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ABSTRACT This paper advocates for the teaching and emphasis of derivation and proof in school mathematics as

a means to foster deeper conceptual understanding and reduce overreliance on rote memorization. By examining

the derivation of key geometric formulas-such as the volumes of a cylinder, cone, prism, and pyramid, as well as

the shortest distance between two points on a sphere in latitude and longitude-it demonstrates how students can

engage meaningfully with mathematical ideas. Through logical reasoning, spatial visualization, and mathematical

connections, derivation empowers learners to appreciate mathematics as a coherent and purposeful discipline.
The paper calls for an instructional shift toward reasoning-based learning in school curricula to cultivate critical

thinking and lasting comprehension.

KEYWORDS Conceptual Understanding, Derivation, Proof, School Mathematics

Introduction

In school mathematics teaching, there is an alarming
tendency toward emphasizing rote memorization of
formulas and procedures rather than fostering genu-
ine understanding through derivation and proof. This
prevailing pedagogical approach has raised significant
concerns among educators and researchers regarding
its impact on students’ deep conceptual grasp, critical
thinking skills, and long-term retention of mathemati-
cal knowledge (Boaler, 2016). Formulas for volumes of
solids such as cylinders, cones, prisms, and pyramids,
as well as geometric concepts like the shortest distance
between two points on a sphere, are often presented as
facts to be memorized rather than understood through
logical reasoning or derivation. The resulting disconnect
reduces mathematics to a collection of disconnected
rules, hindering students’ ability to apply their knowl-
edge flexibly or appreciate the underlying structure of
mathematics (Schoenfeld, 2014).

Derivation and proof are foundational pillars of
mathematics. They provide learners with the tools to
understand why formulas and relationships hold true,
not merely that they exist. For instance, understanding

that the volume of a cylinder, expressed as V=nr’h, can
be logically deduced from the area of its circular base
and its height helps students recognize how mathe-
matical formulas are not merely to be memorized but
derived through structured reasoning, a process central
to the development of deductive proof skills (Miyakawa,
Fujita, & Jones, 2017). Similarly, the volume of a cone,
which is exactly one-third that of a cylinder with the
same base and height, emerges from geometric rea-
soning or Cavalieri’s Principle, rather than arbitrary
acceptance. Cavalieri’s Principle states: If two solids
have equal heights, and if the areas of their correspond-
ing cross-sections taken at equal distances from their
respective bases are always equal, then the two solids
have equal volumes. Using this principle, one can show
that a cone has one-third the volume of a cylinder. By
comparing the cone with a cylinder and a carefully con-
structed prism, students can visualize that the areas of
cross-sections at each height differ by a factor of three,
thereby justifying the one-third relationship in volume.
Such derivations cultivate deeper mathematical insight
by bridging intuitive reasoning with formal justifica-
tion, thereby enabling learners to reconstruct or modify
formulas through logical argumentation, an approach
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that reflects the central role of proof in linking mathe-
matics as practiced by mathematicians to mathematics
as taught in schools (Rocha, 2019).

It is, however, important to specify the grade levels
where such proofs and derivations are appropriate. For
example, derivations involving prisms and cylinders
(using cross-sections or stacking) can be introduced
as early as grades 6-8, since they require only basic
geometry and arithmetic. Proofs involving cones and
pyramids via Cavalieri’s Principle are more appropri-
ate for grades 8-10, when students are mature enough
to follow abstract reasoning. Advanced topics such as
the derivation of the great-circle distance on a sphere,
which relies on trigonometry, are best suited for grades
11 and 12, when students have developed sufficient
algebraic and trigonometric background. Explicitly
linking examples to grade levels ensures that derivation
and proof are introduced progressively, making them
accessible and meaningful to learners at different stages
of development.

In many systems and pedagogical contexts, however,
time constraints, curriculum demands, and examination
pressures compel teachers to prioritize formula memori-
zation over reasoning. The consequence is a superficial
grasp of mathematics where students can reproduce for-
mulas but struggle to explain or derive them. This not
only limits students” engagement in the active roles of
exploring, conjecturing, and justifying through proof but
also undermines their confidence and sustained interest
in mathematics (Bleiler-Baxter & Pair, 2017). Moreover,
teachers often resist the integration of derivation and
proof because they fear it will reduce the time available
for procedural drill, an emphasis reinforced by high-
stakes examinations (Hiebert & Grouws, 2007). Studies
reveal that while conceptual teaching improves long-term
achievement, many teachers prefer the certainty of proce-
dural coverage to meet assessment demands (Thompson
& Senk, 2012). Addressing these concerns requires prac-
tical strategies for integration. One approach is to embed
short, intuitive derivations within existing lessons, for
instance, spending five minutes showing why the cylin-
der’s volume equals “base area x height” through stack-
ing, before assigning routine practice. Another strategy
is the use of visual or hands-on demonstrations, such as
water-filling experiments to compare cone and cylinder
volumes, which require little extra class time yet leave
lasting impressions. Furthermore, schools could align
derivation-focused instruction with curriculum objec-
tives, ensuring that it supports, rather than competes with,
exam preparation. Technology-based tools like dynamic

geometry software also allow quick and interactive visu-
alization of proofs, helping teachers overcome time and
resource limitations (Stylianides & Stylianides, 2009).

