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ABSTRACT: Chronic Lymphocytic Leukemia (CLL) is a type of blood cancer that has a very 
heterogeneous biological background and diverse treatment strategies. However, a small part 
of this malignancy may disappear without receiving any treatment, known as “spontaneous re-
gression”, which occurs as a result of a poorly investigated mechanism. Exposing the underlying 
causes of this condition can lead to a novel treatment approach for CLL. In this article, we applied 
in-silico analysis on total RNA expression data from 24 CLL samples to determine possible reg-
ulatory mechanisms of spontaneous regression in CLL. These were first selected by comparing 
spontaneous regression with progressive samples of CLL at the transcriptional level using two 
unsupervised machine learning algorithms, i.e., Principal Component Analysis (PCA) and Hier-
archical Clustering. Subsequently, the DESeq2 algorithm was used to scrutinize only statisti-
cally significant (adjusted p-value < 0.01) RNA transcripts that can differentiate both conditions. 
Here, at first, we have elucidated 870 significantly differentially expressed protein-coding genes 
that were involved in the biogenesis and processing of RNA. Consequently, these findings led 
our study to investigate non-coding RNA, and 33 long non-coding RNAs (lncRNAs) were found 
to be significantly differentially expressed among two conditions based on differential gene ex-
pression analysis. Further, our analysis in the current study suggested lncRNAs, PTPN22-AS1, 
PCF11-AS1, SYNGAP1-AS1, PRRT3-AS1, and H1FX-AS1 as potential therapeutic targets 
to trigger spontaneous regression. Ultimately, the results presented here reveal new insights 
into spontaneous regression and its relationship with non-coding RNAs, particularly lncRNAs.
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INTRODUCTION
According to the American Cancer Society sta-
tistics, leukemia is the second leading blood 
cancer, with roughly 60,000 new cases identified 
in 2020 [1]. Leukemia has different subtypes, 
which are classified in the context of the tumor 
origin [2]. The most common variety in adults 

is chronic lymphocytic leukemia (CLL), which is 
a lymphoid malignancy due to failed apoptosis 
and aggressive proliferation of mature B cells 
[3]. These cells circulate through the blood as 
non-proliferating cells or arrested cells in the 
G0/G1 phase of the cell cycle and may affect 
the function of normal cells in other organs [4].
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CLL has a highly diverse biological and clinical 
background for each patient that determines the 
stage of the disease [5]. Although there are sev-
eral stages of CLL classified according to their 
genetic background and B cell number, one of 
the most intriguing concepts is known as spon-
taneous regression, which is the disappearance 
of the tumor over time either without any treat-
ment or with treatment that is categorized as 
insufficient to have an impact on the tumor [6].
 Spontaneous regression can be seen 
in 1-2% of all CLL patients, and it is a phe-
nomenon that is poorly understood [7]. In this 
process, cells that proliferate uncontrolla-
bly are transmitted to the quiescent state so 
that the tumor disappears partially or com-
pletely with time [6]. Spontaneous regres-
sion is not a common feature of cancer cells 
and is regulated by mechanisms that are not 
well-understood. If such mechanisms can be 
determined, target biological molecules that 
have a specific role in disease progression 
can be identified and manipulated in vitro.
 Current strategies aim to inhibit BCR 
signaling, which is crucial for the survival of the 
B-cells, and chemokine signaling that creates 
survival signals and attracts leukemic cells to 
communicate with its microenvironment [5]. 
Moreover, activation of apoptosis pathways 
via blocking BCL2 activity, an anti-apoptotic 
protein, which is highly expressed in leukemic 
cells, is included in the aforementioned strate-
gies [8]. Although these types of targeted ther-
apies improve the outcome of the patients, the 
heterogeneity of the leukemia microenviron-
ment reinforces the necessity of new targets. 
As the targeted therapies may have an impact 
on tumor surroundings and affect the other cells 
found in the tumor microenvironment, triggering 
spontaneous regression mechanisms may im-
prove the strategies as well as patient outcome.
 In CLL, the most frequent chromo-
somal abnormalities and somatic mutations 
on the protein-coding region of the genome 
have been distinguished as a result of ge-
nomic sequencing, and disrupted cellular 

