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As a mathematics teacher, one of the most exciting
rewards is to help my students (in-service and pre-service
middle school and secondary mathematics teachers)
experience the delight of discovering, formulating, and
generalizing patterns, conjectures and theorems. These
processes lie at the very heart of doing mathematics
(Cuoco, Goldenberg, & Mark, 1996; Brown & Walter,
1990; Halmos, 1980; Polya, 1973). 

Cuoco, Goldenberg, and Mark (1996) argue that school
mathematics should provide students oppor tunities to
develop habits of mind including visualizing, searching
for patterns, experimenting, conjecturing, inventing, and
constructing mathematical arguments. In order for
teachers to design tasks that have the potential to foster

ABSTRACT In this paper I describe classroom experiences with pre-service secondary
mathematics teachers (PSMTs) investigating and extending patterns embedded in the Pythagorean
configuration. This geometric figure is a fruitful source of mathematical tasks to help students,
including PSMTs, further develop habits of mind such as visualization, experimenting, looking for
and noticing patterns, conjecturing, inventing, constructing mathematical arguments, and posing
problems. By carrying out these tasks, the PSMTs were also engaged in a plethora of mathematical
practices recommended by the Common Core State Standards Initiative (CCSSI). The use of the
Geometer’s Sketchpad facilitated the accomplishment of most of these activities. As students of
mathematics, these PSMTs were engaged in activities to reinforce some of their mathematical habits
of mind and experienced learning new mathematical ideas and processes through practices that
exemplify typical mathematical thinking. As future teachers, they were engaged in tasks so they
can, in turn, design or adapt instructional tasks to develop further their own students’ habits of
minds and engage them in learning mathematics through the mathematical practices advocated
by the CCSSI.   

KEYWORDS conjectures, experimenting, extending, generalizing, habits of mind, Interactive Geometry
Software, problem posing, Pythagorean configuration, patterns, visualization 

these habits of mind in their students, they should
themselves possess and appreciate such habits. Thus, it
is critical that our pre-service mathematics teachers have
experiences performing activities to develop or reinforce
them. 

Other scholars (e.g., Brown & Walter, 1990; Halmos,
1980; Polya, 1973) argue that students should have
ample experiences in posing problems related to a given
problem. Generalizing is a typical and useful problem-
posing strategy that can be applied to a wide range of
mathematical situations. Again, if we want all students
to be able to create mathematical problems, then their
teachers themselves should be problem posers. Thus,
pre-service teachers should be given tasks to develop or
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reinforce their knowledge, abilities, and dispositions to
generate problems. 

More recently, reform efforts led by the National
Governors Association Center for Best Practices (NGA)
and the Council of Chief State School Officers (CCSSO)
resulted in the development of the Common Core State
Standards Initiative (CCSSI). This initiative calls for
students to learn mathematics through a variety of
practices including looking for and making use of
structure, using appropriate tools strategically,
constructing viable arguments and critiquing the
reasoning of others, and looking for and expressing
regularity in repeated reasoning. If we want student to
learn mathematics through these practices, then their
teachers should be confident in their knowledge and
abilities to do so. Thus, it is crucial that pre-service
teachers experience learning mathematics through said
practices or processes. 

A tool that can serve to facilitate some of these
important mathematical habits, processes, and practices
is Interactive Geometry Software (IGS) such as The
Geometer’s Sketchpad ((GSP), Jackiw, 2001), Cabri
Geometry (Laborde & Bellemain, 2005), and GeoGebra
((GG), Hohenwarter, 2002), to name just a few.

Some scholars (e.g., Contreras, 2004, 2009; Laborde &
Laborde, 1995) describe some of the learners’ behaviors
promoted by teaching and learning mathematics using
IGS. First, IGS allows learners to construct a geometric
configuration faster and more precisely than using
physical tools such as straightedge and compass.
Second, IGS aids learners to visually notice a pattern and
to wonder whether the pattern seems plausible. Third,
learners are able to use one or more features of IGS (e.g.,
measurement, construction, etc.) to verify the pattern
and then formulate an initial conjecture. Fourth, IGS can
allow students to drag flexible points of the config u ra -
tion to test whether the conjecture is valid in other cases. 

