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Introduction

Modern mathematics has been greatly enriched by its
reliance on two distinct representations for non-whole
real numbers. Accordingly, techniques for converting
fractions to decimals and decimals to fractions figure
prominently into school curricula. In the Common Core
State Standards for Mathematics, this is reflected in content
standard 7.NS.A.2.D, calling on students at grade 7 to

   Convert a rational number to a decimal using long
division; know that the decimal form of a rational
number terminates in 0s or eventually repeats.
(National Governors Association Center for Best
Practices, Council of Chief State School Officers
[NGA Center & CCSSO], 2010, p. 49)

By way of example, given the rational number 3/7,
students are expected to implement the long division
algorithm: 

ABSTRACT At grade 7, Common Core’s content standards call for the use of long division to find
the decimal representation of a rational number. With an eye to reconciling this requirement with
Common Core’s call for “a balanced combination of procedure and understanding,” a more
transparent form of long division is developed. This leads to the formulation of long division as a
“recursive relation” and to more incisive insights into fractions and decimals than are typically
developed as part of the school curriculum. The role of technology and some modern applications
are explored.
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                                  0

                       3 0
                               2 8
                                   2 0
                               1 4
                               6 0  etc.

and thereby conclude that the decimal form of 3/7 is
0.4285… . Then, reflecting on the nature of these calcu-
lations, students are asked to observe that the remainders
generated in the course of long division (in bold above)
must be less than the divisor (in this case, 7). A remain-
der of 0 signals that the decimal terminates in zeros. Oth-
erwise, there must eventually be a repetition in the
positive remainders so generated, in which case the entire
process repeats. In example (1), there is a repeat of the
first remainder, 3. This enables one to conclude that

, where the bar indicates an endlessly 
repeating pattern of length 6. As such, this seventh grade

0. 4 2 8 5...
7 ) 3. 0 0 0 0...

3/7 = 0.428571

(1)
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standard calls for skills that are surely worthy of convey-
ing to students.

Issues Deserving Attention

As would be the case with any comprehensive effort
to define the school curriculum, Common Core raises
issues deserving attention from teachers and others
involved in mathematics education. In the case of the
seventh grade standard (7.NS.A.2.D), the fact that long
division is cited as the tool for converting rational
numbers to decimal form can obscure the fact that there
are instances where other tools are both available and
preferable. Prominent among these is the case of a
fraction a/b with denominator of the form 2m × 5n. 

To write 7/250 in decimal form, one can begin by
noting that 250 = 21 × 53. Then, multiplying both
numerator and denominator by 22, one obtains an
equivalent fraction whose denominator is a power of 10.

= × = = = 0.028

In this way, any fraction whose denominator is of the
form 2m × 5n can be transformed into an equivalent frac-
tion of the form A/10N, and thereby into a terminating
decimal.

The converse is also true. Given a terminating decimal
with N digits to the right of the decimal point,
multiplication by 10N yields a whole number—say A.
This means that the value of the original decimal is a
fraction of the form A/10N, where 10N = 2N × 5N. When
reduced to lowest terms, such a fraction has
denominator of the form 2m × 5n. 

By characterizing fractions with terminating decimal
expansion, we have also characterized those fractions
whose decimal expansion does not terminate. In
particular, a fraction in lowest terms whose denominator
has a prime divisor other than 2 or 5 will not be

7
250

7
21 × 53

22

22
7 × 4

23 × 53
28
103

terminating.  Rather, as follows from an understanding
of long division, its decimal is eventually repeating and
has a repetend (repeating pattern) of length less than or
equal to b – 1. This important observation is expressed
in Table 1.

Turning to terminology, the grade 7 Common Core
standard asks students to convert a rational number to
decimal form. Yet our development of the dichotomy
underlying Table 1 made essential use of concepts and
terminology associated with fractions (numerator,
denominator, equivalent fractions, etc.). This observation
relates to a novel feature of Common Core, namely its
early emphasis on a formal interpretation of fractions
and their place within the system of real numbers.
Reconciling Common Core’s content standards for
teaching fractions at grades 3 – 6 with subsequent efforts
to convey the mathematics underlying Table 1 is an issue
worthy of attention.

