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Introduction

Why do we need a(nother) model for teaching precal-
culus and calculus? Because many in the field—high 
school teachers and professors alike—have been trying 
to improve student learning of mathematics to disap-
pointing ends. In the United States (US), for example, 
students in 12th grade have demonstrated unimproved 
mathematics scores on the National Assessment of Edu-
cational Progress (NAEP) from 2005-2019.  Without test-
able instructional models, we are left with claims about 
teaching mathematics that are difficult to affirm or reject. 
We therefore present an empirically based model that 
focuses on the secondary-tertiary transition in math-
ematics. Exactly when this transition begins and ends 
is obscure, yet educational research suggests a period 
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between two years before and after entering university 
(Gueudet, 2008). In the US, even if secondary students 
score a 3 or higher (grades range from 1 to 5) on the Col-
lege Board Advanced Placement (AP) Calculus exams, 
they may still struggle to perform and persist in college 
calculus (Atuahene & Russell, 2016). Bressoud (2009) 
hypothesized that the College Board AP Calculus curric-
ulum is so broad that students move through it learning 
procedures instead of concepts necessary for success in 
tertiary calculus. The most common transition support 
offered is that of bridge courses, e.g., high school-lev-
el courses, such as algebra and/or precalculus that are 
taken (or retaken) at the tertiary level. In the US, tertiary 
level enrollment in precalculus is well-populated with 
students who previously completed precalculus in high 
school. Perhaps surprisingly, retaking precalculus in 
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college does not predict earning higher grades in col-
lege calculus (Sonnert & Sadler, 2014). With questionable 
support from bridge courses and with known variabili-
ty of preparation quality, a look back to instruction and 
learning in secondary mathematics is a logical next step. 

Theoretical Perspectives

Several theories in the field of mathematics education 
have been used to investigate the secondary-tertiary 
transition. Clark and Lovric (2008; 2009) situated the 
transition in an anthropological framework of the rite of 
passage. Within their work, they discuss the vast array 
of changes across teaching styles, the types of mathe-
matics taught, the levels of conceptual understanding, 
and the advanced mathematical thinking required. 
Other researchers have investigated the actions, pro-
cess, objects, and schemata(APOS) theory (Dubinsky & 
McDonald, 2001; Gueudet, 2008; Selden & Selden, 2001). 
This theory views mathematical knowledge as being 
constructed through mental actions that are organized 
in schemata to make sense of problem-solving situa-
tions. Gueudet (2008) discussed the APOS theory rel-
ative to students in the transition as they are shifting 
to more advanced mathematical thinking. While these 
perspectives have added to our understanding of the 
transition, the theory foundational to our work is Cog-
nitive Load Theory (CLT). 

A major premise of CLT is that working memory load 
is decreased when domain specific schemata are activat-
ed from long term memory. The three sources of work-
ing memory load are described as: extraneous cognitive 
load coming from how material is organized and pre-
sented during instruction; intrinsic cognitive load com-
ing from element interactivity, or the interaction of the 
interconnected parts of the content; and germane cog-
nitive load, which encodes, sends, and connects newly 
processed information to existing long term memory 
schemata. A major instructional challenge is how to 
limit extraneous and intrinsic cognitive load enough so 
that working memory has the resources to successfully 
encode information for storage into long term memory. 
When schemata are built from this process, then learn-
ing can occur. CLT defines learning as a permanent change 
in long-term memory (Sweller et al., 1998), and we refer to 
learning the same way. We also believe that instruction 
focused on easier-to-present procedures compromises 
learning (Curry, 2017). This phenomenon is referred to 
as the transfer paradox because such instruction may have 
an effect on short-term retention for test performance 
but not on learning (van Merriënboer et al., 2006). This, 
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along with the Four Component Instructional Design 
(4C/ID) model, created from CLT to support instruction 
of a complex task (van Merriënboer et al., 2006), is what 
specifically attracts us to this theory. A complex task, in 
contrast to simple tasks, has many different solutions, 
real world applications, cannot be mastered in a sin-
gle session, and poses a very high load on the learners 
cognitive system (van Merriënboer et al., 2006). The 4C/
ID model was not created specifically for mathematics, 
however we are applying the model to mathematics 
because instruction and learning of mathematics is a 
complex task. For example, mathematics requires mul-
tiple solutions during problem-solving (e.g., numeric, 
algebraic, graphic, etc.), is replete with real world con-
nections, requires time to learn, and—for many—creates 
a very high working memory load. The 4C/ID model was 
confirmed for mathematics using data from the Factors 
Influencing College Success in Mathematics (FICSMath) 
(Wade et al., 2020). However, there has never been an 
investigation into how well the theoretical components 
of the model correspond to the actual instruction of sec-
ondary precalculus and calculus teachers. Thus, the pur-
pose of this paper is to explore the fit between the 4C/ID 
model and senior level high school students’ perceptions 
of how their precalculus and calculus instructional expe-
riences prepared them for college/university calculus. 