In this paper I describe some classroom experiences
in which groups of prospective secondary teachers,
henceforth referred to as students, have investigated
patterns embedded in the Pythagorean configuration.
The students, juniors and seniors, are mathematics
majors enrolled in a geometry course for teachers. 

The Pythagorean configuration affords opportunities
for students in general, and pre-service teachers in
particular, to develop some habits of mind, abilities to
pose problems, and other mathematical processes or
practices, all of which are mentioned previously. The
constructions were performed with GSP or GG but other
types of IGS can be used. In this article all figures are
constructed with GSP. 

The Pythagorean Configuration

I often ask my students to explore geometric patterns
embedded in the Pythagorean configuration (Figure 1).
As its name suggests, the Pythagorean configuration
consists of a right triangle, the squares constructed on its
sides and, in addition, other objects determined by
elements displayed in Figure 1. 

Figure 1. The Pythagorean configuration.
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Students are asked to construct other geometric
objects determined by the given elements of Figure 1.
Sometimes this task is one of the first investigations that
a particular class performs. In other cases, students have
already had experiences exploring other configurations
(e.g., Napoleon’s configuration). Some of the most
interesting constructions that students have proposed
are displayed in Figure 2. 

The Pythagorean Configuration, Triangles,
Areas, and Generalizations

After students have constructed the configuration
displayed in Figure 2a, I asked them to examine it and
describe, in writing, any patterns that they may notice.
Some of the conjectures that students have initially
formulated are as follows: 

(a) Triangles CDI and CAB are congruent and, hence,
have the same area; 

(b) Triangles AEF and BHG are congruent and, hence,
have the same area. 



Before students jump to use GSP to verify their con -
jectures, I often ask them to think whether the con jectures
are plausible. My goal is that students further develop
their habit of analyzing mathematically the verisimilitude
of a conjecture before using tech nological tools to refute

it. Some students immediately realize that if triangles AEF
and BHG were congruent it would imply that ΔABC is an
isosceles (right) triangle. In con trast, other students cor -
rectly justify that triangles CDI and CAB are always
congruent when ΔABC is a right triangle. 

Figure 2. Some objects determined by elements of the Pythagorean configuration.

(a) Triangles

(c) The circumcircles of the indicated polygons

(b) Segments
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As students refute the conjecture that triangles AEF
and BHG are congruent, some visualize that their areas
may be equal (Figure 3). To test their refined conjecture,
some students use IGS to measure the areas of the two
triangles and others measure also the areas of the two
right triangles. Notably, the areas of the four triangles
AEF, BHG, CDI, and ABC seem to be equal (Figure 4). 

After students test the conjecture for a wide range of
triangles by effortlessly dragging flexible points of the
right triangle, some are motivated to develop a proof. Of
course, a few students would argue that the measure -
ments and the multiple (empirical) examples constitute
a proof. A proof that the four triangles AEF, BHG, CDI,
and ABC are equivalent (i.e., have the same area) is
displayed in appendix A. 

To enhance my students’ problem posing abilities, I
regularly ask them to try to generalize or extend mathe -
matical results. A possible generalization of the previous
result involves considering arbitrary triangles instead of
right triangles (Figure 5). To students’ surprise, GSP
shows that the areas of the four triangles ABC, CDI, AEF,
and BGH are the same in the general case. Equally
surprising was the fact that the proof extends smoothly
for the general case. At this point students realize that
the original argument did not depend on triangle ABC
being a right triangle, and thus is valid for non-right
triangles. 

Figure 3. The areas of triangles AEF and BHG seem 
to be equal.
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Figure 4. The areas of the four triangles seem to be equal.

A

B

C

D E

F

G

H

I

Area �HBG = 1.70 cm2

Area �AFE = 1.70 cm2

Area �ICD = 1.70 cm2

Area �BCA = 1.70 cm2 Figure 5. The areas of the four triangles are equal for an
arbitrary triangle ABC.
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The Pythagorean Configuration,
Segments, and a Generalization

As students examine the configuration
displayed in Figure 2b, some hypothesize
that the two pairs of segments ( and

, and ) are congruent while
others conjecture that they are also
perpendicular. Measuring the relevant
objects and dragging flexible points
confirms their conjectures (Figure 6).

