
PREFACE

v Ma!hew DeGraaf, Teachers College Columbia University
Simone Salmon-Nembhard, Teachers College Columbia University

ARTICLES

1 Rainforest Mathematics
Jeremy Kilpatrick, University of Georgia

9 Using a Framework of 21st Century Competencies 
to Examine Changes between China’s 2001 and 
2011 Mathematics Curriculum Standards for 
Basic Education
Max Stephens, University of Melbourne, Australia
Richard Xu Keqiang, South West University, China

17 Solving Optimization Problems with Dynamic
Geometry Software: The Airport Problem
José Contreras, Ball State University

29 Using Dynamic Software to Address Common 
College Calculus Stumbling Blocks
Alice W. Seneres, Rutgers, The State University of New Jersey
John A. Kerrigan, Rutgers, The State University of New Jersey

39 Rousing Students’ Minds in Postsecondary
Mathematics: The Undergraduate Learning 
Assistant Model 
David C. Webb, University of Colorado Boulder
Eric Stade, University of Colorado Boulder
Ryan Grover, University of Colorado Boulder

49 Using Mathematics Literature with Prospective
Secondary Mathematics Teachers 
Christopher C. Je!, University of West Georgia

55 Financial Literacy: An Essential Component of
Mathematics Literacy and Numeracy
Marla A. Sole, Gu!man Community College, 
The City University of New York

63 Integrating Universal Design and Response to
Intervention in Methods Courses for General
Education Mathematics Teachers
Kelley Buchheister, University of South Carolina
Christa Jackson, Iowa State University
Cynthia E. Taylor, Millersville University of Pennsylvania

TABLE OF CONTENTS

iii



SOLVING OPTIMIZATION PROBLEMS WITH DYNAMIC GEOMETRY SOFTWARE: THE AIRPORT PROBLEM | 17

Introduction

Learning to solve problems that arise within mathe -
matics and real-world contexts has been one of the goals
of past and recent reform efforts in mathematics
education (Borromeo Ferri, 2013; CCSSI, 2010; National
Council of Teachers of Mathematics [NCTM], 1989, 2000;
Schoenfeld, 2013). To solve a problem, the learner should
use any available resources, which include not only
mathematical knowledge but also technological tools. 

The use of technological tools is more than a simple
new way to perform procedures and algorithms. They
offer learners unparalleled opportunities to explore a
problem by formulating and testing conjectures, both
visually and empirically. They allow us to explore and
ex periment the content of a problem by varying its param -
eters dynamically and noticing the effects of these
changes on relationships. Technological tools also allow
learners to extend the range of problems accessible to
them. Students can represent and model complex pro -
lems that would be cumbersome, if not impossible, to
investigate without the use of technological tools. Ac -
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cording to Principles and Standards for School Mathematics
(NCTM, 2000), “Technology is essential in teaching and
learning mathematics; it influences the mathematics that
is taught and enhances students’ learning” (p. 24). 

One of the most powerful technological tools that has
been developed to support the process of representing
and modeling mathematical and real-world problems is
Dynamic Geometry Software (DGS). DGS, like other
technological tools, can graph, visualize, and compute
efficiently and accurately. The most common types of
DGS include The Geometer Sketchpad (Jackiw, 2001),
Cabri Geometry (Laborde & Bellemain, 2005), and
GeoGebra (Hohenwarter, 2002), to name just a few. 

Laborde and Laborde (1995) describe three types of
student behavior that are encouraged and facilitated
within DGS environments. First, DGS facilitates the
formulation and testing of a conjecture by dragging a
diagram around the screen and considering extreme
cases. Second, DGS allows students to openly experi -
ment with a diagram and to ask “what if” questions.
Third, DGS allows learners to systematically repeat
experiments to further test the validity of a conjecture
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across a wide range of conditions or factors to determine
the domain of its validity. 

Geometric optimization problems, in general, are
suited to be investigated with DGS because the software
allows us to build a geometric model of the problem
situation and manipulate some of its parts. The software
instantly changes other parts and performs precise
calculations while preserving the intended constraints.
We can then use the new information to further drag some
parts of the model to build, test, and refine conjectures. In
this paper, I illustrate how GSP can be used to model
optimization problems, although any type of DGS can be
used. In doing so, I illustrate how the graphical power of
DGS “affords access to visual models that are powerful
but that many students are unable or unwilling to
generate independently” (NCTM, 2000, p. 23) using as an
example the classic airport problem. This problem also
serves as an excellent vehicle to exemplify how DGS can
foster our intuition and provide insight into the solution
to a mathematical or real-world problem. 