pathways are identified using next-generation 
sequencing of mRNA expression [9]. In spite 
of this progress, nearly 20% of CLL cells do 
not show chromosomal abnormalities or ge-
nomic variation. Therefore, researchers re-
cently shifted their focus to the non-coding 
region of the genome and regulatory RNA 
molecules, especially long non-coding RNAs, 
which are deregulated in many cancers [10].
 Long non-coding RNAs (lncRNAs) 
are a subgroup of non-coding RNAs which 
are longer than 200 nucleotides and encom-
pass thousands of diverse transcripts in hu-
mans [11]. There are approximately 100,000 
known lncRNAs, and this quantity is ex-
panding each year with the new studies [12]. 
 LncRNAs play a significant role in gene 
regulation, controlling multiple cellular mecha-
nisms involved in tumor progression. They are 
involved in epigenetic regulation of gene ex-
pression via histone modification, DNA meth-
ylation, or acetylation. Specifically, these epi-
genetic regulations may include recruitment 
of histone remodeling complexes, interaction 
with histone methyltransferases and demeth-
ylases to regulate DNA methylation, or his-
tone acetyltransferases and deacetylases to 
modulate the acetylation [13]. Furthermore, 
lncRNAs may regulate gene expression at the 
transcriptional level by recruiting transcription 
factors [14]. Moreover, lncRNAs can produce 
hybrids or act as scaffolds through interac-
tion with proteins to regulate expression at 
the post-translational level, including regula-
tion of phosphorylation and ubiquitination [15]. 
 In tumor development, lncRNAs can 
serve as either tumor suppressors, oncogenes, 
or even both at the same time for some cancer 
types [16]. Analysis of lncRNA expression pat-
terns had led to the identification of putative bio-
markers such as HOTAIR, H19, and DLEU1/2 
[17]. Specifically, HOTAIR serves as an onco-
gene by inducing invasiveness and metastasis 
in several cancers via recruiting a demethylase 
[13]. Since this lncRNA is highly expressed in 
aggressive tumors, it is considered as a bio-
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marker and a possible therapeutic target for 
many cancers [18]. DLEU1/2 epigenetically 
regulate the tumor suppressors and are delet-
ed in CLL cells, which results in the progression 
of the CLL. This allows it to serve as a biomark-
er in the diagnosis [19]. On the other hand, H19 
has a dual role in different cancers by stimu-
lating distinct mechanisms through transcrip-
tion factors, which makes it a target that needs 
to be studied separately for each cancer [13]. 
 Furthermore, lncRNAs are known to 
play an important role in cell differentiation and 
tissue specificity [20]. However, characteriza-
tion may be compelling because lncRNAs are 
transcribed in different loci and localized dis-
tinctly. More importantly, lncRNA expression is 
generally tissue-specific and can be detected 
under certain conditions [21]. As the lncRNAs 
are differentially expressed, their roles and ac-
tivities can be identified in disease conditions. 
 Due to the diverse functions of ln-
cRNAs, novel studies are concentrated on 
the identification of lncRNAs as therapeu-
tic targets. As the expression of these mol-
ecules is tissue and disease-specific, this 
specificity makes them excellent targets 
compared to protein-coding genes [22]. 
 In the scope of this project, the trigger 
mechanism behind the spontaneous regres-
sion process is investigated at the transcrip-
tomic level to identify a pattern of lncRNA 
expression that would explain cell “deci-
sion” by comparing CLL tissue at the sponta-
neous regression and the progressive states. 

METHODS
Dataset
The dataset of this project was generated by 
Kwok et al. (2020) and published as a BioProj-
ect on the NCBI with the accession number 
PRJNA535508 (Supplementary Notes 1) [6]. 
Transcriptome data contains raw reads of RNA 
sequencing from the Illumina Nextseq 550 plat-
form by using paired-end sequencing. In this 
study, the authors compared multiple samples 

from multiple subtypes of chronic lymphocytic 
leukemia that can be seen in Table I. In our proj-
ect, spontaneous regression and progressive 
states were chosen for further analysis to inves-
tigate expression variation specifically involved 
in the regression mechanism in CLL cells.

