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Introduction

Teachers of Common Core Algebra II courses often
struggle to cover the scope of the curriculum due to time
constraints. The race to finish the curriculum does little
to spark students’ interest or engagement in mathemat-
ics, although modern teaching philosophies suggest “…
a movement towards the student being invited to act like
a mathematician instead of passively taking in math”
(Hartnett, 2017, para. 6). Rather, “…the interested stu-
dent should be exposed to mathematics outside the core
curriculum, because the standard curriculum is not de-
signed for the top students” (Rusczyk, 2016, para. 2).

Inquisitive mathematics students are often heard dis-
cussing infinity, asking questions like, “What is infinity
plus infinity?,” “Is infinity a number or an idea?,” “What
is infinity plus one?,” and “Can one infinity be bigger
than another?” Research has shown that students as
young as five or six have a vague notion of infinity as an
unlimited process, and mathematics educators have at-
tempted to convey the distinction between two different
types of conceptualizations. There is a potential infinity,
such as continually counting from 1, 2, 3, … etc., which
is usually the first encounter of infinity for children, and

there is a more nuanced concept of an actual infinity,
which describes a more concrete mathematical entity.
This more advanced viewpoint extends the earlier con-
cept of infinitely counting because it “requires us to con-
ceptualize the potentially infinite process of counting
more and more numbers as if it was somehow finished”
(Pehkonen, Hannula, Maijala, & Soro, 2006, p. 345). While
the Common Core State Standards for Mathematics in-
clude extension standards that invite investigation and
discovery (e.g., “CCSS.MATH.CONTENT.HSF.TF.B.6: (+)
Understand that restricting a trigonometric function to
a domain on which it is always increasing or always de-
creasing allows its inverse to be constructed” [National
Governors Association Center for Best Practices & Coun-
cil of Chief State School Officers, 2010]), the lack of time
in the classroom more often than not restricts engage-
ment in topics that will not be covered on an end-of-year
exam.

Cardinal arithmetic can be used to show that the
number of points on the real line is equal to the number
of points on any segment of that line. The authors of this
manuscript, two experienced high school mathematics
teachers, conjectured that this notion is highly counter-
intuitive and baffling for high school students. The au-
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thors interviewed 28 students in a group setting in a
Common Core Algebra II class in a Title I, New York
City public high school. The untracked class consisted
of students with varying achievement levels in mathe-
matics. The students in the class unequivocally demon-
strated interest and enthusiasm in discussing the nature
of infinity. Students’ responses to the question “Can you
describe infinity?” are summarized below:

•  Infinity is an idea that there is an unlimited amount
of numbers going from negative to positive.

•  Infinity can be beyond time.
•  It’s a number that never ends; it’s an endless number

that never stops going, and never stops growing.
•  It’s not really a number but more of an idea, because

a number is just one singular thing and infinity isn’t.
•  Infinity is not a number, it’s like an idea, because the

rules for regular numbers don’t apply to it. For
example, I once heard someone say that infinity
times infinity wouldn’t be infinity squared, it would
stay infinity.

The students even generated their own questions,
such as:

•   Is it true what he said, that infinity times infinity 
is infinity?

•  Is infinity minus infinity equal to 0?

The authors saw clear evidence that students were in-
terested in the notion of infinity, and the conversation
inspired responses even from students who normally re-
mained quiet during class. While it is exciting for teachers
to engage in these discussions with their students, topics
in set theory are seemingly so far outside of the curricu-
lum that time does not allow for such activities.

Inspired by their interactions with this Common Core
Algebra II class, the authors propose enrichment activi-
ties in this manuscript. The authors co-developed these
ideas based on their teaching experiences and their 
desires to inspire students with rich mathematics. This
manuscript is not a research study, but rather a report
intended to propose ways of exposing high school stu-
dents to some advanced ideas about set theory and in-
finity and help them reach surprising conclusions along
the way.

Prior Knowledge

Before engaging students in the enrichment activities
that will be outlined in this manuscript, it is assumed
that students will have learned the following topics:

•  Similar triangles;
•  Functions (including one-to-one functions) and their

features (including asymptotes, end behavior, and
intervals of increase/decrease);

•  Domain and range;
•  Interval notation;
•  Definitions of the sine, cosine, and tangent of an

angle;
•  Unit circle, and the fact that for a point (x, y) on the

unit circle, (x, y) = (cos θ, sin θ);
•  Quotient identity: (sin θ) = tan θ;(cos θ)

•  Unwrapping the unit circle to graph periodic
    functions (namely, f(θ) = sin θ and g(θ) = cos θ); and
•  Visualization of sin θ and cos θ on an inscribed right

triangle in the unit circle as the lengths of the vertical
and horizontal legs, respectively.