4C/ID Components
The 4C/ID model components include Learning Task, 
Support, Procedure and Part-Task Components. These 
components help understand how to reduce cogni-
tive load and support working memory during the 
learning of complex tasks. Table 1 presents the model 
components with their descriptions. Learning tasks 
ideally connect learners with constituent skills from the 
support and procedure components that make up the 
whole task (van Merriënboer et al., 2002). Working with 
the whole task is challenging yet required for making 
connections between prior knowledge and new learn-
ing. For example, when learning logarithms, the prereq-
uisite concepts of exponents and functions must be used 
to support learning. Most learners are not cognitively 
prepared to learn logarithms when there are no schema-
ta developed for exponents and exponential functions. 

Figure 1 presents the model as conceived by van 
Merriënboer et al. (2006). What is important to grasp 
from the representation of the model is that the Support 
Component (overarching concepts) is foundational to 
learning complex tasks. The Procedure Component and 
the Learning Task Components are established upon the 
concepts. As presented in Table 1, the partially shaded 



Figure 1

Van Merriënboer’s Theorized Components of the  
4C/ID Model. From Four-Component Instructional 
Design. 4cid.org.

circles represent diminished scaffolding over time of 
the constituent skills that make up the whole task (van 
Merriënboer et al., 2002). The Part Task Component rep-
resents practice for automaticity, and such practice is 
known to reduce the working memory load. 

theoretical components of the 4C/ID model? If there is a 
fit, how can the 4C/ID model be modified to better align 
with secondary precalculus and calculus instruction?
 

Data and Methods

The FICSMath Project
The FICSMath project, conducted at the Science Edu-
cation Department of the Center for Astrophysics | 
Harvard & Smithsonian remains the most recent US 
study of high school preparation for college calculus 
success. Three sources of data were gathered for the 
development of the FICSMath survey. One source was 
a broad literature review of current issues in second-
ary and tertiary mathematics education. Another was 
a qualitative online survey sent to precalculus and 
calculus teachers and professors across the nation. 
Teachers were asked what they were doing, and pro-
fessors were asked what teachers should be doing, to 
prepare students for tertiary calculus (for results, see 
Wade et al., 2016). Lastly, a focus group consisting of 
experts in secondary and post-secondary mathematics 
and mathematics education discussed the survey items. 
Together these provide evidence of content validity. To 
gauge test-retest reliability, we carried out a separate 
study in which 174 students from three different col-
leges took the survey twice, 2 weeks apart. Our analysis 
found that, for groups of 100, less than a 0.04% chance 
of reversal between the 50th and 75th percentiles exist-
ed (Thorndike, 1997). In the end, the FICSMath survey 
included 61 questions (many with multiple imbedded 
items) regarding demographics, course taking, perfor-
mance levels, and instructional experiences from par-
ticipants’ most recent high school mathematics course 
before entering single variable college calculus. The 
survey was administered at the beginning of the Fall 
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Research Questions

The FICSMath project has collected a wealth of empirical 
data about US students’ instruction and learning expe-
riences from their last high school mathematics class 
before entering tertiary calculus. For this paper, the data 
analyzed latent constructs to determine how well actu-
al instructional practices, as reported by students in the 
transition, align with components of the 4C/ID model. 
Our research questions are thus two-fold: What is the 
fit of students' perceptions of their instructional expe-
riences, as reported on the FICSMath survey, with the 

Table 1

Description of the Theoretical Components of the 4C/ID Model (modified from 4CID.org)

 4C/ID Component Description and Goal of the of the Component

 Learning Task Component  Integrates non-routine and routine skills and knowledge with authentic whole task learning 
experiences, is organized from simple to complex, and provides diminishing scaffolding 
support (represented by the partially shaded circles).

 Support Component  Is foundational to learning tasks as it supports learning of non-routine aspects of learning 
tasks, explains how to approach problems using cognitive strategies, details how the domain 
is organized using conceptual models and is always available. 