The Airport Problem

A version of the airport problem follows: 

Three towns —Armon (A), Betania (B), and Calista (C)
— are planning to build an airport to serve the three
cities. To keep costs at a minimum, the airport needs
to be constructed at a place where the sum of its
distances to each of the cities is minimal. (a) Describe
the minimum distance point for the location of the
airport; (b) construct the optimal point. 

I use this problem in my college geometry classes for
both pre-service and in-service secondary mathematics
teachers. Often, students’ initial approach to solving this
problem involves using only paper and pencil. Because
this is not a routine problem, they struggle solving it
because they have not seen a “problem like this in class.”
In spite of “not having a clue” about how to solve it,
students do not automatically use DGS to represent and
model it, even though we have used DGS to perform
other types of investigations. At this stage of the problem-
solving process, I suggest representing and modeling the
problem with GSP. Before they represent the problem
with GSP, however, I ask them to make a prediction of
where the airport should be constructed. The most
common responses are either at the circumcenter (the
point of intersection of the perpendicular bisectors of the
sides of the triangle) or at the incenter (the point of

intersection of the angle bisectors of the interior angles of
the triangle). Some students who predict that the circum -
center is the optimal location for the airport argue that
the circumcenter is equidistant from the three towns and,
thus, this point minimizes the sum of the distances to the
three towns. On the other hand, some students who
claim that the airport should be built at the incenter claim
that this triangle center is the optimal point because it is
always in the inside of the triangle and it is equi distant
from its sides. 

A Surprising Solution to the Airport Problem

Our second task is to use GSP to represent and model
the problem. Figure 1 represents two common diagrams
designed by students. 

Figure 1. Two initial representations of the airport problem.

A B

C

AD = 3.57 cm
BD = 1.41 cm
CD = 2.66 cm
AD + BD + CD = 7.64 cm

AD = 4.89 cm
BD = 1.65 cm
CD = 2.90 cm
AD + BD + CD = 9.44 cm

A
B

C

D

D

(a)

(b)
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After having represented the problem with GSP,
students drag one of the vertices of the triangle until they
notice that the sum of the three distances from point D
to the three vertices of the triangle seem to be as small
as possible (Figure 2). 

  

non-overlapping angles determined by the point and the
segments joining said point with the vertices of the
triangle are congruent, each measuring 120° (Figure 3). In
other words, the point at which the sides of the triangle
subtend congruent angles. In contrast, few students, if
any, who represented the problem using a diagram like
the one displayed in Figure 1b (or 2b) are able to
characterize point D. After sharing the findings with the
rest of the class, some students say how neat and
surprising the solution to the airport problem is. I men -
tion to the class that this point is called the equi angular
point of the triangle. The class often formulates the initial
conjecture as follows: 

Conjecture 1. The equiangular point of the triangle
minimizes the sum of the distances from it to each of
the three vertices of the triangle. 

Figure 2. Searching for the optimal location for the airport.
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C

AD = 3.78 cm
BD = 1.59 cm
CD = 2.18 cm
AD + BD + CD = 7.55 cm

AD = 5.79 cm
BD = 0.63 cm
CD = 2.69 cm
AD + BD + CD = 9.11 cm

A
B

C

D

D

(a)

(b)

Our third task is to examine our model constructed
with GSP and characterize point D. By analyzing
visually the dynamic representation of the problem,
most students immediately notice that point D is neither
the circumcenter nor the incenter of the triangle, as some
of them initially conjectured. Most students who
represent the problem using a diagram like the one
depicted in Figure 1a (or 2a) are able to describe the
distinctive nature of point D by measuring ∠ADB,
∠BDC, and ∠ADC: point D is the point at which the three

Constructing the Equiangular Point

After having conjectured that the minimum distance
point of a triangle is the point at which the sides of the
triangle subtend congruent angles (i.e., angles measur -
ing 120° each), I ask students what we can do to have
point D remain the equiangular point as we drag any of
the vertices of the triangle to a new location. By now
students know the difference between drawing and
constructing and thus they respond that we need to
construct the equiangular point. Some add that con -
structing the equiangular point would allow us to obtain

Figure 3. The minimum distance point for a triangle 
seems to be the equiangular point.