Table I. Dataset of the BioProject

RNA-seq Raw Data Processing
Raw reads were used to construct an RNA se-
quencing pipeline that contains pre-processing 
using Trimmomatic, mapping of reads on refer-
ence transcriptome with Bowtie2-t, and quan-
tification using RNA-Seq by Expectation-Max-
imization (RSEM) algorithms with T-Bioinfo 
server (Supplementary Notes 1) as represent-
ed in Figure 1. Briefly, in order to get gene ex-
pression levels, duplicated sequences which 
resulted in PCR amplification were removed by 
PCR clean considering best coverage. Then, 
Trimmomatic was used to remove adaptor se-
quences and poor-quality data at the end of the 
sequence. Mapping of these clean reads on 
transcriptome was performed by using the Bow-
tie2-t algorithm based on the reference genome 
(GRCh38). Bowtie2-t is an option of the Bowtie, 
which is a mapping algorithm and aligns short 
reads according to the seed approach [23]. Fi-
nally, for the quantification of gene expression, 
the RSEM algorithm was used with FPKM nor-
malization to obtain the gene expression table.
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Figure 1: RNA-seq Data Processing Pipeline to 
generate an RNA expression table on T-Bioinfo 
Server

Exploratory Analysis
Exploratory analysis facilitated the examina-
tion of variation between all samples, includ-
ing healthy and diseased patients, in order 
to select a comparison parameter for further 
analysis. Thus, the visual outputs were used 
to determine the patterns. Data was explored 
by using principal component analysis (PCA), 
which is a dimensionality reduction technique 
that discerns the variability between the sam-
ples [24]. PCA was performed twice, both for 
all the samples and for the spontaneous re-
gression and the progressive samples to be 
able to observe the improvement on principle 
components. Hierarchical Clustering, which 
finds patterns among the samples using sim-
ilarity measures [25], made it possible to un-
derstand the clustering aspects of spontaneous 
regression and progressive samples based on 
their gene expression, especially after the se-
lection of statistically significant genes, which 
will be explained in the following section.

Differential Gene Expression Analysis
The Differential Gene Expression analy-
sis was conducted by contrasting spon-
taneous regression with progressive CLL 
samples. Separate studies were performed 
for protein-coding and non-protein cod-
ing transcripts to understand the mecha-
nisms involved in spontaneous regression. 

The differential gene expression (DGE) pipe-
line, which includes pre-processing, mapping 
with HiSat2, RNA expression quantification 
using HTseq, and differential gene expression 
analysis with DESeq2 algorithm was construct-
ed by using the T-Bioinfo server (Figure 2). 
Here, initially, PCR cleaning was performed by 
considering coverage to get rid of the duplicat-
ed sequences generated via PCR amplifica-
tion. To eliminate the adaptors and bad quality 
sequences from the data, the Trimmomatic al-
gorithm was used. Next, the HiSat2 was utilized 
for the mapping of sequence reads to the refer-
ence genome (GRCh38) by taking into account 
the splice junctions. Then, the HTseq algorithm 
quantified the gene expression through over-
lapping reads and generated a gene expression 
table in the form of count values. Finally, differ-
ential gene expression analysis was performed 
by using the DESeq2 algorithm which gives the 
expression differences between two groups us-
ing the shrinkage estimators [26]. DESeq2 pro-
vides results, which include p-value, log 2-fold 
change, and adjusted p-value. Then, an ad-
justed p-value or False Discovery Rate (FDR) 
that is a standard statistical value utilized for 
multiple testing correction, is calculated to 
eliminate the false-positive results [26, 27].
 The T-Bioinfo server uses a one-
step approach for DGE analysis and com-
bines several methods. Although DESeq2 
can be used for both normalization and sta-
tistical analysis, the T-Bioinfo server pro-
vides an additional approach, which includes 
gene set enrichment analysis (GSEA) to dis-
cover related pathways and processes [28].

Selection of Significant Genes
The significant genes were identified by their 
p-adjusted values and log2 fold change. The de-
termined threshold for the adjusted p-value was 
0.01 and the log2 fold change was ±1 in non-cod-
ing RNAs and ±1.5 in protein-coding genes.
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Figure 2: Differential Gene Expression Analysis 
Pipeline Using the T-Bioinfo Server

Gene Ontology Analysis
The enrichment analysis was done via us-
ing the Enrichr platform for the protein-cod-
ing genes [29]. Respectively, the GO and 
KEGG pathways were considered for the 
observed upregulated and downregulated 
genes in spontaneous regression samples.