The seventh grade standard quoted previously is the
first of two places where the phrase “long division”
appears in Common Core.1 There is, however, a grade 6
content standard (6.NS.B.2) calling on students to

   Fluently divide multi-digit numbers using the stan-
dard algorithm. (NGA Center & CCSSO, 2010, p. 42)

The fact that “standard algorithm” is left undefined
raises the question of where, when, and how long
division is to be introduced. Should it be taught at grade
6 as a tool for dividing multi-digit numbers? Or should
it be introduced at grade 7 as a tool for converting
fractions to decimals? Spirited discussion of these
matters is contained in Klein and Milgram (2000),
Ralston (2000), and Rude (2004).

Practice Standards 

The most striking challenge teachers are likely to en-
counter in implementing these seventh (and sixth?)
grade content standards may be one of reconciling them

with Common Core’s Standards for Mathematical
Practice. For many students (and for some teach-
ers!) long division tends to be a mechanistic
process: Learning to arrive at 3/7 = 0.4285... by
long division does not entail the ability to explain
why it is that this algorithm generates the decimal
representation of a fraction. Yet Common Core’s
practice standards assert that

1 The second mention of long division occurs under “High School: Algebra” and deals with division of polynomials.

Table 1

Properties of Fractions and Decimals
denominator of
proper fraction a/b in
the lowest terms

properties of decimal
representation of a/b

prime factorization 
is all 2s and 5s

terminating

prime factorization 
not all 2s and 5s

repeating
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   The Standards for Mathematical Content are a bal-
anced combination of procedure and understand-
ing... Students who lack understanding of a topic
may rely on procedures too heavily... a lack of 
understanding effectively prevents a student from
engaging in the mathematical practices... (NGA
Center & CCSSO, 2010, p. 8)

How can teachers help their students arrive at the
decimal representations of fractions with “a balanced
combination of procedure and understanding?”

An Alternate Format

A transparent way of arriving at the decimal
representation of 3/7 is to take advantage of our decimal
monetary system. Here the process of dividing $3
among 7 children can be conceived of as follows:

1. Given $3 and 7 children, we are unable to give every
child a whole dollar.

2. Converting $3 into 30 dimes, we are able to give 4
dimes to every child and have 2 dimes left over.

3. Noting that we are unable to give every child another
dime, we convert the 2 remaining dimes into 20
pennies. Now we are able to give 2 pennies to every
child and have 6 pennies left over.

4. Noting that we are unable to give every child another
penny, we convert the 6 remaining pennies into 60
milles.2 Now we are able to give 8 milles to every child
and have 6 milles left over.

Having run out of denominations (even the mille may
sound unfamiliar), it remains to imagine ever smaller
monetary units obtained by successive divisions by ten.

To turn such a verbal description into an algorithmic
procedure, we can use Euclidean (whole number)
division to give these steps a symbolic representation.

Every child receives 0 dollars 3 = 0 × 7 + 3

Every child receives 4 dimes 30 = 4 × 7 + 2

Every child receives 2 pennies 20 = 2 × 7 + 6

Every child receives 8 milles 60 = 8 × 7 + 4 etc.

Of course, the equations above can be regarded as just
another way of implementing the long division
algorithm. This can be illustrated by writing the two
procedures side by side.

2 The Coinage Act of 1794 defines a mille as "the thousandth part of a dollar."
3 The mathematician Henry Briggs is credited with developing long division around 1600 (Dictionary of Scientists, 1999).

        3 = 0 × 7 + 3
        0
       3 0 30 = 4 × 7 + 2
       2 8
        2 0 20 = 2 × 7 + 6
       1 4
       6 0  etc. 60 = 8 × 7 + 4 etc.

