
that the volume of a cylinder, expressed as V=πr2ℎ, can 
be logically deduced from the area of its circular base 
and its height helps students recognize how mathe-
matical formulas are not merely to be memorized but 
derived through structured reasoning, a process central 
to the development of deductive proof skills (Miyakawa, 
Fujita, & Jones, 2017). Similarly, the volume of a cone, 
which is exactly one-third that of a cylinder with the 
same base and height, emerges from geometric rea-
soning or Cavalieri’s Principle, rather than arbitrary 
acceptance. Cavalieri’s Principle states: If two solids 
have equal heights, and if the areas of their correspond-
ing cross-sections taken at equal distances from their 
respective bases are always equal, then the two solids 
have equal volumes. Using this principle, one can show 
that a cone has one-third the volume of a cylinder. By 
comparing the cone with a cylinder and a carefully con-
structed prism, students can visualize that the areas of 
cross-sections at each height differ by a factor of three, 
thereby justifying the one-third relationship in volume. 
Such derivations cultivate deeper mathematical insight 
by bridging intuitive reasoning with formal justifica-
tion, thereby enabling learners to reconstruct or modify 
formulas through logical argumentation, an approach 

Beyond Memorization: Advocating Derivation  
and Proof in School Mathematics

Introduction

In school mathematics teaching, there is an alarming 
tendency toward emphasizing rote memorization of 
formulas and procedures rather than fostering genu-
ine understanding through derivation and proof. This 
prevailing pedagogical approach has raised significant 
concerns among educators and researchers regarding 
its impact on students’ deep conceptual grasp, critical 
thinking skills, and long-term retention of mathemati-
cal knowledge (Boaler, 2016). Formulas for volumes of 
solids such as cylinders, cones, prisms, and pyramids, 
as well as geometric concepts like the shortest distance 
between two points on a sphere, are often presented as 
facts to be memorized rather than understood through 
logical reasoning or derivation. The resulting disconnect 
reduces mathematics to a collection of disconnected 
rules, hindering students’ ability to apply their knowl-
edge flexibly or appreciate the underlying structure of 
mathematics (Schoenfeld, 2014).

Derivation and proof are foundational pillars of 
mathematics. They provide learners with the tools to 
understand why formulas and relationships hold true, 
not merely that they exist. For instance, understanding 
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ABSTRACT This paper advocates for the teaching and emphasis of derivation and proof in school mathematics as 
a means to foster deeper conceptual understanding and reduce overreliance on rote memorization. By examining 
the derivation of key geometric formulas-such as the volumes of a cylinder, cone, prism, and pyramid, as well as 
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connections, derivation empowers learners to appreciate mathematics as a coherent and purposeful discipline. 
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that reflects the central role of proof in linking mathe-
matics as practiced by mathematicians to mathematics 
as taught in schools (Rocha, 2019).

It is, however, important to specify the grade levels 
where such proofs and derivations are appropriate. For 
example, derivations involving prisms and cylinders 
(using cross-sections or stacking) can be introduced 
as early as grades 6–8, since they require only basic 
geometry and arithmetic. Proofs involving cones and 
pyramids via Cavalieri’s Principle are more appropri-
ate for grades 8–10, when students are mature enough 
to follow abstract reasoning. Advanced topics such as 
the derivation of the great-circle distance on a sphere, 
which relies on trigonometry, are best suited for grades 
11 and 12, when students have developed sufficient 
algebraic and trigonometric background. Explicitly 
linking examples to grade levels ensures that derivation 
and proof are introduced progressively, making them 
accessible and meaningful to learners at different stages 
of development.