 Procedure Component  Specifies how to perform aspects of the tasks through step-by-step instruction, is presented  
just-in-time and fades as learners acquire more expertise.

 Part-Task Practice Component  Provides additional practice for routine aspects to reach a high level of automaticity, provides 
repetition, begins after routine aspects have been introduced in context of the whole task.



2009 semester to a stratified random sample of 276 small, 
medium, and large 2- and 4-year institutions (336 college 
and university calculus courses or sections). Students 
completed the surveys in college/university class, and, 
when the semester was over, the professors reported 
grades on the surveys before returning them to Harvard 
University. In the end, we obtained data from 10,437 
students from 134 institutions that returned the surveys 
(73.6% response rate from those who agreed to partici-
pate). For the purposes of this study, we included only 
respondents who had precalculus and/or calculus their 
senior year in high school and were the next semester 
in single variable college or university single variable 
calculus. This reduced the sample to 5,985 respondents. 
Though the individual percentages of missing values for 
the variables used were small, multiple imputation was 
applied to prevent a compound loss of data. Our sample 
thus included 6,140 cases, a 2.6% increase from the 5,985 
respondents under listwise deletion. 
 
Instructional Questions and Items
Table 2 shows the various instructional questions 
from the FICSMath survey. Instead of choosing which 
instructional questions should be mapped to com-
ponents of the 4C/ID model, we included all 70 items 
(from the 14 questions) in exploratory factor analysis 
(EFA). This allowed  instructional experiences to be 
mapped empirically instead of theoretically. 
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Exploratory Factor Analysis
Exploratory factor analysis (EFA) is a widely used and 
broadly applied statistical technique in the social sci-
ences (Costello & Osborne, 2005). We first investigated 
the Kaiser-Meyer-Olkin (KMO) statistic, which indicates 
the proportion of variance in the variables that may be 
caused by underlying factors. High values close to 1.0 
indicate that factor analysis can be usefully applied to 
the data. The KMO value was 0.848, suggesting that 
EFA is a reasonable method to investigate the under-
lying constructs. The large number of participants in 
the FICSMath study allowed us to meet many of EFA 
established best practices. For reliable results, the total 
number of variables in EFA should be at least three to 
five times larger than the number of expected common 
factors (Fabrigar et al., 1999). With 70 variables and seven 
factors, we comfortably met this standard. Additional-
ly, the recommended sample size should have a ratio of 
10:1 of observations to factors (Costello & Osborne, 2005) 
which we also met comfortably with a sample size of 
6,140 (after multiple imputation) and seven factors. Table 
2 shows that the scales of the variables were different, so 
we standardized the variables before running EFA. We 
also selected Maximum Likelihood as the factor analysis 
method and used eigenvalues greater than 1 (Gorsuch, 
1983) and the Scree test to determine the number of fac-
tors to keep (Cattell, 1966; Fabrigar et al., 1999). Because, 

Table 2

The Types of Instructional Questions (14) and Items (70) on the FICSMath Survey

 Types of Instructional Questions on the FICSMath Survey Number of Items Scale

 The amount of conceptual understanding and memorization of procedures required 2 0-5 
 in the class.

 The ways calculators were used in class. 7 0-1

 Frequency of use of calculators and/or computers in class. 3 0-4

 Emphasis on specific types of instruction in class. 7 0-5

 Frequency of types of in-class, student-to-student and/or teacher-to-student questioning,  10 0-5 and 
 responses, and interactions.   0-4

 Types of problems investigated and solved in class. 9 0-7

 How often calculations were checked for reasonable answer. 1 0-5

 Types of in-class questions on tests or quizzes. 9 0-1

 Use of specific teaching characteristics. 6 0-5

 Ways mathematics was connected to real life in class. 4 0-4

 Types of support for problem solving given in class. 3 0-4

 Types of teaching manipulatives used in class. 3 0-4

 Use of in-class assessments.  6 0-4



according to Yong and Pearce (2013), larger sample sizes 
allow smaller loadings, we decided that items with a fac-
tor loading of 0.30 or higher would remain in the factors. 
We also viewed instructional variables as being correlat-
ed and hence used the Promax oblique rotational meth-
od because of its expedience with larger datasets and the 

simple structure it can achieve (Gorsuch, 1983; Yong & 
Pearce, 2013). In the end, 34 out of the 70 variables held 
together in seven factors. The factors explain 51.9% of the 
variance within the data. As seen in Table 3, Cronbach’s 
alpha for the factors ranged from 0.618 to 0.873, indicat-
ing high internal consistency within each factor.
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Table 3

Factors, Constructs, Loadings, and the FICSMath Items (n=6,140; 51.9% of variance explained).