Thus, one approach to reconciling Common Core’s
seventh grade content standard with a quest for
understanding is to use the calculations on the right to
explain why long division, in its traditional format, leads
to the decimal representation of 3/7. In this context, we
might simply refer to the calculations on the right as “an
alternate format for solving 3 ÷ 7“ while continuing to
teach long division in the usual way.

There may, however, be a case for giving this alternate
format a life of its own. Doing so would challenge over
400 years of tradition by bringing “a new way of solving
a ÷ b“ into the seventh grade curriculum.3

A Symbolic Formulation

One rationale for introducing our alternate format for
solving a ÷ b is the development of a mathematical
formulation of long division. Closely related to such a
development is the use of variables. 

Motivated by our now familiar example of 3 ÷ 7, a
general formulation of long division might be the second
set of equations in (2).

              3 = 0 × 7 + 3               a = q0 × b + r0

            30 = 4 × 7 + 2          10r0 = q1 × b + r1

            20 = 2 × 7 + 6          10r1 = q2 × b + r2

    (2)    60 = 8 × 7 + 4          10r2 = q3 × b + r3  etc.

The problem of writing a/b in decimal form then
becomes one of solving a recursive relation

a = q0 × b + r0

    (3)          10rn–1 = qn × b + rn for n = 1, 2,...

and using the sequence of quotients {q0, q1, q2, q3,...} to
arrive at 

    (4)                 a/b = q0.q1q2q3...

0. 4 2 8 5...
7 ) 3. 0 0 0 0...
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Such an abstract formulation makes clear the rather
specialized role long division plays in finding the deci-
mal representation of fractions. Here, the traditional
form of long division calls for “bringing down zeros,”
which is different from its use to “fluently divide multi-
digit numbers.” At grade 6, students are confronted with
a multi-digit dividend a = anan–1...a1a0 and the use of
long division to solve a ÷ b becomes one of finding quo-
tients qn, qn–1,..., q0 and remainders rn, rn–1,..., r0 satisfying

                an = qn × b + rn

(5)    10rk + ak–1 = qk–1 × b + rk–1 for k = n, n – 1,..., 1

The solution of a ÷ b is now the whole number

    (6)                         qn, qn–1,..., q0

accompanied by the remainder r0. As the general formu-
lations (3) and (5) make clear, long division is more com-
plicated at grade 6 than it is at grade 7! 

Technology

In pursuing the relationship between fractions and
decimals, the existence of computer technology is hard
to ignore. There will surely be instances in which it
becomes tempting to relegate the decimal representation
of fractions to a machine, and a recursive definition of
long division is likely to be central to any such effort.

An engaging way of pursuing recursion in a non-
technical context is to ask students to implement the
alternate format of long division on a spreadsheet. Given
a rudimentary background in Excel, students can be
given a template such as (A) at the top of Figure 1 and
asked to “teach the machine” the monetary scheme for
dividing a dollars among b children. 

For large values of a and b, such a spreadsheet can be
used to calculate the decimal form of a/b to an arbitrary
number of decimal places. In this way, technology
provides a powerful tool for experimentation and for
thinking independently about the topic at hand.

In a real world context, it also seems important to lay
the groundwork for a mathematical understanding of
the bar codes, parity checks, and forms of credit card
encryption that play an increasingly important role in
our society. Remarkably, some of these applications are
closely related to the mathematics of fractions and
decimals. By way of dramatic example, an under -
standing of fractions, decimals, and long division can be
used to establish Fermat’s Little Theorem. As recounted
by Flannery and Flannery (2001) in a book aimed at

students, this 350 year old result played a central role in
the development of a form of “public key encryption”
called the RSA algorithm. As such, it will be interesting
to consider its roots in the school curriculum.

Figure 1. Using a spreadsheet to implement recursion.

(A)

(B)

Decimals to Fractions

Having considered techniques for going from the
fraction representation of a rational number to its
decimal representation, there remains the problem of
transforming repeating decimals into fractions. Recalling
the familiar example 1/3 = 0.3333..., it remains to show
how the decimal 0.3333... leads to 1/3. 