Data Visualization
The gene expression patterns were observed 
by heatmaps. Furthermore, PCA and H-Clus-
tering were repeated with the selected signif-
icant RNA transcripts to make a comparison 
as before and after, and see an improvement 
on the basis of variance. Visualization was 
performed independently for protein-cod-
ing genes and non-protein coding genes.

RESULTS
Variation is Detected Between Sponta-
neous Regression and the Progressive 
Samples
The exploratory analysis using the PCA revealed 
that there was a variation between the spon-
taneous regression and the progressive state. 
 Based on Figure 3A, it can be seen 
that healthy samples and the diseased sam-
ples are well separated, which means there 
is significant variation between these groups. 
When the spontaneous regression and pro-
gressive samples were examined in a specif-

ic scatter plot, it was obvious that there was 
an improvement in principal components, and 
the two groups were clearly separated from 
each other (Figure 3B). After the observed 
variation between the two groups, the reason 
for this difference and its impacts could be 
investigated at the level of gene regulation.

Figure 3. Principal Component Analysis,
(A) Healthy samples versus Diseased samples
(B) Spontaneous Regression (Red) versus Pro-
gressive Samples (Purple)

Revealed Pathways Involved in Biogenesis 
and Processing of RNA 
Based on DESeq2 analysis, expression levels 
of 870 protein-coding genes were identified as 
significantly different between the two groups 
with p-adjusted values (<0.01) and log2 fold 
change (+/- 1.5) (Supplementary Table 1). The 
heatmap of the protein-coding genes shows 
the gene expression patterns between spon-
taneous regression and progressive samples 
(Figure 4A). It is obvious that most of the genes 
were upregulated in spontaneous regression 
while they downregulated in progressive ones. 
To understand the biological importance of path-
ways, gene ontology analysis was performed. 
Interestingly, although there were different path-
ways in upregulated genes, many represented 
biological pathways involved in biogenesis and 
processing of RNA, and mRNA translation (Fig-
ure 4B). In addition, identified pathways also 
included ribosome-related pathways, which im-
ply translation of protein-coding RNAs is affect-
ed. The same concept could be detected with 
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Figure 4. Data visualization of protein-coding genes 
(A) Gene expression patterns of protein-coding genes. Heatmap exposes the downregulated and upreg-
ulated genes among the samples
(B) Gene ontology analysis of protein-coding genes. Pathway analysis shows the downregulated and 
upregulated pathways in the spontaneous regression samples, respectively. Arrows indicate the RNA 
related pathways 
(C) Representation of principal component analysis with 3D scatter plots. First PCA shows the separation 
of spontaneous regression (SR) and progressive (P) samples before the selection of the protein-coding 
genes, second PCA represents the separation of SR and P samples after the selection of the protein-cod-
ing genes, and last PCA indicates the true variability source considering four outliers
(D) Hierarchical Clustering results as dendrograms. Each dendrogram point out the related scatter plots 
that are placed above and reveal the clustering perspective. Red boxes indicate the SR samples, and the 
other ones are the P samples

A B

C

D
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the downregulated genes as presented in Fig-
ure 4B. Consequently, these findings led this 
research to investigate the non-coding RNAs, 
which was the second branch of this study.

There was a Diversity Among the Sponta-
neous Regression Samples
According to the first principal component, spon-
taneous regression had a lot of variability within 
its own group (Figure 4C). This variation could 
be observed from the dendrograms in Figure 
4D. Correspondingly, spontaneous regression 
samples had two diverse groups. The clinical 
data of these samples, therefore, needed to be 
examined to interpret them as outliers or true 
variability sources. However, no difference was 
detected between the four outliers and the oth-
er samples. This meant the difference had to 
be in their biological background. That is why 
these four diverse samples were selected in 
comparison with progressive samples to see 
the most significant difference between the two 
groups in the context of expression patterns.
 As a result, it can be seen in Figure 4C 
that there was a significant improvement with 
the well-separated two groups after the selec-
tion of true variability source. Additionally, bet-
ter separation could also be observed from the 
dendrogram in Figure 4D that four samples and 
the progressive samples have distinct branch-
es compared to the remaining twelve samples. 