Mathematical topics such as the volume of prisms
and pyramids provide fertile ground for teaching deri-
vation and proof in school mathematics. The volume of
a prism, found by multiplying the base area by height,
can be understood by considering the prism as a stack
of congruent cross-sectional areas along its height. Like-
wise, the formula for the volume of a pyramid, which
is one-third the volume of a prism with the same base
and height, can be illuminated through spatial reason-
ing or geometric dissection, thus demystifying why the
factor of one-third appears and how volume relates to
base and height in different solids (Mason, Graham,
& Johnston-Wilder, 2005). These examples are par-
ticularly suitable for junior secondary levels (Grades
7-9), when students are transitioning from concrete to
abstract reasoning. Another illustrative example lies in
spherical geometry, particularly the determination of
the shortest distance between two points on a sphere,
expressed in terms of their latitude and longitude coor-
dinates. This concept, fundamental in navigation and
geography, is often introduced in a formulaic manner
without deriving the great-circle distance formula from
basic geometric principles. When students are guid-
ed through the reasoning behind the spherical law of
cosines or the haversine formula, they develop a con-
crete understanding of how curvature influences dis-
tance and why Euclidean notions of straight lines do
not apply on curved surfaces (Feeman & Green, 2015).
Such derivations are better suited for upper secondary
students (Grades 11-12), where trigonometric concepts
are already part of the curriculum.

Recent research underscores the benefits of integrat-
ing derivation and proof in mathematics education.
Studies indicate that students exposed to reasoning-fo-
cused instruction demonstrate higher achievement,
better problem-solving abilities, and greater motivation
(Stylianides & Stylianides, 2009; Boaler, 2016). Further-
more, national curriculum reforms in countries like
Singapore and Finland emphasize conceptual under-
standing and mathematical reasoning, suggesting a
growing consensus on the importance of proof and
derivation in school mathematics (Ng & Widjaja, 2015).
Despite these developments, many educational systems
lag behind, continuing to undervalue derivation and
proof in favour of procedural fluency. This paper there-
fore advocates a renewed emphasis on teaching deri-
vation and proof within school mathematics, arguing
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that such an approach nurtures mathematical thinking,
enhances understanding, and equips students with
skills essential for further study and everyday life. By
explicitly clarifying which grade levels suit which der-
ivations, providing clear explanations of concepts like
Cavalieri’s Principle, and offering strategies for practi-
cal classroom integration, the study responds to the con-
cerns of both researchers and practitioners. By focusing
on classical yet foundational examples, volumes of com-
mon solids and shortest distances on spheres, the study
illustrates how derivation and proof can be effectively
integrated into the curriculum without overwhelming
teachers or students.

Some lllustrations

In this section, the derivations and proofs in school
mathematics are illustrated.

1. Derivation of volume of a cone formula

The derivation of the volume of a cone formula may
not be obvious in school mathematics like that of cylin-
der. A cylinder can be visualized as a stack of identical
circular discs. The volume of a cylinder is obtained as
Volume = base area (circle) x height, which gives V=mtr’h
This is clear enough. Imagine filling a cone with water
and pouring it into a cylinder with the same base and
height. It takes exactly 3 full cones to fill the cylinder.
But the result comes from solid geometry developed by
Archimedes (circa 287-212 BC) and formalized by Cav-
alieri’s Principle (formulated by Bonaventura Cavalieri
in the 17th century) which states: If two solids have the
same height and the same cross-sectional area at every
level (parallel to the base), then they have the same vol-
ume. There is also a converse: If the cross-sectional areas
are in a constant ratio at every height, then the volumes
are in the same ratio.

Let us derive the volume of a cone using integration.
Take a right circular cone with height & and base radius
r. Place it so that the tip is at the origin and the base
is at x=h. The equation of the slant side (a straight line
from (0,0) to (h,r)) is: y= (h/r)x. Rotate this line around
the x-axis to form the cone. Using the disk method (see
Figure 1):

Figure 1
Disk Method

So, whether you understand it geometrically or
through calculus, the volume of a cone is:

V=%inrth

Here is a clear and logical derivation of the formula
for the volume of a cone without using calculus, using
geometric reasoning. You can derive the volume of a
cone geometrically by knowing the formula for a cylin-
der and observing that a cone with the same base and
height fits 3 times into the cylinder based on Cavalieri’s
Principle. That is:

Volume of cone (Vope)=kxVolume of cylinder(V oy iy ger),

k = constant of proportionality, 0<k<1

= KV, ylinder +kV, ylinder +kV, ylinder = chlinder
= 3kvcylinder - chlinder = 3k== k=3

1
chllnder =smr'h

Therefore, the volume of a cylinder is three times the
volume of a cone with the same base and height. Justas a
cone occupies exactly one-third the volume of a cylinder
with the same base and height, a pyramid also occupies
exactly one-third the volume of a prism with the same
base area and height. This analogy helps students under-
stand the volume relationship without needing calculus.