At this point the class is asked to
develop a proof. A proof that segments

and are congruent is based on the
fact that ΔCAF ≅ ΔEAB by the SAS con -
gru ence criterion ( ≅ , ∠FAC ≅∠BAE,
and ≅ , Figure 7). More challenging
is to prove that the segments are perpen -
dicular. If nobody offers a suggestion, I
provide a strategic hint to students: Look
for two similar triangles, one of which you
know has a right angle. After some reflec -
tion, some students propose triangles AFP
and MBP (or AEO and MCO) (Figure 7).
The triangles of these two pairs are similar
by the angle angle similarity prin ciple. For
example, ΔAFP ~ ΔMBP because ∠APF ≅
∠MPB (vertical angles are con gruent) and
∠AFP ≅∠MBP (corres pon ding angles of
congruent triangles are con gruent). Finally,
m(∠BMP) = m(∠FAP) = 90°. A similar
argument shows that seg ments and

are con gru ent and per pendi cular. 
As is often the case in an inquiry-based

classroom, students then investigate
whether the congruence and perpen -
dicularity of the pairs of segments (
and , and ) hold for general
triangles. Some students notice that the
proof extends to general triangles while
others use GSP to determine a possible
generalization. The use of GSP leads stu -
dents to surprisingly discover that there
are actually three pairs of congruent and
perpendicular segments in the gen eral -
ized Pythagorean configuration (Fig ure 8). 

CF
CGAHBE

BECF

ABAF
AEAC

AH
CG

CF
CGAHBE
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Figure 6. Some congruent and perpendicular segments.
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Figure 7. Diagram to prove that segments and are congruent
and perpendicular.
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class proceeds to prove their conjectures.
They are either assigned a conjecture or
choose one. Appendix B displays a proof for
conjecture (b). 

To prove that circles with centers K and L
are tangents, some students construct the per -
pendicular to segment that goes through
C (points K, C and L are collinear, Figure 9).
Because a perpendicular to a radius at the
outer endpoint is tangent to the circle, we
conclude that such a perpendicular is the
common tangent to the two circles. Thus, the
two circles are tangent. 

As the class further examines figure 9,
some students notice that the common tan -
gent of the two circles goes through point J,
the center of the square associated with the
hypotenuse of the triangle. As the class tries
to develop a proof some students realized
that is in fact the angle bisector of the 
right angle [m(∠BCJ) = m(∠KCB) = m(∠LCA)
= m(∠ACJ) = 45°]. A proof of this is displayed
in Appendix C. 

KL

< >

CJ
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The Pythagorean Configuration, the
Circumcircles of the Polygons, and an Extension

Another under-explored yet worthwhile pattern em -
bedded in the Pythagorean configuration involves the
circumcircles of the four polygons (Figure 2c). After
students construct the circumcircles of the squares and
the right triangle, they examine the configuration and
write any patterns that they notice. Some of the patterns
that students have noticed in Figure 2c are the following: 

(a)   The center of the circumcircle of the right triangle is
on the hypotenuse; 

(b)   The circumcircle of the right triangle goes through
point J, the center of the square with side ; 

(c)   Two of the circumcircles are tangent at C; 
(d)   Points K, C, and L are collinear;
(e)   The circumcircles of any two squares and the

circumcircle of the right triangle are concurrent. 

Our first task is to discuss which of these patterns are
significant. After some deliberation, students generally
agree that pattern (e) is trivial because, by definition, the
circumcircle of a polygon goes through its vertices. For
example, point B is contained in the circumcircle of
square BCIH, the circumcircle of square ABGF, and the
circumcircle of the triangle. After this discussion, the

AB

Figure 8. Three pairs of congruent and perpendicular segments 
in an arbitrary (acute) triangle.
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Figure 9. The two circles are tangent.
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Our next task is to try to generalize or extend some of
the results associated with configuration 2c. To accom -
plish this goal, students construct the configuration dis -
played in Figure 10. 