 Factors Latent Constructs Factor FICSMath Items 
 (Cronbach’s  Loadings  
 Alpha)

 Factor 1 Ways instruction connects 
 (0.873) mathematics to the real world  
  and other subject areas. 

 Factor 2 Instruction to support 
 (0.837) problem solving. 
 

 Factor 3 Instruction to support  
 (0.746)   mathematical literacy,  

reasoning, and conceptual  
understanding. 
 
 

 Factor 4 Ways calculators were used  
 (0.747)   in the course to support  

problem solving. 
 
 
 

 Factor 5 Frequency of various types of  
 (0.785)  problems solved in the course. 
 
 
 

 Factor 6 Student and teacher classroom  
 (0.712)   interactions to support learning  

mathematics.  
 

 Factor 7 Instructional time spent on  
 (0.618)   preparing for assessments and  

going over assignments.

 
 

 0.936 Connected math to real life applications.

 0.850 Connected math to everyday life.

 0.705 Examples from everyday world were used.

 0.655 Connected math to other subject areas.

 0.928 Teacher highlighted more than one way of solving a problem.

 0.794 Teacher explained ideas clearly.

 0.686 Teacher used graphs, tables, and other illustrations. 

 0.599 Teacher presented various methods for solving problems. 

 0.831 Emphasis on precise definitions. 

 0.703 Emphasis on vocabulary. 

 0.503 Emphasis on mathematical proofs.

 0.421 Emphasis on mathematical reasoning.

 0.412 Emphasis on functions. 

 0.331 Extent of conceptual understanding. 

 0.626 Allowed to use for trigonometric functions. 

 0.614 Allowed to use on exams.

 0.590 Allowed to use to plot graphs of functions. 

 0.570 Allowed to use for simple calculations.

 0.566 Allowed to use for homework. 

 0.453 Allowed to compute derivatives and integrals.

 0.822 Frequency of word problems. 

 0.706 Frequency of problems with multiple parts. 

 0.566 Frequency of problems with written explanations. 

 0.507 Frequency of problems with proofs. 

 0.485 Frequency of problems being graphed by hand.

 0.941 Classmates taught each other. 

 0.775 You taught your classmates. 

 0.375 Small group discussions were held. 

 0.335 Students spent time doing individual work in class. 

 0.610 Class time spent preparing for quizzes or tests.

 0.580 Time spent reviewing past lessons.

 0.489 Class time spent preparing for standardized tests.

 0.451 Tests or quizzes were given in class.



Lastly, the Pearson product-moment correlations 
were computed to determine if the factors held cohe-
sively together among one another. We used Onwueg-
buzie and Daniel’s (1999) guide of appropriate sample 
sizes of 800, 84, and 28 to detect small (r = 0.1), moderate 
(r = 0.3) and large correlation (r = 0.5) levels, respective-
ly. With a sample size of 6,140 we used 0.1 and 0.3 as the 
cut off for weak and moderate correlations, respective-
ly. As seen in Table 4, all factors were positively correlat-
ed with each another except factor 5.

Results

Being comfortable with the factors and how they held 
together, we determined if and how the factors mapped 
to the theoretical components of the 4C/ID model. Fac-
tors with at least a weak positive correlation (r > 0.1) 
and theoretical alignment with the components were 
mapped together. We now present how we perceive the 
4C/ID components as they relate to the teaching of high 
school precalculus and calculus. Table 5 presents the 
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Table 4

Pearson Correlations Among the Factors (n = 6,140)

 

* Weak correlation (0.00 ≤ r ≤ 0.30); **Moderate correlation (0.31 ≤r ≤ 0.50) 

  Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

 Factor 1      

 Factor 2 0.375**     

 Factor 3 0.321** 0.454**    

 Factor 4 0.231* 0.215* 0.299*   

 Factor 5 – 0.031 – 0.006 – 0.071 – 0.067  

 Factor 6 0.235* 0.178* 0.115* 0.138* 0.050 

 Factor 7 0.260* 0.270* 0.204* 0.254** – 0.025 0.255*

Table 5

Mapping of the Factors and Constructs to the Theoretical Components of the 4C/ID Model

 
 Factor and Construct from  4C/ID Description of the Component 
 FICSMath Data (correlation  Component 
 value if more than one factor).

