TABLE OF CONTENTS

PREFACE
v Nicole Fletcher, Teachers College Columbia University

ARTICLES
1 Tasks to Advance the Learning of Mathematics
 Carole Greenes, Arizona State University
9 My Entirely Plausible Fantasy: Early Mathematics
 Education in the Age of the Touchscreen Computer
 Herbert P. Ginsburg, Teachers College Columbia University
19 Fractions, Decimals, and the Common Core
 Kurt Kreith, University of California, Davis
27 Striking a Balance: Students’ Tendencies to
 Oversimplify or Overcomplicate in Mathematical
 Modeling
 Heather Gould, Eugene Lang College, The New School
 Nicholas H. Wasserman, Teachers College Columbia University
35 Where is the Treasure? Ask Interactive Geometry
 Software!
 José Contreras, Ball State University
41 Incorporating the Common Core’s Problem Solving
 Standard for Mathematical Practice into an Early
 Elementary Inclusive Classroom
 Nicole Fletcher, Teachers College Columbia University
47 Problem Posing with the Multiplication Table
 Benjamin Dickman, Teachers College Columbia University
51 Preservice Teachers Connecting Mathematics
 and Drumming
 Anne Marie Marshall, Lehman College
57 Preservice Elementary Teachers’ Perspectives
 about the Roles of Conceptual Understanding and
 Factual/Procedural Knowledge in Learning and
 Teaching Mathematics and Science
 Sarah Quebec Fuentes, Texas Christian University
 Mark Bloom, Dallas Baptist University
 Heather Peace, Weatherford College
Pre-secondary mathematics education is beginning to receive increased attention on a national level. With the adoption of the Common Core State Standards for Mathematics in 46 states, standards for mathematics curricula starting as early as kindergarten are being implemented nationwide. In addition to content expectations outlined for each grade, the Common Core includes practice standards for all grade levels; even our youngest learners are being challenged to make sense of problems and persevere in solving them, reason abstractly and quantitatively, construct viable arguments and critique the reasoning of others, model with mathematics, use appropriate tools strategically, attend to precision, look for and make use of structure, and generalize from repeated examples. Many of the articles in this issue address implementation of these practice standards, as well as grade-specific content standards, in today’s pre-secondary classrooms.

The articles in this issue of Journal of Mathematics Education at Teachers College (JMETC) represent the wide spectrum of preschool through eighth grade mathematics education. These articles span early childhood, elementary, and middle school mathematics education. They cover an array of topics—mathematical modeling, problem solving and problem posing, educational technology, development of curricular materials, creativity in mathematics, special education, integrated curriculum, and teacher training and professional development.

A common thread running through this issue is the multiple means of representation, action and expression, and engagement integrated into the mathematics teaching and learning described in the articles. These are the three core tenets of Universal Design for Learning, a framework typically utilized in special education and inclusion settings, these concepts are highly applicable in today’s heterogeneous general education classrooms.

in which flexibility and creativity are key components of teaching mathematics to our youngest learners. This common thread provides a hopeful view of mathematics education for early childhood, elementary, and middle school. This issue of *JMETC* makes clear the profession’s shift away from the days of rote learning, drills, singular algorithms, and out-of-context learning and towards mathematics curricula that incorporates relevant, real-world contexts, encourages multiple solution methods, and fosters creativity and independent thinking in the mathematical processes and outcomes of our young students.

Nicole Fletcher
Guest Editor