As the class examines the configuration displayed in
Figure 10, the students often do not notice any apparent



PATTERNS IN THE PYTHAGOREAN CONFIGURATION AND SOME EXTENSIONS:  | 31
THE POWER OF INTERACTIVE GEOMETRY SOFTWARE

patterns. Because I am already familiar with a related
pattern, I suggest students to construct the circumcircles
of two of the squares (Figure 11). I then challenge the
class to construct a circle “related” to the third square
and containing point M. As shown in Figure 12, a few

students construct the circle going through points M, C
and A while others construct circles containing points M,
C and E or M, D, and E. As students drag one of the
flexible points of the triangle, say B, to study the
behavior of the three new circles, some notice that only
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K J

Figure 10. The circumcircles of the four polygons.
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Figure 11. Is there a circle related to square ACDE and
containing point M? 
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Figure 12. Some additional circles going through point M.
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one circle has a fixed center, the midpoint of the side .
The class then typically formulates a conjecture along
the following lines: 

Construct squares on the two sides of an arbitrary
triangle ABC (Figure 13). Construct the circumcircles
of the two squares and the circle with diameter the side
of the third square. The three circles are con current. 

A proof that the class often develops is the following: 

Let M be the second point of intersection of the cir -
cumcircles of the two squares (Figure 13). Construct
segments , , and . By the inscribed angle
theorem, m(∠AMB) = 270°/2 = 135° and m(∠BMC) =
270°/2 = 135°. Hence, m(∠CMA) = 360° – (135° + 135°)
= 90°. Therefore, M belongs to the circle with diameter

. In other words, the three circles displayed in
Figure 13 are concurrent. 

The class then continues searching for additional
patterns in the Pythagorean configuration, but this is
another story and the discoveries should be discussed
another time. 

Discussion

Mathematics is often described as the science of patterns
(Devlin, 1996; Steen, 1988, 1990) or as a creative art
(Halmos, 1968), to name just a couple of metaphors. As
stated by Steen (1990), “Active mathematicians seek
patterns wherever they arise” (p. 2). Exploring relation -
ships embedded in the Pythagorean configuration
certainly provides students with opportunities to
develop their abilities to search for and notice patterns. 

One of the goals of education, and mathematics
education in particular, should be to “empower our
students for life after school. . .[by helping] them develop
genuinely mathematical ways of thinking” (Cuoco,
Goldenberg, & Mark, 1996, p. 401). These mathematical
ways of thinking, or habits of mind, include experi -
menting, visualizing, searching for patterns, conjectur -
ing, inventing, and constructing mathematical arguments
(Cuoco, Goldenberg, & Mark, 1996). 

By constructing segments (Figure 2a and 2b) or circles
(Figure 2c) determined by elements of the Pythagorean
configuration, students were engaged in the process of
experimenting. Some of these experiments led to the
discovery of surprising patterns while others did not. By
reasoning by analogy and performing thought experi -
ments, as recommended by Cuoco, Goldenberg, and

CA

CMBMAM

CA
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Mark (1996), some students noticed similar patterns. For
example, when some students constructed segments 

, and they noticed that segments and
were congruent and perpendicular (Figure 2b). I then
asked the class whether there was another pair of con -
gruent and perpendicular segments. Most of the students
in the class responded that segments (which was not
con structed yet) and had also these properties. 

After students performed the experiments (i.e.,
constructing additional elements) within the Pytha -
gorean configuration, many almost immediately visual -
ized some relationships and patterns (e.g., the congruence
of triangles ABC and DIC and the equivalence of
triangles AEF and BHG in figure 2a, the congruence or
perpendicularity of segments and in figure 2b).
Certainly, students sometimes formulated a conjecture
that seemed to be true for a specific case of a diagram,
but analyzing mathematically the situation or testing the
conjecture empirically for additional dynamic diagrams
usually led to its refutation (e.g., triangles AEF and BHG
are congruent). As students gain experience in using
dynamic diagrams to visualize relationships and pat -
terns, they may overcome some of the visual obstacles
associated with static diagrams. Two of these obstacles
are: (1) diagrams are particular examples of a general
class of objects and (2) prototypical diagrams may
induce irrelevant characteristics of the underlying con -
cept (Yerushalmy & Chazan, 1990). 