Specifically, right before facilitating these enrichment
activities, the students should learn how to graph the
tangent function on the interval [0, π) (see Figure 1).                         2
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Figure 1. The tangent function on the interval [0, π ).2



Development

To begin our enrichment activities, we will pose the fol-
lowing question to students: Which interval contains
more numbers: [0, π) or [0, ∞)? The students will all think2

the answer is [0, ∞). However, the following sequence of
questions can show students that these sets are in fact
equal in size, which they will likely find baffling. Desired
responses are indicated in italics.

•  Is the tangent function strictly increasing on [0, π)?                         2

    Yes.
•  What is the range of the tangent function on the

domain [0, π)? [0, ∞).                          2

•  What does the combination of these facts tell us? 
    The tangent of every angle on [0, π) is some real number                      2

    on [0, ∞). Conversely, every real number on [0, ∞) is the
    tangent of an angle on [0, π). 2

•  What can we conclude? Since the tangent function is
strictly increasing, every input has exactly one output
and every output corresponds to exactly one input. 
Therefore, the intervals [0, π) and [0, ∞) are “equal                           2

    in size”—they do not have the same length, but they 
    do have equal cardinalities.

Students may be so overwhelmed by the counterin-
tuitive nature of this idea that they may not “buy it” at
first. We propose the following activities to help students
understand cardinality and convince themselves that
this is, in fact, true.

First, gather the students in the hallway and take
them to a classroom they are unfamiliar with. Ask them
to devise a way, without counting, to determine whether
there are the same number of chairs in the room as there
are students. Students will surely start sitting down in
the chairs—and if every student has one chair, and every
chair has one student, they will arrive at the conclusion
that there is the same number of chairs as there are 
students. This leads naturally to the idea that two sets
have the same size (or cardinality) if they are in 1 – 1 cor-
respondence with each other, that is, if their elements can
be matched up.

Teachers must keep in mind that it is easy to mix up
the words “size” and “length” when comparing and
contrasting intervals and sets of numbers. It is therefore
important to keep reminding students that when we talk
about two sets having the same size, we mean that their
elements can be paired up until each set is exhausted of
its elements. Students will probably have no trouble ac-
cepting this, since it is the same way we can tell if two
finite sets have the same size (which is exactly what they

did when they filled the chairs in the classroom).
Having accepted this, we can next ask if the set of nat-

ural numbers is the same size as the set of even numbers.
Initially, students will probably all assert that the set of
natural numbers is “twice the size” of the set of even
numbers. Then, they can be reminded of the definition
they agreed upon for “same size” (matching of elements)
and can be asked to think about a potential matching be-
tween the two sets. Students should come up with the
following idea:

              natural numbers        even numbers
                           1                                 2
                           2                                 4
                           3                                 6
                           4                                 8
                           5                                10

In other words, every natural number matches with
its double. For students who don’t initially grasp the
idea that {1,2,3,4...} has the same size as {2,4,6,8,...}, teach-
ers can ask: If the elements in a set are multiplied by two, does
the new set hold a different number of elements, or just bigger
elements? This concrete example can be used to show stu-
dents for the first time that two infinite sets that appear
visually different can have the same size (according to
the definition that they agreed upon). This exercise can
give them a sense of how powerful the notion of an infi-
nite set can be, and a sense of the mystery of infinite sets.

Immediately following, students can be asked, “Are
the set of whole numbers and the set of positive integers
the same size?” While initially thinking that whole num-
bers have “one more element” than the set of positive in-
tegers (the element 0), students may be inclined to think
of a potential matching between these two sets after hav-
ing seen the previous examples. Hopefully, students will
arrive at the relationship which matches each of the
whole numbers with its successor in the set of positive
integers. After a few of these examples, students should
be willing to believe that different infinite sets can have
the same size.

We are about to transition from sizes of discrete sets
like the integers, to sizes of intervals. Before doing so, it
is important to set up a more mathematically formal def-
inition of matching with the students: Two sets have the
same size if there is a bijection between them. The bijec-
tion matches x from set A, with f(x) from set B, creating
a 1 –1 mapping. For instance, the prior two examples can
be described by the functions f(n) = 2·n and f(n) = n + 1,
respectively. So, the level of the discussion is being
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raised to include functions. Once students accept the no-
tion that a bijective function between two sets can be
used to illustrate a mapping between them, we can ask:

Is a strictly increasing function (or a strictly decreasing func-
tion) a bijection between its domain and range? How do you
know?

