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Fostering Mathematical Creativity through Problem Posing and Modeling using
Dynamic Geometry: Viviani’s Problem in the Classroom

José N. Contreras
Ball State University

This paper discusses a classroom experience in which a group of prospective secondary mathematics teachers
were asked to create, cooperatively (in class) and individually, problems related to Viviani’s problem using
a problem-posing framework. When appropriate, students used Sketchpad to explore the problem to better
understand its attributes (e.g., knowns, unknowns, and restrictions) and model its solution. With support and
guidance, each student was able to create at least one very interesting and good mathematical problem.

Keywords: mathematical creativity, problem posing, problem-posing framework, Viviani’s problem, modeling,

dynamic geometry

Introduction

Mathematical creativity is essential to the continued
development of mathematical knowledge, which grows by
creating new mathematical constructs (e.g., the concept of
infinitesimal), definitions (e.g., the definition of infinite
sets), axioms (e.g., the axiom of choice), algorithms (e.g.,
the Euclidean algorithm to find the GCD of two integers),
formulas (e.g., Euler’s polyhedral formula), theorems (e.g.,
Fermat’s last theorem) and problems (e.g., the four-color
problem).

One of the goals of mathematics teaching at all levels
should be to foster students’ mathematical creativity (Polya,
1945; Sriraman, 2004). This goal stands in stark contrast with
some current instructional practices that encourage students to
memorize formulas so they can apply them to solve a narrow
range of prescribed routine problems. However, one of the
first obstacles that teachers face as we try to nurture students’
mathematical creativity is to define and operationalize this
complex construct. To begin with, there is not a universally
accepted definition of mathematical creativity. To implement
the goal of fostering the mathematical creativity of my
students, prospective secondary mathematics teachers, I
decided to follow Hadamard’s (1945) claim that “between
the work of a student who tries to solve a difficult problem
in geometry or algebra and a work of invention (creation)
there is only a difference of degree” (p. 104). Encouraged by
the literature on problem posing and creativity, I provided
my students with opportunities to create their own problems
to pursue, rather than giving them pre-formulated problems.
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Problem Posing as an Attribute of Creativity

Posing problems has long been used as a tool to
investigate creativity. Silver (1994) refers to problem posing
as “both the generation of new problems and the reformulation
of given problems” (p. 19). Thus, we may engage in problem
posing before, during, and after solving a problem. Some
researchers and practitioners have highlighted the ability to
pose problems as a characteristic of creativity not only in
mathematics but also in other domains. For example, Getzels
and Csikszentmihalyi (1976) identified problem finding as
a key indicator of artistic creativity. The prominent French
mathematician Hadamard (1945) claimed that an attribute
of mathematical creativity was the aptitude to pose crucial
mathematical research questions or problems. Regarding
mathematically gifted students, Greenes (1981) found that
a critical feature of such students was their capacity to
spontaneously pose problems. In his study of the mathematical
ability of gifted students, Krutetskii (1976) found that an
indicator of mathematical talent was the ability to formulate
problems from given information. In a more recent study,
Ellerton (1986) used problem posing as a tool to study
mathematically talented school children. She found that the
more capable students posed problems of greater complexity
than those less capable. Getzels and Jackson (1962) have
also included problem-posing tasks in instruments aimed at
measuring mathematical creativity. These researchers found
that the more able students posed problems requiring more
complex solutions than the problems posed by others.

In this paper I describe a classroom experience in
problem posing with a group of prospective secondary
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mathematics teachers whose goal was to examine whether
a problem-posing framework and Dynamic Geometry could
help students generate newly related problems to a given
problem. The students were enrolled in a college geometry
course that I taught. Since I focus on the problem-posing
process, the proofs will not be discussed.

Background

Previously, the class had investigated the Varignon
theorem that I reformulated as a problem to provide students
with a diverse range of opportunities to pose and solve
problems. The version of the problem that the class started
with was as follows: Let ABCD be a parallelogram and E, F,
G, and H be the midpoints of its consecutive sides. What type
of quadrilateral is EFGH ? ( EFGH is known as the medial
quadrilateral in Figure 1.)