Letting x = 0.3333…, a rigorous effort to arrive at 
x = 1/3 would involve the interpretation of 0.3333... as a
geometric series with limit 1/3. There is, however, a less
formal procedure that is essentially equivalent: 
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dichotomy of Table 1, the following questions arise: 

   Given a fraction a/b in lowest terms, when will the
decimal representation of a/b have a repetend right
after the decimal point? When will its decimal
representation have a lead-in before falling into a
repeating pattern? 

As asserted in Table 2, the answer is again rooted in
the prime factorization of the denominator b.

While not particularly difficult (see Appendix), a
proof of this refinement of Table 1 may be beyond the
school curriculum. Notable, however, is its reliance on the
recursive formulation of long division as a starting point.

               a = q0 × b + r0

        10rn–1 = qn × b + rn for n = 1, 2,...

By way of contrast, the traditional format for long division
would be an awkward basis for establishing Table 2.

Short of proof, it is still possible to relate such a
refinement of Table 1 to the school curriculum. For
example, a spreadsheet can be used for calculations
aimed at confirming Table 2 in specific cases. Alter -
natively, experimentation can be used as a way of
guid ing students to the “discovery” of these results. So
motivated, students in Math Circles and similar pro -
grams of enrichment can be referred to Chapter 23 of The
Enjoyment of Mathematics: Selections from Mathematics for
the Amateur by Rademacher and Toeplitz (1957) as a
context for continued study.

Given Table 2, it becomes possible to develop some
engaging connections to the standard curriculum. In
confronting the seventh grade Common Core content
standard cited at the beginning of this discussion,
students will note that some fractions have decimal
representations with surprisingly short repeating
patterns

               

while others have unpleasantly long repetends.

     

5/37 = 0.1357/11 = 0.63

12/17 = 0.70588235294117643/7 = 0.428571

Decimal notation and basic algebra 
can be used to argue that

10x = 3.3333...

x = 0.3333...
9x = 3.0000...

Solving the last equation, we arrive at 
x = 3/9 or x = 1/3.

These ideas are readily applied to decimals 
with longer repetends as long as the repetend begins 
right after the decimal point. For example, given

we have

100x = 45.454545...

x = 0.454545...
99x = 45

and x = 45/99 = 5/11.
In order to deal with repeating decimals having 

a “lead-in” preceding the first repetend, we can reduce
the problem to the case considered above. Given

we have

x = 0.17454545...

100x = 17.454545...

100x = 17 + 0.454545... = 17 + 5/11 = 192/11

x = 192/1100 = 48/275

These techniques make it possible to transform any
endlessly repeating decimal into fraction form. This
leads to a characterization of non-repeating decimals as
numbers that can not be represented in fraction form
(aka irrational numbers).

A Refined Dichotomy

As illustrated previously, when transforming
repeating decimals into fraction form, it is useful to
distinguish between decimals with a repetend beginning
right after the decimal point versus those having a “lead-
in” before the first repeating pattern. In refining the

x = 0.454545 ... = 0.45

x = 0.17454545 ... = 0.1745,

Table 2

Properties of Fractions and Decimals Refined
denominator of
proper fraction a/b 
in lowest terms

properties of decimal
representation of a/b

prime factorization 
is all 2s and 5s

terminating

prime factorization 
has no 2s and 5s

repetend right after
decimal point

prime factorization 
has some 2s and/or 5s and

also some other primes

first repetend preceded
by lead-in terms
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This raises the question:

   Given a fraction a/b in lowest terms, what is it that
determines the length of the shortest repetend in its
decimal expansion?