The answer is yes, because if a function is strictly in-
creasing or strictly decreasing it must be one-to-one,
meaning that in addition to each input having only one
output, each output only corresponds to one input
(again relating back to the students and chairs example
and the concept of a bijection). We can therefore con-
clude that for a strictly increasing or strictly decreasing
function, the domain and range are the same size. This
important result will help students who were hesitant
to accept the tangent function example from earlier.

We can bring this example back into focus by again
asking:

Does the interval [0, π) have the same size as [0, ∞)? For students2

who initially argued “no”, we now have a concrete definition
that will challenge their thinking and demonstrate that the
two seemingly very different sets do, in fact, have the same
size.

We can ask the students to think of a graph whose
domain on [0, π) has a range of [0, ∞). Well, the tangent2

function is one such graph (as demonstrated in Figure 1).
Furthermore, we can use our definition of matching be-
cause the tangent function is strictly increasing on this in-
terval. Therefore, by the students’ accepted definition of
“matching,” since this function is strictly increasing, its
domain and range must be equal in size. Therefore, [0, π)2

is the same size as [0, ∞). Wow!
To take it a step further, you can ask students to com-

pare the sizes of the interval (– π, π) and the real line,2 2

(– ∞, ∞). The students will probably be excited at this
point by the previous examples and refrain from incor-
rectly blurting out that these intervals must have differ-
ent sizes. They will likely be inspired to come up with
their own function to illustrate why these intervals do
have the same size—and the astute student might notice
that the tangent function does it again! Simply extending
the graph in Figure 1 to include negative angles, the tan-
gent function is strictly increasing on the domain (– π, π),2 2

and therefore matches 1 – 1 with the range (– ∞, ∞).
This will open students’ eyes to the idea that two sets

or intervals of finite and infinite extent can actually have
the same size. Later in their mathematical studies, stu-

dents will eventually see examples such as [0, 1] match-
ing with [0, 1) and will then be able to generalize these
results and conclude that any interval has the same size as
any other interval, regardless of their lengths and regardless
of whether one is open, closed, half open, or infinite.

In addition to the aforementioned method of convinc-
ing students why (– π, π) has the same size as (– ∞, ∞),2 2

there is a geometric and visual way to demonstrate
why this is true. This can be executed as a discovery
learning task in a high school classroom and is detailed
below.

Most pre-calculus books show the reason that the tan-
gent function is called the “tangent” function can be un-
derstood by doing the following: 

Given a coordinate plane with a unit circle and an 
inscribed right triangle in Quadrant I on it (Figure 2),
perform the following sequence of steps. Desired stu-
dent responses are indicated via italicized font and in
the diagrams following the prompts (Figure 3).
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Figure 2. Coordinate plane with a unit
circle and inscribed right triangle in
Quadrant I.

1.  Examine the right triangle that was drawn for you.
Label its legs in terms of trigonometric functions of
θ, which is the acute angle formed by the radius of
the unit circle and the x-axis.

2.  On the diagram, add the graph of the line x = 1.
What type of line is this, in relation to the unit 
circle? x = 1 is tangent to the unit circle. The line 
intersects the circle at only the point (1, 0).

3.  What kind of angle is formed by the line x = 1 and
the x-axis? Label it on the diagram. This angle must 
be a right angle because the segment connecting (0, 0) and
(1, 0) (which is a radius of the unit circle) is horizontal,
and x = 1 is vertical. A tangent to a circle is perpendicular
to the radius drawn at the point of tangency.



4.  Extend the hypotenuse of the right triangle so that it
meets the line x = 1.

5.  Locate the vertical segment connecting (1, 0) and the
point of intersection of the extended hypotenuse
and x = 1. Since this vertical segment has an
unknown length, label it “a.”

6.  Separately draw the two right triangles that are now
on your picture, copying all information that is
known about their side lengths and angles.

7.  What do you notice about these triangles? Write a
proportion relating the legs of the triangles. Simplify
the proportion. The triangles are similar, since they
have two equal angles. The proportion relating their legs

    is sinθ  = a. Simplifying yields tanθ = a.cosθ 1

Figure 3. Desired Student Responses.

1

3

5

7

2

4

6

8

8.  What can we conclude? The tangent of an angle in
standard position is equal to the length of the vertical 
segment connecting the point (1, 0) and the point of
intersection of the terminal ray with the line x = 1.

After summarizing the conclusion of this activity,
present students with the diagram below (Figure 4),
which shows the visualization of the tangents of select
angles.