Identified Non-Coding RNAs were Novel 
Transcripts 
Based on differential gene expression analysis, 
33 lncRNAs, which are significantly expressed, 
were identified with the specific parameters 
(Supplementary Table 2). Each lncRNA was in-
vestigated by their Ensembl ID and identified as 
novel transcripts. When the PCA was repeated 
with selected lncRNAs, clear separation could 
be seen among the spontaneous regression 
and the progressive samples (Figure 5A). Even 
though there was no dramatic improvement in 
principal components, hierarchical clustering 
results were highly distinctive. It can be seen in 

Figure 5B that the two groups cluster separately 
in the dendrogram, which implies these signifi-
cant genes might predict tumor characteristics.
 To be able to observe the gene ex-
pression pattern of the lncRNAs, a heatmap 
was generated. As shown in Figure 5C, most 
of the genes were upregulated in progressive 
samples compared to spontaneous regression. 
 So far, pathway analysis of differential-
ly expressed protein-coding genes in sponta-
neous regression samples has demonstrated 
that global gene expression in these samples 
might be modulated at the transcriptional 
and post-transcriptional level, and non-pro-
tein coding genes have shown that lncRNAs 
are differentially expressed in these sam-
ples. To make a biologically relevant inter-
pretation, the analysis will regard lncRNAs 
identified as statistically most significant.

DISCUSSION
Although spontaneous tumor regression is 
rare, it is a phenomenon that can be observed 
in some types of cancer, such as neuroblas-
toma, renal cell carcinoma, lung cancer, lym-
phoma, and leukemia [30]. To be able to in-
crease the occurrence rate of this mechanism, 
detailed studies should be conducted, and 
the related pathways should be examined.
 In summary, we used RNA-seq datasets 
from CLL patients containing a total of 16 spon-
taneous regression and 8 progressive state 
samples. First of all, we looked for variation 
and pattern among these two groups by using 
PCA and H-Clustering based on gene expres-
sion. After the detection of variation, we hypoth-
esized that the reason for this difference should 
be at the gene expression level. Therefore, we 
applied differential gene expression analysis by 
comparing spontaneous regression and pro-
gressive tumor states. We identified 870 pro-
tein-coding genes which were significantly dif-
ferentially expressed and also were associated 
with RNA-related pathways based on gene on-
tology analysis. Depending on these findings, 
we also investigated non-coding RNAs and 
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Figure 5. Data visualization of non-coding RNAs 
(A) Representation of principal component analysis with 3D scatter plots. Initial PCA indicates the separa-
tion of spontaneous regression (SR) and progressive (P) samples before the selection of the non-coding 
RNAs and second PCA shows the separation of SR and P samples after the selection of the non-coding 
RNAs
(B) Hierarchical Clustering results as dendrograms. Each dendrogram specify the related scatter plots 
that are located above and expose the clustering perspective. Red boxes demonstrate the SR samples, 
and the other ones are the P samples
(C) Gene expression patterns of non-coding RNAs. Heatmap represents the downregulated and upregu-
lated genes between the samples
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B
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identified significantly expressed 33 lncRNAs. 
This paper has highlighted that new therapeutic 
strategies may involve lncRNAs to trigger the 
spontaneous regression phenomena in can-
cer cells. Since the lncRNAs can regulate the 
important cellular mechanisms during cancer 
progression, identification of disease-specific 
lncRNAs may enlighten the way of new treat-
ment strategies. Therefore, a detailed literature 
review for each lncRNA and their sense mR-
NAs had been done. Even though the detailed 
explanation can be found in Supplementary 
Table 2, identified lncRNAs are involved in sev-
eral pathways including tumor growth, metas-
tasis, cell survival, and regulation of the tumor 
microenvironment such as the immune system. 
 Previous studies showed that identified 
two lncRNAs, the PRRT3-AS1 and H1FX-AS1, 
were focused on cancer progression [31, 32, 
33, 34]. Both lncRNAs were upregulated in the 
progressive state compared to spontaneous re-
gression, which indicates that these lncRNAs 
were functioning as tumor enhancers in CLL 
cells. Li et al. (2020) showed that the lncRNA 
PRRT3-AS1 is upregulated in prostate cancer 
and targets the PPARγ gene by binding its 3’ 
end, which leads to regulation of the Akt/mTOR 
signaling pathway [31]. The same study also re-
vealed that the down-regulation of PRRT3-AS1 
inhibits prostate cancer progression by regulat-
ing cell proliferation, migration, and apoptosis. 
Moreover, knocking down this lncRNA triggers 
autophagy via the mTOR pathway [31]. Anoth-
er study suggested that PRRT3-AS1 is esti-
mated as an immune-related lncRNA involved 
in PPAR signaling and can be used as a poten-
tial target in glioblastoma [32]. In light of these 
findings, it can be said that the PRRT3-AS1 
functions as a tumor promoter gene in prostate 
cancer and glioblastoma. Since it is revealed 
that this lncRNA is highly expressed in the 
progressive state of CLL, further studies may 
clarify the related pathways and novel targets. 
Moreover, downregulation of this lncRNA might 
promote spontaneous regression by repressing 
cell proliferation and inducing apoptosis.