In many systems and pedagogical contexts, however, 
time constraints, curriculum demands, and examination 
pressures compel teachers to prioritize formula memori-
zation over reasoning. The consequence is a superficial 
grasp of mathematics where students can reproduce for-
mulas but struggle to explain or derive them. This not 
only limits students’ engagement in the active roles of 
exploring, conjecturing, and justifying through proof but 
also undermines their confidence and sustained interest 
in mathematics (Bleiler-Baxter & Pair, 2017). Moreover, 
teachers often resist the integration of derivation and 
proof because they fear it will reduce the time available 
for procedural drill, an emphasis reinforced by high-
stakes examinations (Hiebert & Grouws, 2007). Studies 
reveal that while conceptual teaching improves long-term 
achievement, many teachers prefer the certainty of proce-
dural coverage to meet assessment demands (Thompson 
& Senk, 2012). Addressing these concerns requires prac-
tical strategies for integration. One approach is to embed 
short, intuitive derivations within existing lessons, for 
instance, spending five minutes showing why the cylin-
der’s volume equals “base area × height” through stack-
ing, before assigning routine practice. Another strategy 
is the use of visual or hands-on demonstrations, such as 
water-filling experiments to compare cone and cylinder 
volumes, which require little extra class time yet leave 
lasting impressions. Furthermore, schools could align 
derivation-focused instruction with curriculum objec-
tives, ensuring that it supports, rather than competes with, 
exam preparation. Technology-based tools like dynamic 
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geometry software also allow quick and interactive visu-
alization of proofs, helping teachers overcome time and 
resource limitations (Stylianides & Stylianides, 2009).

Mathematical topics such as the volume of prisms 
and pyramids provide fertile ground for teaching deri-
vation and proof in school mathematics. The volume of 
a prism, found by multiplying the base area by height, 
can be understood by considering the prism as a stack 
of congruent cross-sectional areas along its height. Like-
wise, the formula for the volume of a pyramid, which 
is one-third the volume of a prism with the same base 
and height, can be illuminated through spatial reason-
ing or geometric dissection, thus demystifying why the 
factor of one-third appears and how volume relates to 
base and height in different solids (Mason, Graham, 
& Johnston-Wilder, 2005). These examples are par-
ticularly suitable for junior secondary levels (Grades 
7–9), when students are transitioning from concrete to 
abstract reasoning. Another illustrative example lies in 
spherical geometry, particularly the determination of 
the shortest distance between two points on a sphere, 
expressed in terms of their latitude and longitude coor-
dinates. This concept, fundamental in navigation and 
geography, is often introduced in a formulaic manner 
without deriving the great-circle distance formula from 
basic geometric principles. When students are guid-
ed through the reasoning behind the spherical law of 
cosines or the haversine formula, they develop a con-
crete understanding of how curvature influences dis-
tance and why Euclidean notions of straight lines do 
not apply on curved surfaces (Feeman & Green, 2015). 
Such derivations are better suited for upper secondary 
students (Grades 11–12), where trigonometric concepts 
are already part of the curriculum.

Recent research underscores the benefits of integrat-
ing derivation and proof in mathematics education. 
Studies indicate that students exposed to reasoning-fo-
cused instruction demonstrate higher achievement, 
better problem-solving abilities, and greater motivation 
(Stylianides & Stylianides, 2009; Boaler, 2016). Further-
more, national curriculum reforms in countries like 
Singapore and Finland emphasize conceptual under-
standing and mathematical reasoning, suggesting a 
growing consensus on the importance of proof and 
derivation in school mathematics (Ng & Widjaja, 2015). 
Despite these developments, many educational systems 
lag behind, continuing to undervalue derivation and 
proof in favour of procedural fluency. This paper there-
fore advocates a renewed emphasis on teaching deri-
vation and proof within school mathematics, arguing 
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that such an approach nurtures mathematical thinking, 
enhances understanding, and equips students with 
skills essential for further study and everyday life. By 
explicitly clarifying which grade levels suit which der-
ivations, providing clear explanations of concepts like 
Cavalieri’s Principle, and offering strategies for practi-
cal classroom integration, the study responds to the con-
cerns of both researchers and practitioners. By focusing 
on classical yet foundational examples, volumes of com-
mon solids and shortest distances on spheres, the study 
illustrates how derivation and proof can be effectively 
integrated into the curriculum without overwhelming 
teachers or students.