2. Proving the shortest distance formula on a
sphere (the Earth) using longitude and latitude
in school mathematics

We want to find the formula for the shortest distance
between two places on the Earth's surface using their
longitudes and a common latitude. The formula is:

D. = 2 sin'l(cosv‘sinzg )
s 360

x 2R

where:

Dj is the shortest distance between the two points,
0 is the difference in longitude (in degrees),

a is the common latitude,

R is the radius of the Earth.

But where does this formula come from? Many math-
ematics textbooks state the formula without explanation
(Obasi, 2015). Let us understand how it is derived, as
presented in Obasi (2015), and replicate it here for easy
reference.

h

0

h
,rZ
V=T[f de—nf x dx—nf—xzdx—nﬁ

x3 r2 [h3 1
de—n— F ] =§m’2h
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Proof

Understanding the idea. On a flat surface, the short-
est distance between two points is a straight line. On
a curved surface like the Earth (which is almost a
sphere), the shortest path between two points is called
a great-circle distance. To understand this, imagine the
Earth as a circle and draw two points A and B on the
same latitude, but different longitudes. Connect them
with a chord (a straight line through the circle). Let the
angle between these two points be 0 (in degrees). The
chord forms part of a sector of a circle. Using the sector
formula:

D, = 3% x 2R 1)
To determine 9, since at small 6, the length of Arc

equals the length of the Chord. The length of a chord
of a circle is:

L=2rsin? )

where 0 is the angle subtended by the Chord. Simi-
larly, 9 is the angle subtended by the shortest distance,
which is given by

L,=2Rsin$ 3)

But r = Reosa, then equation (2) becomes
L =2Rcosa sin & 4)

Since Chord of a circle is uniform, therefore equation
(3) is equal to equation (4), i.e.

2R sin § = 2Rcosa sin ¢

sin$ = cosa sin &

S — qin-l 3 ¢}

+ =sin™(cosa sin 9)

. — cinr-l 3 2]

9 =sin”(cosa sin 2)

2sin’] in?
Therefore, Ds = % x 2R

And this is the shortest distance formula between
two points with the same latitude but different longi-
tudes on a sphere like the Earth. This proof shows how
the shortest distance formula is derived from basic
geometry, not just memorized. Understanding the why
behind formulas helps you become a creative and con-
fident problem solver—just like the great mathemati-
cians. Let this motivate you to go beyond formulas and
think about the ideas behind them.

3. Proof of why we invert the second fraction
when dividing

Why do we invert when dividing two fractions? Teach-
ers often instruct students to “invert the second fraction
and multiply” when dividing two fractions. While this
rule is mathematically correct, it is frequently taught
without explanation, leaving students to accept it as
a mysterious trick—what might be called mathemagic.
However, mathematics should make sense, not just
work by rules. The following logical proof explains why
the inversion step works, helping students understand
the reasoning behind the rule rather than memorizing
it blindly.

Let’s divide:

a4+ c
b d

This means: “How many times does < fit into 4?”

Let x be the answer:

=x X

o

b
Multiply both sides by <to isolate x: x= & %

Therefore:

X

e

vy
This logical proof justifies the “invert and multi-

ply” rule.

Conclusion

The overreliance on memorization in school mathe-
matics has created a generation of learners who often
lack genuine understanding of mathematical concepts
and struggle to apply them flexibly. This paper has
demonstrated, through the derivation of formulas for
volumes of common geometric solids, cylinders, cones,
prisms, and pyramids, as well as the shortest distance
between two points on a sphere, that deep mathemat-
ical understanding is achievable when students are
guided through reasoning and proof. These derivations,
when introduced appropriately in school curricula, help
students see mathematics not as a set of disconnected
rules, but as an elegant and logical system grounded
in relationships and patterns. Advocating for derivation
and proof in school mathematics is not just a call for
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curriculum reform, it is a call to transform how students
experience and internalize mathematics. When learners
are given the tools and time to explore why a formu-
la works, they gain confidence, build critical thinking
skills, and develop a more lasting appreciation for the
subject. Teachers, curriculum developers, and policy-
makers must therefore prioritize reasoning, explora-
tion, and derivation as core components of mathematics
instruction. Only then can mathematics teaching move
beyond mechanical performance and toward meaning-
ful, enduring understanding.

Suggestions
The following suggestions are made:

1. Schools should integrate intuitive and visual der-
ivations of formulas (such as prism and cylinder
volumes) at the junior secondary level (Grades
6-8), while reserving more abstract derivations
(such as Cavalieri’s Principle for cones and pyra-
mids or spherical trigonometry for great-circle dis-
tances) for senior secondary levels (Grades 9-12).

2. Teachers can embed short derivations within reg-
ular lessons, use hands-on demonstrations (e.g.,
water-filling experiments for cone and cylinder
volumes), and employ dynamic geometry software
to visually illustrate proofs without significantly
reducing time for procedural practice.

3. Curriculum designers and examination boards
should incorporate reasoning-based questions
alongside procedural ones, so that teachers are
motivated to balance formula memorization with
proof, fostering both conceptual understanding
and exam readiness.
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