 According to Shi et al. (2020), lncRNA 
H1FX-AS1 is downregulated in cervical can-
cer, and low expression is correlated with poor 
prognosis and linked to tumor size as well as 
metastasis. In silico analysis predicted that the 
possible target of the H1FX-AS1 was the miR-
324-3p, and it was binding and regulating the 
DACT1 [33]. Furthermore, the same research 
included overexpression studies, which re-
vealed that the high expression levels of this 
lncRNA significantly reduced the proliferation 
and invasiveness, and activated the apoptosis 
pathways. H1FX-AS1, therefore, is identified 
as a tumor suppressor gene in cervical cancer 
[33]. On the contrary, high expression levels of 
lncRNA H1FX-AS1 are associated with a poor 
prognosis in gastric cancer. It is predicted that 
this lncRNA was related to epithelial to mesen-
chymal transition (EMT) and metastasis path-
ways [34]. Additionally, in-silico prediction anal-
ysis indicated several targets of the H1FX-AS1 
lncRNA, such as H1FX, COPG1, and MIR6826 
that can be used as potential therapeutic tar-
gets in gastric cancer [34]. Since H1FX-AS1 
is upregulated in the progressive state of CLL, 
the precise roles of this lncRNA should be ex-
amined for CLL cells. Besides, considering the 
studies on gastric cancer, downregulation of 
H1FX-AS1 may trigger the spontaneous re-
gression through inactivation of metastasis.
 As the other 31 lncRNAs were novel 
transcripts, several examples could be consid-
ered by examining the sense protein-coding 
genes of the lncRNAs to reveal the significance 
and possible functions of these lncRNAs. 
Thereby, the specified lncRNAs and their 
sense protein-coding genes can be targeted 
for further analysis and treatment strategies.  
 The first one is the lncRNA PT-
PN22-AS1 that was upregulated in the sponta-
neous regression samples. It is known that the 
B cell receptor signaling is vital for the growth 
and survival of the leukemic cells [35]. These 
signaling pathways can be stimulated with di-
verse tyrosine kinases as well as phospha-
tases. PTPN22 is a protein tyrosine phospha-
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tase specifically expressed in immune cells. It 
can function as an enhancer or suppressor of 
BCR and TCR signaling by regulating phos-
phorylation status [36]. According to studies, 
the PTPN22 gene is upregulated in CLL cells, 
and this upregulation results in attenuation of 
the apoptosis signals produced by the BCR and 
stimulation of the AKT activity that generates a 
survival signal [35]. This regulation reveals that 
the cancer cells which express autoreactive 
BCRs can escape from apoptosis by upregu-
lating the PTPN22 gene. Therefore, downreg-
ulation of this gene through the lncRNA PT-
PN22-AS1 at multiple levels may trigger the 
spontaneous regression in CLL by eliminating 
autoreactive B cells in the context of immune 
tolerance. So, if the upregulation of this lncRNA 
can be induced by an external factor, it could 
be used as a therapeutic target for CLL cells.
 The next lncRNA would be PCF11-AS1, 
and it is also upregulated in spontaneous regres-
sion. Alternative polyadenylation (APA) leads to 
transcription of diverse isoforms at the RNA 3’ 
end that affects the functioning of encoded pro-
teins. This mechanism needs multicomponent 
protein complexes, and one of the protein com-
plexes is called CFII [37]. This complex com-
prises the PCF11 gene that is a cleavage and 
polyadenylation factor subunit, and regulates 
the transcription termination and RNA 3’ end 
maturation. Studies show that this gene partic-
ularly regulates the alternative polyadenylation 
of the genes associated with the WNT pathway 
as an oncogene in neuroblastoma cells [38]. 
Accordingly, the downregulation of this gene 
results in diminished cell growth as well as in-
vasiveness. Interestingly, one of the studies 
indicates that spontaneously regressed neuro-
blastomas express the PCF11 gene at low lev-
els compared to highly progressive neuroblasto-
mas [39]. Basically, downregulation of this gene 
at the epigenetic or post-transcriptional level 
through the lncRNA PCF11-AS1 may induce 
the spontaneous regression in CLL via ceasing 
the cell growth. Thus, the upregulation of this 
lncRNA can be used as a therapeutic strategy.