The class then modified the attributes of this version of
the Varignon problem and investigated the following types
of problems: proof, special, general, extended, and converse
problems, as suggested by the problem-posing framework
depicted in Figure 2. For further details of the investigation,
see Contreras (2009, in press). The investigation was
facilitated by The Geometer’s Sketchpad (GSP, Jackiw,
2001), but other types of interactive geometry software such
as Cabri Geometry (Texas Instruments, 1998) or Geogebra
(Hohenwarter, 2002) could achieve the same goal.

To start a new investigation, I challenged the class with
an open-ended generalization of a fruitful problem known as
Viviani’s problem.

i

Figure 1. The medial quadrilateral of a parallelogram
An Open-Ended Generalization of Viviani’s Problem

The problem with which the class started the investigation
was formulated as follows:

A campsite lies along the base of an isosceles
triangular region. A camper wants to set up her tent
so that the sum of the distances to the other two
sides is minimal (See Figure 3). Where should the
tent be placed? Interpret geometrically the sum of
such distances.

The students, accustomed to problem-based learning,
wanted to immediately rush to construct the configuration
with GSP. However, before they did so, I asked them to guess
the location of the optimal point. Most members of the class
claimed that the midpoint of the base was the required point.

Mathematical
Situation

Figure 2. A problem-posing framework

s 4

: Base Problem |4

v 4
Proof Converse Special General Extended
Problem Problem Problem Problem Problem
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After students had constructed the configuration, they
were surprised that any point on the base of the isosceles
triangle satisfied the required condition. Interpreting
geometrically the distance DE+ DF was a little bit more
challenging, but after dragging point D to an extreme location
(e.g., vertex 4 or B), most of them noticed that DE + DF is
the length of any of the altitudes of AABC corresponding
to the congruent sides (Figure 4). Thus, another unrelated
problem to the original was found (i.e., prove that the altitudes
corresponding to the congruent sides of an isosceles triangle
are congruent).

After the members of the class had generated a
conjecture, a student spontaneously challenged the class with
the question “How do we prove this?”” Because I wanted to
emphasize the problem-posing process, | asked the student
to reformulate his problem in self-contained form (i.e., a
complete formal problem statement that includes all the
known and unknown attributes). After some discussion, the
class accepted the reformulation of the problem as displayed
in Table 1, Problem 1. After providing students with a
strategic hint, they were able to develop a proof on their own
involving the diagram shown in Figure 4.

Students as Creators of Problems

I then asked students to create additional problems.
One student proposed a converse problem while another
formulated a special problem and a general problem. The
initial converse problem was as follows: If DE+DF=AG,
then AABC is isosceles (Figure 4). Notice that this statement
was not expressed in the form of a problem, but rather in
form of a conjecture or theorem since it was stated as a
definitive assertion. After students explored the assertion to
get acquainted with it, they proved it. Then I asked the class
to reformulate the initial converse problem, the final version
of this problem is displayed in Table 2, Problem 2.

Initial (combined) special and general problems created
by another student were expressed in the following terms:
What if the triangle is equilateral or scalene? The class first
investigated the case where AABC is equilateral (Figure 5).
One student argued that the location of the tent was still
on side AB because that was the campsite, while another
student contended that the camping ground is on the perimeter
of the triangle because the base of an equilateral triangle is
any of the three sides since they are congruent. After some
discussion the class agreed on the last interpretation and
proceeded to find the solution to the problem. Here is the
reasoning of one of the students:

If the tent (point D) is located on E, then the sum
of the distances (to the other two sides) is equal to
the altitude of 4 or B because those two altitudes
are equal. If we set up the tent on side AC, then
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Figure 3. Locate D such that DE+ DF is minimal

Figure 4. Diagram used to solve the initial problem
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Figure 5. The location of the tent is on
any side when AABC is equilateral

the sum is also equal to the altitude of C because the
altitudes of 4 and C are equal. So you can put it on
any side of the triangle.