Some Illustrations

In this section, the derivations and proofs in school 
mathematics are illustrated.

1. Derivation of volume of a cone formula 
The derivation of the volume of a cone formula may 
not be obvious in school mathematics like that of cylin-
der. A cylinder can be visualized as a stack of identical 
circular discs. The volume of a cylinder is obtained as 
Volume = base area (circle) × height, which gives V=πr2ℎ 
This is clear enough. Imagine filling a cone with water 
and pouring it into a cylinder with the same base and 
height. It takes exactly 3 full cones to fill the cylinder. 
But the result comes from solid geometry developed by 
Archimedes (circa 287–212 BC) and formalized by Cav-
alieri’s Principle (formulated by Bonaventura Cavalieri 
in the 17th century) which states: If two solids have the 
same height and the same cross-sectional area at every 
level (parallel to the base), then they have the same vol-
ume. There is also a converse: If the cross-sectional areas 
are in a constant ratio at every height, then the volumes 
are in the same ratio. 

Let us derive the volume of a cone using integration. 
Take a right circular cone with height ℎ and base radius 
r. Place it so that the tip is at the origin and the base 
is at x=h. The equation of the slant side (a straight line 
from (0,0) to (h,r)) is: y= (h/r)x. Rotate this line around 
the x-axis to form the cone. Using the disk method (see 
Figure 1):

So, whether you understand it geometrically or 
through calculus, the volume of a cone is:

V=1/3πr2h

Here is a clear and logical derivation of the formula 
for the volume of a cone without using calculus, using 
geometric reasoning. You can derive the volume of a 
cone geometrically by knowing the formula for a cylin-
der and observing that a cone with the same base and 
height fits 3 times into the cylinder based on Cavalieri’s 
Principle. That is:

Volume of cone (Vcone)=k×Volume of cylinder(Vcylinder), 

k = constant of proportionality, 0 < k < 1 

⟹   kVcylinder + kVcylinder + kVcylinder = Vcylinder
⟹   3kVcylinder = Vcylinder ⟹ 3k = ⟹ k=⅓
∴    Vcylinder = ⅓πr2h

Therefore, the volume of a cylinder is three times the 
volume of a cone with the same base and height. Just as a 
cone occupies exactly one-third the volume of a cylinder 
with the same base and height, a pyramid also occupies 
exactly one-third the volume of a prism with the same 
base area and height. This analogy helps students under-
stand the volume relationship without needing calculus.

2. Proving the shortest distance formula on a 
sphere (the Earth) using longitude and latitude 
in school mathematics
We want to find the formula for the shortest distance 
between two places on the Earth's surface using their 
longitudes and a common latitude. The formula is:

Ds  = 360
2 sin-1(cosαsin     )θ

2  × 2πR

where:

Ds is the shortest distance between the two points,
θ  is the difference in longitude (in degrees),
α is the common latitude,
R is the radius of the Earth.

But where does this formula come from? Many math-
ematics textbooks state the formula without explanation 
(Obasi, 2015). Let us understand how it is derived, as 
presented in Obasi (2015), and replicate it here for easy 
reference.

Figure 1

Disk Method



	 43 	 |	 DARLINGTON CHIBUEZE DURU, CHINEDU VICTOR OBASI, PETER OZIOMA UZOMA

3. Proof of why we invert the second fraction 
when dividing
Why do we invert when dividing two fractions? Teach-
ers often instruct students to “invert the second fraction 
and multiply” when dividing two fractions. While this 
rule is mathematically correct, it is frequently taught 
without explanation, leaving students to accept it as 
a mysterious trick—what might be called mathemagic. 
However, mathematics should make sense, not just 
work by rules. The following logical proof explains why 
the inversion step works, helping students understand 
the reasoning behind the rule rather than memorizing 
it blindly. 

Let’s divide:

b
a  ÷ dc  
This means: “How many times does d

c  fit into b
a ?” 

Let x be the answer:

b
a  = x × d

c  

Multiply both sides by d
c  to isolate x:   x= b

a 

 
× c

d 

Therefore:

b
a 

 
÷ d

c  = b
 a 

 
× c

d  

This logical proof justifies the “invert and multi-
ply” rule.