 Another lncRNA is the SYNGAP1-AS1 
which is upregulated in progressive samples. 
Mutant RAS genes stimulate the GTP-bound 
state which constitutively activates RAS signal-
ing in metastatic cells [40]. RasGAPs inactivate 
RAS signaling by converting active GTP-bound 
into its inactive state [41]. SYNGAP1, also 
known as RASA5, is a member of the RasGAP 
family and functions as a tumor suppressor 
gene [42, 43]. Studies proved that the RASA5 
gene is epigenetically disrupted in multiple can-
cer types by promoter methylation, and gain of 
function assays exposed that RASA5 expres-
sion leads to a reduction in metastasis by regu-
lating EMT and cell stemness [43]. As it is known 
that the lncRNAs can regulate gene expression 
at the epigenetic level through methylation, this 
epigenetic silencing may be due to the lncRNA 
SYNGAP1-AS1. So, the upregulation of the 
SYNGAP1-AS1 can knock down this gene at 
the epigenetic level by methylating the promot-
er region leading to aggressive tumor progres-
sion in CLL patients. Even though further stud-
ies are essential, targeting this lncRNA may 
also trigger spontaneous regression through 
metastasis and cell stemness pathways, and 
enhance our understanding of this mechanism.
As a result, the deduction that can be made 
from these exemplary lncRNAs is that the 
detailed examination of the identified novel 
transcripts can be used to reveal the mecha-
nisms that lead to spontaneous regression, 
as well as to identify these lncRNAs as tar-
gets for small molecule inhibitors or activators 
so that the spontaneous regression mecha-
nism can be triggered in other cancer types.

CONCLUSION
These findings suggest that regulation through 
the lncRNAs might have a major role in cells’ 
fate, and their detailed examination can enlight-
en the way of discovery of the possible ther-
apeutic targets. In prospective studies, each 
lncRNA should be investigated to perceive their 
functional pathways by over-expression and 
suppression studies in various cancer types 
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in order to understand their specific roles. Ad-
ditionally, the following study which considers 
these findings should combine the protein-cod-
ing genes and non-protein coding genes. 
Since these two groups revealed significant 
results independently, their combination can 
lead to future selection and determination of 
particular pathways which affected each other.
 This study had certain limitations that 
need to be overcome to conduct more efficient 
studies. Spontaneous regression samples 
had diverse biological backgrounds, which in-
creased the demand for the detailed investi-
gation of these samples. Furthermore, it was 
problematic to identify the significant path-
ways through differential gene expression al-
gorithms due to this variability. Finally, as the 
amount of the samples was limited, more com-
prehensive research is required to verify these 
findings and make a distinctive interpretation.
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ABBREVIATIONS
CLL: Chronic Lymphocytic Leukemia
NCBI: National Center for Biotechnology Infor-
mation
BCR: B Cell Receptor
TCR: T Cell Receptor
PCA: Principal Component Analysis
H-Cluster: Hierarchical Clustering
GO: Gene Ontology
KEGG: Kyoto Encyclopedia of Genes and 
Genomes
lncRNA: Long Non-Coding RNA
PRRT3-AS1: Antisense to PRRT3
H1FX-AS1: Antisense to H1FX
PTPN22-AS1: Antisense to PTPN22
PCF11-AS1: Antisense to PCF11
SYNGAP1-AS1: Antisense to SYNGAP1
EMT: Epithelial to Mesenchymal Transition
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