theorems, which are discussed in §2.2. We

formalize the theorems based on the notion of Central
Limit Theorems, which are proved in respect to the

order of theorems in 85 Appendix. Continuing from
the proved theorems, we provide the construction of
a series of algorithms in §3.

2.1 Architecture

Definition 2.1.1. For each company ¢ at a time ¢,
we observe a price, that is,

Dit (2.1.1)

Definition 2.1.2.

1 t—n
SMA,, = ﬁ Zpi,tfn (212)

Definition 2.1.3. Let n be the same value from Def-
inition denote
EMA, = (p;: —EMA,_1) xm+EMA,_; (2.1.3)

2

while m = e

2.2 Theories

Theorem 2.2.1. For some n, suppose we have price

by Definition[2.1.1] and SMA by Definition[2.1.9, then
we have
Pi;n — SMA, = x (2.2.1)

while x is the stand normal distribution.

Theorem 2.2.2. Let the distance between price and
moving average to be D which is defined as

D; = p, — SMA,

while i = n, and then we can consider D; to be i.i.d.
with ED; = 0 and ED; = 02 € (0,00). Then

iDm/(iW)w:w
m=1 m=1

while x is the stand normal distribution.

(2.2.2)

Theorem 2.2.3. Let the distance between price and
moving average to be D which is defined as

Di = DPn — SMAn

while i = n, and then we can consider D; to be
ii.d. with ED; = 0 and ED; = 02 € (0,00). Let
S, =D1+ -4+ D,. Let N, be a sequence of non-

negative integer-valued random variables and c,, a se-
quence of integers with ¢, — oo and N, /¢, — 1 in
probability. Then

SN, /o\/an

where x is a standard normal distribution.

(2.2.3)
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Theorem 2.2.4. Let the distance between price and
moving average to be D which is defined as

D, :=p, — SMA,

while i = n, and then we can consider D; to be
i.i.d. with ED; = 0 and ED; = 02 € (0,00). Let
Sp =Dy + -+ D,. Let Ny = sup{m : S,, < t}.
Then as t — oo,

(uNe —t)/(0%t/p)'/? = x

while x is the stand normal distribution.

(2.2.4)

3 Algorithms

This section we take the theorems above, from §2
Theoretical Framework, as given and we introduce a
series of algorithms targeting buy signals.

Algorithm 3.0.1. Given a buy frequency by an in-
vestor ¢, for all 7 in a stock pool of companies:

Step 1. Observe price p; for each company
Step 2. Store p; ;
Step 3. Compute SMA,,

D, = Pin — SMA,,

Step 4. If D,, < ¢, print "+1”; else, print ”0”.

Print a collection of "+1” per company i per n.

As the first algorithm in the section, it has a
very intuitive understanding. One can simply ob-
serve price and computes its SMA. Then one needs
to look at the difference between price and SMA to
know how often should he buy given that he has a
fixed frequency. This is and will always be true be-
cause the difference of price and SMA follows random
walk, as stated in Theorem and proved in Ap-
pendix. This means that this time-series difference
we are looking at goes up or down but stay in the
middle most often. Such bell-shape curve can give
as a precise probability distribution and we can mark
down an exact price level given a frequency we want
to participate in the market.

Algorithm 3.0.2. Given a buy frequency buy an
investor ¢, for all 7 in a stock pool of companies:

Step 1. Observe price p; for each company
Step 2. Store p; ;

Step 3. Compute D,, := p; , — SMA,,

n n 1/2
Signal,, == Y D, / ( > D3n>
m=1

m=1

Step 4. If Signal, < ¢, print ”+1";
”077.
Print a collection of ”+1” per company ¢ per n.

else, print

Algorithm takes Algorithm as a build-

ing block and expand the idea and we can normalized
the distance (or difference) of summation of a series of
distances by square root of its own value to construct
buy signals.

Algorithm 3.0.3. Given a buy frequency by an in-
vestor ¢, for all 7 in a stock pool of companies:

Step 1. Observe price p; for each company

Step 2. Store p; ¢

Step 3. Compute Sy, = D1+ -+ + D, o is the
variance of D;,

Self-Norm,, := Sy, /o+/an

Step 4. If Self — Norm,, < ¢, print "+17;

< else,
print 70”.

Print a collection of ”+1” per company ¢ per n.

Algorithm brought up the notion of normal-
izing by square of its own value. It is also practical
to normalize by itself, which is what Algorithm [3.0.3
was attempting to do.

Algorithm 3.0.4. Given a buy frequency buy an
investor ¢, for all 7 in a stock pool of companies:

Step 1. Observe price p; for each company
Step 2. Store p; ¢

Step 3. Compute the mean p and the variance o,
Renewal, := (uN; —t)/(c%t/u)*/? = x

Step 4. If Renewal,, < ¢, print ”41”; else, print
” 077 .
Print a collection of ”+1” per company ¢ per n.