To enhance the students’ problem-posing experience, |
challenged the class with the questions “What if the campsite
is now the whole equilateral triangle? Where should we set
up the tent so that the sum of the distances to the three sides
of the triangle is minimal? Most students conjectured that
the tent should be set up on the perimeter of the equilateral
triangle. They were delighted to discover, using GSP, that any
point of the interior of the triangle also minimizes the sum
and that this sum is equal to the length of the altitude of the
equilateral triangle. The class developed an analytic proof on
their own, and I suggested an invariant (area) proof that the
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Table 1. Problems Created in Class

1. Let D_be any point on the base of an isosceles triangle 4ABC with E = % Prove that the sum of distances from D to
sides AC and BC is the length of the altitude that goes through the vertex of one of the congruent angles.

AG=DE+ DF, prove that AABC is isosceles.

2. Let D be an arbitrary point on side AB ofa triangle ABC. Construct the feet of the perpendiculars from D to the other
two sides of AABC, E and F respectively. Let G be the foot of the altitude of AABC corresponding to vertex A. If

3. Construct the distances from any point located in the interior of an equilateral triangle, or on the triangle, to its sides. Prove
that the sum of these three distances is minimal and equal to the length of its altitude.

4. Find all points for which the sum of their distances to the sides of a scalene triangle is minimal.

Table 2. Problems Created Individually

distances is minimal.

1. Four towns are connected with a system of four roads that form a square. The mayors of the cities want to build a recreation
park and connect it to each road. Describe all the possible locations of the recreational park such that the sum of the four

geometrically the sum of the four distances.

2. Find all the points such that their sum of their distances to the sides of a parallelogram is as small as possible. Interpret

Justify your response.

3. If the sum of the distances from any [every] interior point of a triangle is a constant, is the triangle necessarily equilateral?

constant. If possible, interpret the constant geometrically.

4. Let P be a point in the interior of a regular hexagon. Prove that the sum of its distances to the sides of the hexagon is a

5. P isan arbitrary point in the interior of a triangle ABC and PD,PE and PF are the distances from the point to the sides
of the triangle. Find the location of the point for which PD x PE x PF is a maximum.

6. Four cities located at the vertices of a quadrilateral want to construct a power-generating plant. To keep the cost of the
cables and towers at a minimum, the plant needs to be built at a location so that the sum of the distances from the plant to
the four cities is as small as possible. Find the optimal location of the plant.

the cities. Describe how to find all the possible places.

7. Three major cities want to construct a rest area at a place that has the same distance from the three highways that connect

distances to the three sides of the triangle?

8. A parking area has the shape of an isosceles triangle. Where should you park if you want to minimize the sum of the

class completed with some tactical hints. The final version of
the problem is displayed in Table 1, Problem 3. This is the
problem known as Viviani’s problem.

The students then returned to the investigation of the
general problem. After some further discussion the class
agreed to reformulate the initial general problem (what if
the triangle is scalene?) as shown in Table 1, Problem 4. The
students used GSP to provide a conjecture, which they then
proved with appropriate hints.

Continuing the Problem-Posing Experience

As a midterm project, students were asked to produce
a new problem related to any of their created problems and

to use GSP, if appropriate. Afterward they were expected to
make a conjecture about its solution and then, if possible,
justify the conjecture mathematically. Accustomed to posing
problems, students knew that a new problem meant a problem
that we had not discussed in class, read in a book, or learned
from another source. Because I did not require students to
completely solve the problem, which in most cases involved
developing a proof, students were willing to take risks in their
problem-posing endeavors that they otherwise would have
not. One concern in problem-posing tasks is that students
may formulate only problems that they have confidence in
solving (Silver, Mamona-Downs, Leung, & Kenney, 1996).
If so, then students’ problem posing may reflect an ability to
solve problems rather than a capability to create them.
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I provided students with some support in the form
of potential avenues to find problems without being too
directive or helpful. Also, I advised students to use GSP or
other appropriate tools to explore the potential new problem
to make sure that it was a well-posed problem. Students
knew that the modification of an attribute sometimes required
changing another attribute to avoid creating problems that
obviously made no sense.