Conclusion

The overreliance on memorization in school mathe-
matics has created a generation of learners who often 
lack genuine understanding of mathematical concepts 
and struggle to apply them flexibly. This paper has 
demonstrated, through the derivation of formulas for 
volumes of common geometric solids, cylinders, cones, 
prisms, and pyramids, as well as the shortest distance 
between two points on a sphere, that deep mathemat-
ical understanding is achievable when students are 
guided through reasoning and proof. These derivations, 
when introduced appropriately in school curricula, help 
students see mathematics not as a set of disconnected 
rules, but as an elegant and logical system grounded 
in relationships and patterns. Advocating for derivation 
and proof in school mathematics is not just a call for 

Proof

Understanding the idea. On a flat surface, the short-
est distance between two points is a straight line. On 
a curved surface like the Earth (which is almost a 
sphere), the shortest path between two points is called 
a great-circle distance. To understand this, imagine the 
Earth as a circle and draw two points A and B on the 
same latitude, but different longitudes. Connect them 
with a chord (a straight line through the circle). Let the 
angle between these two points be θ (in degrees). The 
chord forms part of a sector of a circle. Using the sector 
formula:

Ds = 360
ϑ  × 2πR	 (1)

To determine ϑ, since at small θ, the length of Arc 
equals the length of the Chord. The length of a chord 
of a circle is:

L = 2r sin 2
θ 	 (2)

where θ is the angle subtended by the Chord. Simi-
larly, ϑ is the angle subtended by the shortest distance, 
which is given by

L₂ = 2R sin 2
ϑ 	 (3)

But r = Rcosα, then equation (2) becomes   

L = 2Rcosα sin 2
θ 	 (4)

Since Chord of a circle is uniform, therefore equation 
(3) is equal to equation (4), i.e.

2R sin 2
ϑ  = 2Rcosα sin 2

θ 

sin 2
ϑ   = cosα sin 2

θ 

2
ϑ  = sin-1(cosα sin 2

θ )

∴ ϑ = sin-1(cosα sin 2
θ )

Therefore, Ds  = 360
2 sin-1(cosαsin     )θ

2  × 2πR

And this is the shortest distance formula between 
two points with the same latitude but different longi-
tudes on a sphere like the Earth. This proof shows how 
the shortest distance formula is derived from basic 
geometry, not just memorized. Understanding the why 
behind formulas helps you become a creative and con-
fident problem solver—just like the great mathemati-
cians. Let this motivate you to go beyond formulas and 
think about the ideas behind them.
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curriculum reform, it is a call to transform how students 
experience and internalize mathematics. When learners 
are given the tools and time to explore why a formu-
la works, they gain confidence, build critical thinking 
skills, and develop a more lasting appreciation for the 
subject. Teachers, curriculum developers, and policy-
makers must therefore prioritize reasoning, explora-
tion, and derivation as core components of mathematics 
instruction. Only then can mathematics teaching move 
beyond mechanical performance and toward meaning-
ful, enduring understanding.

Suggestions

The following suggestions are made:

1.	� Schools should integrate intuitive and visual der-
ivations of formulas (such as prism and cylinder 
volumes) at the junior secondary level (Grades 
6–8), while reserving more abstract derivations 
(such as Cavalieri’s Principle for cones and pyra-
mids or spherical trigonometry for great-circle dis-
tances) for senior secondary levels (Grades 9–12).

2.	� Teachers can embed short derivations within reg-
ular lessons, use hands-on demonstrations (e.g., 
water-filling experiments for cone and cylinder 
volumes), and employ dynamic geometry software 
to visually illustrate proofs without significantly 
reducing time for procedural practice.

3.	� Curriculum designers and examination boards 
should incorporate reasoning-based questions 
alongside procedural ones, so that teachers are 
motivated to balance formula memorization with 
proof, fostering both conceptual understanding 
and exam readiness.
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