   Factor 1: Ways instruction connects  Learning Task Integrate new content with necessary prior knowledge 
mathematics to the real world and other Component and connect with applied problems. Scaffold instruction by 
subject areas.  integrating the Support and Procedure Components and  
  diminish scaffolding over time. 

  Factor 2: Instruction to support problem Support Support instruction of new learning tasks by explaining 
solving. Component how to approach problem solving using cognitive 
Factor 3: Instruction to support mathematical  strategies, concepts, reasoning, and mental models 
literacy, reasoning, and conceptual  (graphs, charts, tables, patterns, etc.). 
understanding (r = 0.454).

  Factor 4: Ways calculators were used in the Procedure Connect problem solving tasks through step-by-step 
course to support problem solving. Component instruction while integrating prior knowledge with 
Factor 6: Student and teacher classroom   new content. Connection to applied problems create the 
interactions to support learning mathematics   stage for just-in-time instruction that fades as learners 
(r = 0.138).  acquire more expertise.

  Factor 7: Instructional time spent on  Part-Task Provide additional practice through classwork, homework, 
preparing for assessments and going  Component group work, etc., for problem-solving tasks to reach a high 
over assignments.  level of automaticity. Repetition begins after new content 
  has been introduced in the context of the whole task.



how tertiary calculus has addressed transition issues 
see Vandenbussche et al., 2018; Norton et al., 2019; & 
Viera et al., 2019). The SPC 4C/ID model may be unique 
to a US context, but we hope that mathematics educa-
tors and teachers from other countries will consider this 
model and investigate if it can support students in the 
transition to tertiary mathematics in their specific insti-
tutional structures. Lastly, while the SPC 4C/ID model 
is derived empirically, it is not yet tested for predictive 
validity. That is a clear next step for our work. 

Discussion and Conclusion

The SPC 4C/ID model was generated by mapping the 
instructional experiences of students who proceeded to 
college or university calculus to theoretical components 
of the 4C/ID model. Initially Wade et al., (2020)  used 
confirmatory factor analysis (CFA) to confirm the 4C/ID 
model using FICSMath data. In that work, we selected 
instructional experiences that aligned theoretically with 
the 4C/ID model. By comparison, this article presents 

4C/ID components and addresses 
our first research question: What 
is the fit of students' perceptions 
of their instructional experiences, 
as reported on the FICSMath sur-
vey, with the theoretical compo-
nents of the 4C/ID model? Factor 
1 mapped to the Learning Task 
Component; Factors 2 and 3 being 
mapped to the Support Compo-
nent; Factors 4 and 6 mapped to 
the Procedure Component; and 
Factor 7 mapped to the Part-Task 
Component. Factor 5, a measure 
of the quantity and variety of 
problems posed in the course, 
was negatively correlated and was 
thus not included in the mapping 
of factors to model components. 

The Modified 4C/ID Model 
We now address Research Ques-
tion 2: How can the 4C/ID model 
be modified to better align with 
the actual instruction of second-
ary-tertiary mathematics? Table 
6 presents the descriptions of the 
components of the modified Sec-
ondary Precalculus Calculus Four 
Component Instructional Design 
(SPC 4C/ID) model. The modified components were 
generated using Table 3 (factors generated from EFA) 
and Table 5 (mapping of factors with mathematics edu-
cation language integrated into the 4C/ID components). 
The modified SPC 4C/ID model was designed for sec-
ondary precalculus and calculus instruction, with the 
ultimate goal of providing teachers with guidance on 
ways to better prepare students for tertiary calculus. 

Limitations and Future Work

The SPC 4C/ID model was generated from US students’ 
instructional experiences from their senior level precal-
culus or calculus course, as they reported them on the 
FICSMath Survey the following semester in single vari-
able college or university calculus. There is no voice, 
however, representing those who took precalculus 
and/or calculus in high school and did not proceed to 
college calculus the following semester. Likewise, this 
article is silent on instructional practices at the tertia-
ry level—which are also worthy of examination (to see 
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Table 6

Description of the Components of SPC 4C/ID model

 
 SPC 4C/ID Description of the SPC 4C/ID Components  
 Component

  Learning Task • Present learning tasks that integrate new concepts by 
 Component   engaging learners in problem solving that integrates prior  
   learning.  
  • Present applied problems with associated mathematical tasks  
   organized from simple to complex.  
  • Scaffold instruction using the Support and Procedure  
   Components. Decrease scaffolding over time.