Once students noticed a pattern, they formulated the
corresponding plausible conjecture. As argued by
Cuoco, Goldenberg, and Mark (1996), making conjec -
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Figure 13. Diagram to prove that the three circles are
concurrent. 
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tures is “central to the doing of mathematics” (p. 383).
To formulate the conjecture, students used mathematical
language to give precise descriptions of its mathematical
components, stating clearly what the hypothesis and
conclusion were. Students also collected empirical
evidence provided by the IGS to support its plausibility. 

After students formulated and tested experimentally
a conjecture, they were asked to explain why it was true.
By constructing a proof, one of the quintessential
features of mathematics, students established connections
between and among elements of the configuration and
previous proved results. 

Cuoco, Goldenberg, and Mark (1996) also argue that
inventing mathematics should be a habit of mind that
teachers should foment in their students. One way to
foster students’ abilities to invent or create mathematics
is through problem posing (Brown & Walter, 1990;
Halmos, 1980; Polya, 1973). As students extended the
patterns and conjectures embedded within the Pytha -
gorean configuration to diagrams involving non-right
triangles, they were applying the process of general -
izing, one of the most typical and powerful strategies to
create problems, patterns, conjectures, and theorems. 

Past and current reforms for school mathematics (e.g.,
NGA Center & CCSSO, 2010; National Council of
Teachers of Mathematics [NCTM], 1989, 2000) call for
students to have experiences looking for patterns and
discovering, formulating, and generalizing conjectures
and theorems. In particular, Principles and Standards for
School Mathematics (NCTM, 1989) calls for students to
have frequent and diverse experiences to “examine
patterns and structures to detect regularities; formulate
generalizations and conjectures about observed
regularities; evaluate conjectures; [and] construct and
evaluate mathematical arguments” (p. 262). Certainly,
the Pythagorean configuration is a rich source of
accessible, surprising, and beautiful geometric patterns.
The investigation of these patterns with IGS by students
provided them experiences to further develop or
reinforce these mathematical habits and processes. 

As students investigate patterns in the Pythagorean
configuration, they are engaged in a variety of mathe -
matical practices advocated by the Common Core’s
Standards for Mathematical Practice (NGA Center &
CCSSO, 2010): Looking for and making use of structure,
using appropriate tools strategically, constructing viable
arguments and critiquing the reasoning of others,  
and looking for and expressing regularity in repeated
reasoning.

As students actively look for patterns in the Pytha -
gorean configuration, they learn to discern signi ficant

patterns from trivial ones; thus further developing their
abilities to recognize and understand mathematical
structure. As students deepen their understanding of
mathematical structure, they will enhance their abilities
to look for and make use structure to discover or create
new mathematical knowledge. 

After students visualize and notice apparent regu -
larities or patterns in the Pythagorean configura tion,
they formulate an initial conjecture. The use of GSP, or
any other type of IGS, enables them to examine a
plethora of cases, thus allowing them to confirm, refine,
or refute the initial conjecture. Students improve their
skills to use IGS strategically to support and deepen
their learning recognizing both the insight provided by
the software and its limitations. IGS is an appropriate
tool that is used strategically to visualize, detect, extend
patterns, and formulate the corres pon ding conjectures. 

As students examine several cases to confirm a
conjecture related to the Pythagorean configuration,
they are engaged in the process of inductively forming
a generalization based on data. Students often use
counterexamples to refute or refine a conjecture. After
students formulate a plausible conjecture, they need to
generate arguments to explain, justify, and prove their
claims. Their arguments include assumptions, defi nitions,
and previously proved theorems. By sharing their argu -
ments, students provide opportunities to other members
of the class to evaluate or respectfully critique them.

The Pythagorean configuration affords students
opportunities to look for and express regularity in
repeated reasoning. First, the Pythagorean configuration
is a rich source of mathematical patterns, discernible
regularities whose elements follow a predictable rule or
behavior. Second, most of the regularities noticed in the
Pythagorean configuration repeat when the configura -
tion involves a non-right triangle. Last, but equally
significant, the reasoning used to prove the conjectures
about the patterns embedded in the Pythagorean can be
extended (repeated) to non-right triangles.