As a first step in their independent problem-posing
adventures, students underlined the attributes of a problem
that could be changed. We called the initial problem a base
problem. Thus, Problems 2—4 displayed in Table 1 are
problems related to (the base) Problem 1. In turn, we can now
take any of these new problems and create offshoots of these
problems. Some members of the class used Problem 3 as their
base problem. They underlined the following attributes as
potential changes to create their new problems and provided
the possible alternatives indicated in parenthesis: interior
(exterior), equilateral (equiangular, scalene, and regular),
triangle (other quadrilaterals and polygons), sum (product,
quotient, difference), sides (vertices), and minimal (maximal,
constant). Other students remained using Problem 1 as their
base problem. All of the students knew that they could
reverse known and unknown attributes to pose a converse
problem (i.e., reverse problem). Having more experience
in problem posing, I also suggested considering analogous
three-dimensional cases. I asked students to use a variety
of real world contexts and problem format (open-ended or
closed-ended).

Before presenting their problems to the class, students
peer-reviewed each other’s problems in small groups. They
were asked to focus on mathematical content, clarity, and
language. While some students presented their created
problems and solutions to the class, others only presented
them with tentative conjectures about their solutions. During
the presentation, the rest of the class offered additional
suggestions to improve the formulation of some of the
problems. Table 2 depicts the final version of the problems
that students created for the midterm project. I subjectively
judged each problem as being well-posed, non-trivial, and
good with a solution that is mathematically interesting,
beautiful, and surprising.

Students’ Learning in Inquiry,
Dynamic Geometry Environments

In my experience, inquiry-oriented mathematics
learning which includes posing and solving problems within
dynamic geometry environments can help students develop
some mathematical habits of mind that are recommended by
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several organizations or associations such as the National
Council of Teachers of Mathematics (1989, 2000), the
National Research Council (2001), and the Common Core
State Standards Initiative (CCSSI, 2010). Specifically, as
the students were involved in the process of posing and,
sometimes, solving problems related to Viviani’s problem,
they were engaged in a plethora of Mathematical Practices
advocated by CCSSI:

o Making sense of problems. When modifying the
attributes of a problem, students analyzed the structure
of the problem (e.g., givens, constraints, relationships,
and goals) to create related problems that were non-
trivial and well-posed rather than just jumping into an
unreflective attempt to create disconnected problems
that made no sense. To create their problems, students
considered special, general, and analogous problems.

e Reasoning abstractly and  quantitatively. In
constructing a dynamic representation of a problem
situation, students were engaged in reasoning
abstractly and quantitatively as they made sense of
the relationships among the different attributes of the
problem and translated the verbal representation of
the problem into a coherent dynamic diagram.

o Constructing viable arguments and critiquing the
reasoning of others. In examining their dynamic
representation of a problem situation, students
generated, justified, and refined mathematical
conjectures about the solution of their problems. They
communicated their initial problems and conjectures
to their peers who often provided suggestions to
improve the language and mathematical content of
the problems and conjectures. In some cases, students
were engaged in both inductive and deductive
reasoning to justify their assertions to the possible
extent.

o Modeling with mathematics. In analyzing the structure
of a problem, students applied their mathematical
knowledge to create a new problem, mathematize it,
and construct a dynamic model to get acquainted with
the problem itself and investigate its solution. While
drawing a static diagram requires comprehending the
structure of a problem, constructing and manipulating
a dynamic diagram to model a problem situation
requires a deeper understanding of the relationships
among the underlying concepts. The use of Dynamic
Geometry as a conceptual tool afforded students
opportunities not only to make connections between
real world situations and mathematical ideas but
also to see interconnectedness among different
mathematical concepts.
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o Using appropriate tools strategically. In creating
problems and modeling their solutions with Dynamic
Geometry, students used this tool strategically to gain
insight into the relationships among the attributes
of a problem and often into their solution. With the
support of Dynamic Geometry, students were able to
visualize and better understand the results of varying
the attributes of a problem to pose and often solve
related problems. Furthermore, students recognized
the limitations of the use of technology. They
acknowledged that the evidence provided by Dynamic
Geometry was empirical and that a mathematical
argument is needed to prove and better understand
that a plausible conjecture is indeed the solution to the
problem. In this respect, the strategic use of Dynamic
Geometry furthered students’ mathematical thinking.

o Attending to precision. By communicating their
problems and plausible solutions to others and
receiving peer reviews for their creations, students
made explicit use of definitions and improved the
mathematical language employed in both the problem
statement and plausible solution. By modeling the
problem situations using the construction, measuring,
and dragging capabilities of Dynamic Geometry,
students constructed accurate dynamic diagrams that
would have not been possible using imprecise paper
and pencil constructions.