 Support • Support learning by highlighting various ways of solving  
 Component   problems.  
  • Use mental models to focus on mathematical concepts using  
   graphs, tables, and other illustrations. 
  • Focus on mathematical literacy (definitions and vocabulary),  
   proofs, reasoning, functions, and conceptual understanding to  
   present how the mathematical content holds together.  
  • This component is paramount to building conceptual  
   understanding that will be needed in university mathematics.

 Procedure • Use graphing calculators to connect concepts to procedures  
 Component   while being mindful that students will most likely not have  
   access to graphing calculators in college level calculus.  
  • Use small group discussions and group work where students  
    can explain problem solving and where teachers can provide  

just-in-time guidance.

 Part-Task • Provide additional practice to reach high levels of automaticity  
 Practice   by reviewing past lessons, going over homework, and preparing  
 Component   for quizzes or tests. 
  • Only use such review after concepts and procedures have been  
    presented to reduce the over reliability on rote mathematical 

procedures.
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of concepts (Support Component) first and foremost, 
then other components are built upon the concepts. This 
model can be used by mathematics teachers to examine 
and improve their own practices. For example, when 
teaching trigonometric ratios they may face pressure 
to make abstract ideas concrete to address the common 
question of “when will we ever use this?” As a result, 
they may seek to connect trigonometric ratios to real life 
applications. The SPC 4C/ID model shows that real life 
connections must be supported by an understanding 
of concepts that undergirds the learning of procedures. 
Rather than answering the “when will we ever use this?” 
question in isolation, the SPC 4C/ID model suggests that 
teachers instead seek answers to a more robust ques-
tion: How can I present students with meaningful prob-
lem-solving and real life tasks while providing support 
for learning overarching mathematical concepts with 
appropriate attention to procedures and the develop-
ment of automaticity?  It is not a small question, and 
the answers are not simple, but we hope the SPC 4C/ID 
model provides a framework that successfully addresses 
this question. 
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l components is accompanied by concrete descriptions 
of teaching practices (e.g., focus on mathematical liter-
acy using definitions and vocabulary). The basic appli-
cation of the SPC 4C/ID model is that instruction can 
be organized around how cognitive load theory (CLT) 
suggests students learn, with attention to each of the 
four model components. The SPC 4C/ID model does not 
require a radical overhaul of what mathematics teachers 
do—it simply provides an empirically derived model 
for instruction based on CLT.1 

Our brief footnote on homework—preserved in the 
model as one means for Part-Task Practice—illustrates 
the need to understand that it takes time and practice 
to learn. Secondary schools whose students cannot reli-
ably find time and space to complete homework must 
find ways for students to practice. 

One key—perhaps the key—in providing equitable 
opportunity are teachers. The skills, experience, and 
effectiveness of mathematics teachers necessarily varies; 
so too will their ability to teach using a model such as 
the SPC 4C/ID model. Designing instruction to support 
learning in precalculus and calculus, and equipping 
students to transfer that learning into more abstract ter-
tiary calculus, is a complex task. It is also central to the 
rationale for the coherent model we present. 

Mathematics teachers make daily decisions about cur-
riculum, instruction, and assessment often without sub-
stantive feedback from students, colleagues, or school 
administrators. They must find ways, often on their own, 
to promote student learning. The SPC 4C/ID presents 
an organized empirical model to support the learning 

1  One interesting aspect of the model from an application standpoint is the preservation of homework as an item contributing to 
the Part-Task Practice Component. This is one area of teaching practice where we have seen substantial disagreements among 
teachers over time (Hansen & Quintero, 2017), especially from an equity standpoint. It is clear to us that, however one feels about 
homework, the provision of practice was part of the final model. If teachers are unable to assign homework (or students are 
unable to complete it), students may not get the practice they need. The SPC 4C/ID model suggests that mathematics teachers 
(and students) still need to find time for practice. This could happen via means other than homework—such as additional class 
meetings during the year, or calculus courses that take multiple semesters or years to complete—but, as far as we can tell,  
students need practice. Other components of the model, as outlined in Table 6, may have similar policy or practice implications. 
We encourage readers to review the model in light of their own contexts.
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