Concluding Remarks

By investigating patterns in the Pythagorean configura -
tion, my students experienced searching for and noticing
patterns. As they formalize their patterns orally or in
writing, they may develop their abilities to formulate
conjectures and problems. As students develop proofs
to justify their conjectures and reformulate them as
theorems, they engage in one of the most essential pro -
cesses of doing mathematics. As students generalize or
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extend their initial conjectures, problems, and theorems
to other similar geometric figures, they further develop
their creative abilities. Thus, my students were given
opportunities to further develop or reinforce the mathe -
matical habits of mind mentioned above, these
mathematical ways of thinking that we would like all
students to have. In addition, from a teacher education
perspective, my students, future teachers of mathe -
matics, experienced learning mathematics in a way that
can help them design tasks with the goal of developing
in their students these habits of mind. 

By investigating patterns embedded in the Pytha -
gorean configuration, my students were also engaged in
a plethora of mathematical practices advocated by the
Common Core State Standards Initiative (NGA Center
and CCSSO, 2010) and Principles and Standards for School
Mathematics (NCTM, 2000) for all students to experience
and develop. As future teachers, my students experi -
enced learning using an approach that they should
embrace as they teach mathematics to their future
students so that they (future students) experience and
develop these mathematical practices and processes.

As a teacher of mathematics, guiding my students to
notice patterns, formulating conjectures and problems,
extending or generalizing them, and developing proofs
to justify them are some of the most joyful teaching
activities.
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APPENDIX A

Construct the height corresponding to side of
triangle AEF (Figure A). Construct the height
corresponding to side of right triangle ABC. By
defini tion of height, m(∠AJE) = 90° = m(∠AKC). Because
segments and are sides of the same square, we
have ≅ . Next, ∠CAK ≅ ∠EAJ because they have
the same complementary angle, ∠CAJ. Thus, ΔAEJ ≅
ΔACK by the angle angle side congruence criterion. As
a consequence, EJ = CK. Finally, because triangles AEF
and ACB have congruent bases ( ≅ because they
are the sides of the same square) and equal heights, we
conclude that they have the same area. A similar
argument shows that Area(ΔACB) = Area(ΔBGH). 

ACAE
ACAE

ABAF

CK
AB

AFEJ

APPENDIX B

Construct the diagonals of square AFGB (Figure B). They
intersect at J, the center of the square. Since the diagonals
of a square are perpendicular, m(∠BJA) = 90°. Now,
m(∠ACB) + m(∠BJA) = 90° + 90° = 180°. Because quad -
rilateral AJBC has a pair of opposite angles that are
supplementary, it is a cyclic quadrilateral. In other
words, the circumcircle of ΔABC goes through point J. 
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Figure A. Diagram to prove that triangles AEF and ACB
have the same area. 
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Figure B. The circumcircle of right triangle ABC contains J.
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APPENDIX C

Let J be the center of the square constructed on the
hypotenuse of a right triangle ABC (Figure C). We want
to prove that line is the angle bisector of the right
angle. First, construct segments and per pendi -
cular to the corresponding legs of the right triangle.
Consequently, ∠BFJ and ∠AGJ are right angles. Since
quadrilateral CFJG has three right angles, we infer that
it is a rectangle. Thus, ∠FJG is a right angle. Because the
diagonals of a square are per pendicular, ∠BJA is also a
right angle. Hence, ∠BJF ≅ ∠AJG because each of these
angles is the complement of ∠FJA. Since the diagonals
of a square are congruent and bisect each other, we have
that ≅ . Therefore, ΔBFJ ≅ ΔAGJ by the AAS con -
gruence criterion. As a consequence, ≅ . In other
words, J is equidistant from the sides of ∠BCA and so,
it belongs to the angle bisector of ∠BCA. 

< >

CJ
FJ GJ

BJ AJ
FJ GJ

Figure C. Ray (not shown) is the angle bisector of the
right angle C.
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