Reflection and Conclusion

I have always been fascinated and intrigued by the
process that leads to the creation of new mathematical
problems, at least new to the problem poser. Not having had
experience in creating problems throughout the first part
of my education, I felt intimated during my first encounter
with Brown and Walter’s (1990) book, The Art of Problem
Posing, when 1 was a doctoral student. Conceptualizing
problem posing as an art may detract learners who feel and
believe they have no artistic abilities. 1 believed problem
posing to be beyond my reach. As I became familiar with
the National Council of Teachers of Mathematics’ (1989,
1991) Standards publications, I learned that problem posing
had been identified as an important component of students’
mathematical experiences. Specifically, the Curriculum and
Evaluation Standards for School Mathematics (1989) calls
for students to have experiences in formulating their own
problems. In a similar vein, the Professional Standards for
Teaching Mathematics (1991) advocates that “students should
be given opportunities to formulate problems by modifying
the conditions of a given problem” (p. 95). Similar statements

are included in the most recent Principles and Standards for
School Mathematics (NCTM, 2000).

I then became interested in learning more about the
process of formulating problems so that I could become
a creator of mathematics and provide my students, both
prospective elementary and secondary mathematics teachers,
experiences in creating problems. The availability of
Dynamic Geometry facilitated my conversion from skeptic
to evangelist. To help my students learn to pose mathematical
problems systematically and spontaneously, 1 designed
the problem-posing framework displayed in Figure 2.
This problem-posing framework has helped me and my
students enhance our creativity, at least in the area of posing
mathematical problems (Contreras, 2003, 2004, 2007, 2009,
in press; Martinez-Cruz & Contreras, 2002).

The problem-posing task described in this classroom
experience is one of several problem-posing tasks that I now
regularly use with my prospective secondary mathematics
teachers when teaching geometry. I should mention, however,
that learning to pose interesting and meaningful problems
systematically and spontaneously is a challenging process.
Problem posers, from naif to expert, need time to explore the
given problem in order to understand the known and unknown
attributes of the problem. Exploring the problem through
inquiry affords all problem posers and solvers opportunities
to better understand the problem. Within geometric contexts,
Dynamic Geometry has been a very powerful tool to facilitate
the exploration phase. Needless to say, problem posers
need to know enough mathematics in order to decide what
alternatives or variations to pursue.

Posing and solving mathematical problems is a
challenging but worthwhile activity. On the one hand, a lack
of proper mathematical background and a failure to explore
the problem situation may result in creating problems that
are trivial, ill-posed, or uninteresting. On the other hand,
subjects may pose problems that are very difficult, if not
impossible, for even the instructor to solve. For example, the
first version of Problem 5 from Table 2 involved finding a
point that minimizes the product of the distances to the sides
of the triangle, which is a trivial problem. Then the student
considered the point that maximizes such product, another
trivial problem without solution. Finally, the point was
restricted to the interior of the triangle. We thought that the
problem was very interesting and felt joy in posing it, even
though the class was not able to solve it. We conjectured that
it was the centroid, a surprising result!

Posing and solving problems is adventuring into
uncharted territory but the experience is valuable. As a teacher
of mathematics, I feel pleasure when students experience a
glimpse of real mathematics, where problems have neither
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a simple solution nor a solution that can be found in the
back of the textbook. As stated by Ghrist and Lane (2013),
“Sometimes the thrill comes not from the final destination,
but from the journey” (p. 13).

I encourage everyone: teachers, teacher educators,
and instructors at all levels, to provide their students with
experiences in posing mathematical problems and to explore
posing problems yourself. It is a delight to create and solve
new problems, even if they are new only to us.
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