Students can be asked, “What happens to the tangent
values as the number of radians in the angle, θ, increases
to π or decreases to – π?” As θ increases (or decreases), the2                                           2

points along the line x = 1 will also increase in both
directions away from (1, 0) until it becomes impossible
to draw them. The tangent values are initially easily lo-
cated on x = 1, but as θ approaches π or – π, the length of2       2

the line tends to ∞ or – ∞, as represented by the asymp-
totes on the graph of the tangent function (Figure 1).
This again demonstrates why (– π, π) maps to (– ∞, ∞).2 2

Hopefully, students will appreciate the elegant connec-
tion between this visual and the sizes of the two inter-
vals in question.

As an extension, students can use Figure 4 to make
conjectures about the size of [0, 1] as compared to [1, ∞).
They can do this by examining the diagram in the follow-
ing way:

•  Look at the tangent values for angles on [0, π]. They    4

    map to [0, 1]. 
•  Furthermore, the tangent values on [π, π) map to [1, ∞).4 2

Figure 4. The visualization of the tangents of select angles.
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•  Since [0, π] and [π, π) have the same length, and the    4           4 2

    tangent function is strictly increasing on [0, π), what              2

    can be said about the cardinalities of [0, 1] and [1, ∞)?

Hopefully, using this diagram will inspire students
to seek proof of their conjectures.

Remarks

Our connection to cardinality is made clear through the
progression of studying the tangent function and the
concept of matching (and, more mathematically, the idea
of a bijection). As we encourage students to consider the
sizes of two different sets, we are exposing them to the
notion of cardinality as well as Cantor’s counterintuitive
notions of comparing infinities.

As mathematics educators, we recall how amazed we
were when first convinced that [0, 1] and [1, ∞) have the
same cardinality. Looking back at Figure 4, clearly the
sizes of those “segments” on the line x = 1 are vastly dif-
ferent. It is expected that students will develop their own
questions and ideas for further study, which has great
potential to inspire their enthusiasm for learning math-
ematics.

For teaching purposes, it would be a good idea to
provide an example of two infinite sets with different
sizes, so that students do not leave this lesson thinking
that all infinite sets have the same size.

For additional extension activities, we recommend
tasking students with the following:

1.  Compare the following sets of numbers. In each case,
decide which set is larger or smaller, or whether they
are the same size. If you think the sets are the same
size, justify your answer by finding a one-to-one func-
tion between the sets.

     a.  Integers and even integers
     b.  Integers and rational numbers
     c.   Natural numbers and whole numbers
     d.  Rational numbers and irrational numbers
2.  What can be said about the number of points on the

real line and the number of points on any segment of
that line? Justify your answer.

3.  Does the tangent function map to every number on
the real number line? Explain why or why not.

4.  Explain why the cardinalities of [– 1, 0] and [1, ∞) are
equal using the tangent function.

5.  Find a bijection that maps [0, 1) to [0, π).   2

6.  Consider the function f(x) = tan (x) on the restricted
domain (– π, π). This function illustrates a bijection2 2

     between its domain and range. How could this
     function be transformed to illustrate a bijection 

between (0, 1) and (– ∞, ∞)?

For a real challenge, the students can be asked
whether the intervals [0, 1] and [0, 1) are the same size.
There is a piecewise function that is a bijection between
these two intervals, which is an interesting topic for the 
advanced student to investigate.

Conclusion

In his book Love and Math (2014), mathematician Edward
Frenkel writes:

Mathematics is a way to break the barriers of the
conventional, an expression of unbounded imagi-
nation in the search for truth. Georg Cantor, cre-
ator of the theory of infinity, wrote: “The essence
of mathematics lies in its freedom.” Mathematics
teaches us to rigorously analyze reality, study the
facts, follow them wherever they lead. (p. 4) 

We believe these sentiments should inspire both
teachers and students.

The ideas of set theory are accessible to high school
students; however, they are almost never taught until
college. It is easy to engage students with questions such
as, “How many numbers are there between 0 and 1?”
and the use of physical models such as the unit circle
that they can draw themselves. In fact, previous research
has shown that “students use intuitively the same meth-
ods [to compare] infinite sets…[and] finite sets. Although
students have no special tendency to use ‘correct’ Can-
torian…‘one-to-one correspondence,’ they are prone to
visual cues that highlight the correspondence” (Pehko-
nen et. al., 2006, p. 346). What is difficult in teaching
Common Core Algebra II is finding appropriate places
to supplement the curriculum in order to provide enrich-
ment for students and pose interesting and inspirational
mathematical questions. A viable option to alleviate this
dilemma is to use the tangent function, already in the
curriculum, as a launching point to demonstrate ideas
about cardinality. This method is visually accessible, rig-
orous, and innovative. More specifically, it gives high
school students seeking enrichment the opportunity to
delve into set theory by providing an analogy between
the tangent function and notions of infinity.
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