To answer to this question, consider a fraction a/b
whose decimal representation has a repetend of length
L right after the decimal point. Setting x = a/b and

we have

10Lx = c1c2c3...cL.c1c2c3...cLc1c2c3...cL...

and 

(10L – 1)x = c1c2c3...cL

Solving for x in fraction form, we arrive at 

x = = 

where N is the whole number c1c2c3...cL. Since x = a/b,

= 

This proportion leads to

b × N = a × (10L – 1)

and shows that b is a divisor of a × (10L – 1). But since
a/b is in lowest terms, we can also conclude that b is a
divisor of 10L – 1. Then, after working our way back
through these calculations, we arrive at the following
consequence of Table 2.

   Given a fraction a/b in lowest terms whose de -
nominator is divisible by neither 2 nor 5, the decimal
representation of a/b will begin with a repetend of
length L if and only if b is a divisor of 10L – 1.

So what are some fractions whose decimal repre -
sentation consists of a repetend of length L beginning
right after the decimal point? Here are some lists of their
denominators for small values of L:

   L = 1 (101 – 1) = 9 b = 1, 3, 9
   L = 2 (102 – 1) = 99 b = 1, 3, 9, 11, 33, 99
   L = 3 (103 – 1) = 999 b = 1, 3, 9, 27, 37, 111,

333, 999
   L = 4 (104 – 1) = 9999 b = 1, 3, 9, 11, 33, 99,

101, 303,...
   L = 5 (105 – 1) = 99999 b = 1, 3, 9, 41, 123,

271, 813,...
   L = 6 (106 – 1) = 999999 b = 1, 3, 7, 9, 13,...,

3367,..., 5291,...

x = 0.c1c2c3...cLc1c2c3...cLc1c2c3...cL... = 0.c1c2c3...cL

N
10L – 1

c1c2c3...cL

10L – 1

N
10L – 1

a
b

and here are some examples that make use of these lists:

   L = 1 1/3 = 0.3333... 7/9 = 0.6666...

   L = 2 5/11 = 0.454545... 2/9 = 0.2222... 
   = =

   L = 3 8/37 = 2/9 = 0.2222... 
= 

   L = 4 5/11 = 6/101 =

   L = 5 1/41 = 10/41 =

   L = 6 3/7 = 617/5291 =

Conclusion  

Efforts to reformulate school curricula can be trying
for both schools and teachers. At the same time, they
offer unique opportunities to examine practices that are
deeply rooted in tradition and habits of thought. 

By examining long division in light of Common
Core’s Standards for Mathematical Practice, we have
been led to alternate ways of viewing an algorithm that
is likely to be a challenging part of any curriculum. But
the value of such alternative approaches will not be
deduced in abstract terms. Rather, such a determination
will require the active involvement of classroom teachers
willing to dig into the underlying mathematics and try
new approaches in their work with students. Hopefully,
our discussion of fractions, decimals, and the Common
Core will contribute to such efforts. 

Appendix

Theorem If a/b is a proper fraction in lowest terms
whose denominator is divisible by neither 2 nor 5, the
decimal representation of a/b has a repetend right after
the decimal point.
Proof. Letting 0.c1c2c3... denote the decimal represen-

tation of a proper fraction a/b in lowest terms, suppose
that cmcm+1...cn is the first repetend to the right of the
decimal point. In applying the recursive form of long 
division algorithm to a ÷ b, we obtain

a = 0 × b + r0

10r0 = c1 × b + r1

10r1 = c2 × b + r2

...
10rm–1 = cm × b + rm

...
10rn–1 = cn × b + n

with rm = rn. Subtracting the last two equations displayed,
we obtain

0.220.45

0.216
0.222

0.05940.4545

0.243900.02439

0.1166130.428571
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10(rn–1 – rm–1) = (cn – cm) × b

Since 10 = 2 × 5 and b is divisible by neither 2 nor 5,
it follows that b is a divisor of the difference rn–1 – rm–1.
But recalling that

0 < rn–1 < b and 0 < rm–1 < b

the only way for b to divide rn–1 – rm–1 is for this difference
to be 0. Thus the assumption rm = rn has led to the
conclusion rn–1 = rm–1 and thereby to rk = r0 for some k.
This shows that the decimal representation of a/b has a
repetend right after the decimal point.
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