A B

C

AD = 3.78 cm
BD = 1.59 cm
CD = 2.18 cm
AD + BD + CD = 7.55 cm

m∠ADB = 120.36°
m∠BDC = 119.62°
m∠ADC = 120.02°

D
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more exact measurements for the three congruent angles
surrounding the equiangular point. The problem, how -
ever, is how to construct the equiangular point. 

Because constructing the equiangular point is a chal -
lenging construction, students are allowed to search the
internet or use other resources to find out how to per -
form this construction. After searching for minimum
total distance or equiangular point for triangles, students
often find two methods to construct the elusive point.
Both methods involve constructing outward equilateral
triangles on the sides of the given triangle. The two ways
to construct the equiangular point are straightforward
within DGS environments. 

One method constructs the equiangular point by con -
structing the segments joining each vertex of the given
triangle with the remote vertex of the equilateral triangle
constructed externally on the opposite side. The three
segments are concurrent at the equiangular point of the
given triangle (Figure 4). 

The second method to construct the equiangular point
is to construct the circumcircles of the three outward
triangles. The three circumcircles are concurrent at point
G, the equiangular point of the given triangle (Figure 5). 

Confirming and Refining the Conjecture

After I guide the class to prove that the two methods to
construct the equiangular point are correct (for certain
triangles), we come back to test further the conjecture
that said point is also the minimum distance point for
other types of triangles. Some students test their con -
jecture with the equiangular point constructed using
method 1 (Figure 6a) while others test it with the equi -
angular point constructed using the second method
(Figure 6b). 

As students drag point H to different locations to try
to find another point with a shorter total distance, they
further confirm that G, the equiangular point, is the
minimum distance point. At this stage of the investi -
gation students are ready to verify their conjecture for
additional triangles. As students consider several types
of triangles, some quickly hypothesize that the mini -
mum distance point does not exist for some triangles
because point G disappears (Figure 7a), while other
realize that the optimal point ceases to be the equi -
angular point (Figure 7b). All students later con jecture
that the minimum distance point does exist for all
triangles, but it is not always the equiangular point. 

Figure 4. Segments , , and are concurrent at
point G, the equiangular point of ΔABC. 

AD BE CF

A
B

C

m∠AGB = 120.00°
m∠BGC = 120.00°
m∠AGC = 120.00°

D

E

F

G

Figure 5. The three circumcircles of triangles ΔBCD,
ΔACE, and ΔABF are concurrent at the equiangular point.
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C

m∠AGB = 120.00°
m∠BGC = 120.00°
m∠AGC = 120.00°
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Figure 6. Further empirical evidence that the equiangular point is the minimum distance point.

(a) (b)
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D

E

F

G

H

m∠AGB = 120.00°
m∠BGC = 120.00°
m∠AGC = 120.00°

m∠AGB = 120.00°
m∠BGC = 120.00°
m∠AGC = 120.00°

AG = 3.14 cm
BG = 0.98 cm
CG = 1.69 cm
AG + BG + CG = 5.81 cm

AH = 2.77 cm
BH = 1.52 cm
CH = 1.65 cm
AH + BH + CH = 5.94 cm

AG = 3.10 cm
BG = 0.92 cm
CG = 2.26 cm
AG + BG + CG = 6.28 cm

AH = 2.94 cm
BH = 1.85 cm
CH = 1.79 cm
AH + BH + CH = 6.58 cm
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C

D

E

F

G

Figure 7. G is not the minimum distance point for some triangles.
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m∠AGB = 60.00°
m∠BGC = 60.00°
m∠AGC = 120.00°

AH = 3.02 cm
BH = 0.79 cm
CH = 2.53 cm
AH + BH + CH = 6.34 cm

AG = 4.43 cm
BG = 0.69 cm
CG = 2.54 cm
AG + BG + CG = 7.66 cm

AH = 3.69 cm
BH = 0.55 cm
CH = 2.50 cm
AH + BH + CH = 6.74 cm

H
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At this stage of the investigation I ask students to
characterize the triangles for which the equiangular point
does not exist. A few claim that said point exists only for
acute triangles while others realize that the equiangular
point exists also for certain obtuse triangles (Figure 8a).
To describe the distinctive nature of triangles for which
the equiangular point does not exist, some students drag
an appropriate vertex of the triangle (C in this case) to the
extreme case where G still exists (i.e., “before” it coincides
with vertex B) (Figure 8b). At this point most students
realize that the equiangular point exists for triangles with
no angle measuring greater than 120°. The class then
formulates a refinement of conjecture 1: 

Conjecture 2: The minimum distance point of a triangle
with no angle measuring greater than 120° is the
equiangular point. 