Besides notions of self-normalizing, we can also
construct standard normal distribution by taking
time, risk, and mean into consideration. Such “re-
newal” process can be done without breaking the

form of standard normal distribution. For traders
who are interested in looking at more parameters,

there is such freedom to do so.
Algorithm 3.0.5. Given results from the above al-

éorithms, that is, Algorithms[3.0.1] [3.0.2] [3.0.3] and

run

Step 1. Retreat (D,,), (Signal,), (Self~-Norm,,),
and (Renewal,).

Step 2. Each i, at any time ¢, compute

Buy: ) all signals := val(D,,)+val(Signal,)

+val(Self — Norm,,)
+val(Renewal,,)

Step 3. print(t); print(buy). That is,

Very Heavy, b=4
Heavy, b=3
Buy = ¢ Not that Heavy, b=2
Tin; b=1
Do %fothing, b=0
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while b is a discrete time-series function of time ¢, i.e.
b(t):Z — {0,1,2,3,4}.

4 Conclusion

This paper starts with a strong motivation §1 and
introduced the background of why we study security
prices in such construction. Next, we present a clear
architecture, in §2, and a series of theorems under
such building blocks. Continuing with the results
from theorems which we can collect empirically, we
develop trade-able algorithms §3. In summary, we
believe such algorithms can build a capital market
with less risk (an anomaly corrector).

For future reference, we believe our attempts also
opened up a lot more potential research problems.
For example, what would happen if everyone starts
to use this strategy? Another great question can
be, what would be an ideal (although state-of-art)
game plan after the algorithm tells traders to buy?
In macro point of view, how would an economy per-
form in long run if one implements this strategy in a
larger scale? What if an unknown outside monetary
force enter the market and act as an anomaly, how
would this algorithm deal with such situation?

5 Appendix

5.1 Proof of Theorem [2.2.1]

This is a relatively easy proof since the definition fol-
low the premises of the Central Limit Theorem. That
is, we have p; , and SMA,, that are i.i.d.. Then by
C.L.T., p; n» —SMA,, = x while x stands for standard
normal distribution.

Q.E.D.

5.2 Proof of Theorem [2.2.2

From weak law we know that

Z D? /no? — 1.
m=1

Also note y~ /2 s continuous at 1, then we have
n 1/2
<a2n/ Z Dfn> — 1, in prob., see x
m=1

2m=1Dm
ovn

1/2
) = x-1, from
= X

< a’n
n
Zm:l D%I
Notice that the x is because in Weak Convergence,
there is a theorem stated that X,, = X, if and only
if for every bounded continuous function g we have
Eg(X,) = Eg(Xw). Since we discussed the continu-

ity of function y~/2 at 1, this line is valid.

Q.E.D.

Remark 5.2.1. From [I], Section 2, the theorem
stated the following. Suppose X,, = X, Y,, > 0, and
Y,, = ¢, where ¢ > 0 is a constant, then X,,Y,, = cX.

5.3 Proof of Theorem [2.2.3

From Kolmogorov’s inequality we know

S — Si(1—e < 2¢/82
<(1—e)c"glrr%§(l+e)cn| [ )Cn]|) - 6/

If D, = Sn,/0\/¢c, and Y,, = S., /o\/cy, then it
follows that

limsupP(|D,, — Yy,| > ) < 2¢/6%, Ve

n—oo

then we have P(|D,, —Y,| > §) — 0 for each § > 0,
i.e., X, — Y, — 0 in probability. This is because of
the Cnverging together lemma stated in Weak Con-
vergence part of [I]. We state the theorem in remark
below.

Q.E.D.

Remark 5.3.1. Suppose X,, = X and Y,, = ¢, where
¢ is a constant then X,, +Y,, = X +c¢. A useful con-
sequence is that if X,, = X and Z,, — X,, = 0 then
X, = X.

5.4 Proof of Theorem [2.2.3

From convergence theorem, we know that
Ny
tp

so from Theorem 2.2.3] we have

SN — uNg
ot/
then it is sufficient to show (S,, —t)/v/t — 0 since it

follows that L=t — X-

Veort/p

We have given finite variance, that is, 02 < oo, so

by D.C.T. (Dominated Convergence Theorem), we
have

—1

P( max Y, > eﬁ) 2LP(Y; > eV/t)
1<m<2tu H

2 E(YZ; Y > e\/f) —0

pe?

which proves that (S,, —t)/v/t — 0 is true. Hence,
this completes the proof.

Remark 5.4.1. This is because of the Converging to-
gether lemma stated Weak Convergence. Please see
Remark

Q.E.D.
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