The Final Conjecture

Our next task is to characterize the minimum distance
point for triangles having an angle of measure more than
120°. To this end, students drag point H until the sum of
its distances to the three vertices of the triangle seems to
be minimized (Figure 9a, 9b, and 9c). At this point
students hypothesize that the optimal point is the vertex
of the obtuse angle. Further dragging for other triangles
confirms our conjecture. Thus, our third, and final,
conjecture is stated as follows, 

Conjecture 3: The minimum distance point of a triangle
a) is the equiangular point for triangles with no angle
of measure greater than 120°, b) is the vertex of the
obtuse angle for triangles having an angle measuring
120° or more.

A B

C

D

E

F

G

A
B

C

D

E

F

G

Figure 8. Characterizing the triangles for which the equiangular point exists.

(a) (b)

m∠AGB = 120.00°
m∠BGC = 120.00°
m∠AGC = 120.00°

m∠ABC = 98.75°

m∠AGB = 120.00°
m∠BGC = 120.00°
m∠AGC = 120.00°

m∠ABC = 119.98°



AH = 2.57 cm
BH = 0.00 cm
CH = 2.61 cm
AH + BH + CH = 5.18 cm

m∠ABC = 125.94°

AH = 2.35 cm
BH = 0.38 cm
CH = 2.54 cm
AH + BH + CH = 5.27 cm

m∠ABC = 125.94°
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Figure 9. Searching for the optimal point for triangles with an angle measuring more than 120.°

(a)

(c)

(b)

AH = 2.69 cm
BH = 0.28 cm
CH = 2.78 cm
AH + BH + CH = 5.75 cm

m∠ABC = 125.94°
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B

C

D
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H



Reformulating the Conjecture as a
Theorem

After the class formulates the final conjec-
ture, I lead the class to develop an argu ment
to prove that our con jecture is indeed a
theorem. To this end, I ask students to con -
struct the configuration displayed in Figure
10 with the following directions: 

Consider a triangle ΔABC with no angle
measuring more than 120°. Let G be its
equiangular point. Through A, B, and C,
construct lines that are per pendicular to
segments , , and , respectively.
Those lines determine ΔIJK.

To prove that G is the minimum distance
point, a few students propose to consider
another point, say L, and show that AL + BL
+ CL > AG + BG + CG. Notice that point L is
an arbitrary point and that we are com -
paring L to G to show that no matter where
L is, the sum of the distances to the vertices
of the triangles is less than going from G
than it is from L. At this stage students are “stuck” and
I suggest that they examine ΔIJK. At this stage students
determine that ΔIJK is an equilateral triangle because
each interior angle measures 60° [for example, m∠BIC =
60° because m∠IBG = m∠GCI = 90° and m∠BGC = 120°].
I then ask students what property every interior point of
an equilateral triangle has. After some moment of
reflection, students realize that there is a connection
between the fact that point L is an interior point of an
equilateral triangle and Viviani’s theorem: The sum of
the distance from any interior point of an equilateral
triangle to its sides is a constant. Using this theorem
students then prove that G is the minimum distance
point with the following reasoning: 

AL + BL + CL > NL + OL + ML (the length of the
hypotenuse of a right triangle is greater than the
length of any of the legs). Applying Viviani’s theorem
we obtain NL + OL + ML = AG + BG + CG. Thus, AL +
BL + CL > AG + BG + CG. 

To understand the restriction that ΔABC cannot have
an angle measuring 120° or more, students drag point C

AG CGBG
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Figure 10. Diagram to prove that G is the minimum distance point for
triangles with all interior angles measuring less than 120.°

A B

C

O

J

K

G
I

L

N

M

until m∠ABC is practically 120° (Figure 11). As they drag
point C, they notice that the proof is valid for all
intermediate triangles. The construction fails when we
have m∠ABC = 120° and thus segment does not exist.GB
As a consequence, line is undetermined. I then ask
the class how we can reconstruct such a line so we can
still have m∠BIC = 60° (that is, ΔIJK is still an equilateral
triangle). After analyzing the situation, a few students
propose to construct such that m∠CBI = 30°. The
proof that G (the vertex of obtuse ∠ABC) is the minimal
distance point is still valid because Viviani’s theorem is
also valid for points on the triangle. 

Students continue dragging point C to make ∠ABC
have a measure greater than 120° (Figure 12). They
realize that the original process to construct ΔIJK is valid
for triangles having an angle measuring more than 120°.
The task is now to understand why point B, and not
point G, is the minimum distance point. Students notice
that G is an exterior point of ΔIJK and thus AG + BG +
CG > ML + NL + OL = AB + BC. At this point, most
students realize that the original proof can be adapted to
show that B is the minimum distance point (AL + BL +
CL > NL + OL + ML = AB + BC). 

< >

KI

< >

KI



Discussion and Concluding Remarks

The airport problem is an excellent example of
how technology in general, and Dynamic
Geometry Software in particular, can facilitate
the process of solving complex mathematical
problems. Based on visual and numerical feed -
back generated by GSP, students are able to
generate, confirm, refute, and refine conjec -
tures. By being asked strategic questions, stu -
dents were able to use GSP to discover and
characterize the two cases of the solution of the
airport problem for triangles. 

As is common when my students perform
investigations within DGS environments, we
justify our conjecture related to the solution of
the airport problem with a formal proof. To
date, there is still some debate about students’
views about the need to prove a conjecture
discovered and tested using the features of DGS
(Furinghetti & Paola, 2003; Harada, Gallou-
Dumiel, & Nohda, 2000; Heid & Blume, 2008).
However, some pieces of research (de Villiers,
1998; de Villiers & Mudaly, n.d.; Hadas,
Hershkowitz, & Schwarz, 2000; Jones, 2000;
Mariotti, 2000, 2001; Sanchez & Sacristan, 2003)
found that students are often motivated to
understand why a conjecture discovered within
a DGS environment is true. Once my students
discover and formulate the final and complete
conjecture for the solution to the airport prob -
lem, some express a need to further understand
why the solution to the problems involves two
cases: Empirical evidence is not only insuf -
ficient proof, but also does not provide enough
insights to deeply understand the plausibility
of a conjecture. 

As students investigate the airport problem,
they are engaged in a plethora of mathematical
practices recommended by the Common Core’s
Standards for Mathematical Practice (CCSSI, 2010,
pp. 6-8), including making sense of problems
and persevering in solving them, constructing
viable arguments and criticizing the reasoning
of others, modeling with mathe matics, using
appropriate tools strategically, and looking for
and making use of structure. 
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Figure 11. The construction of ΔIJK fails for triangles having an 
angle measuring 120.°
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J

K

G I

L
N

M

m∠ABC = 120.02°

Figure 12. A triangle with an angle measuring more than 120.°
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G

I
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M

G

m∠ABC = 148.91°

m∠AGB = 60.00°
m∠BGC = 60.00°
m∠AGC = 120.00°



To start solving the airport problem, students need to
understand its meaning, the given and unknown
information as well as the constraints, which are
components of the act of making sense of problems.
Once they understand the problem they look for entry
points to its solution. As the entry points are
unproductive (using paper and pencil), they turn,
sometimes not spontaneously, to the use of DGS to make
an initial conjecture, which is refined as they continue
looking for confirming and disconfirming evidence.
Because the airport problem is not a straightforward
problem, it provides students opportunities to further
develop the habit of perseverance in solving problems.
It is another example of the power of technology as a
problem-solving resource. 

Solving the airport problem involves gathering empir -
ical evidence using Dynamic Geometry to formulate and
refine a conjecture and then constructing a mathematical
argument to justify it. In the process, students evaluate
the arguments of their peers. As I described above,
students initially proposed that the equiangular point of
the triangle minimizes the sum of the distances to each
of the vertices of any triangle. As students refine their
conjecture, they continue to gather empirical evidence
to support the new conjecture. Once students formulate
the complete conjecture, I provide strategic hints to get
them started in the construction of mathematical proofs
to justify formally their final conjecture. They then
modify and extend the original argument for the case
when a triangle has an angle measuring 120° or more.
During this process students evaluate the arguments
developed by their classmates. They also visualize why
the proof for the first case needs to be modified to justify
the second case. 

The airport problem affords students opportunities to
model with mathematics. That is, they apply the mathe -
matical principles they know (e.g., Viviani’s theorem, the
hypotenuse of a right triangle is longer than any of the
other two sides, etc.,) to solve a problem that may arise
in mathematics or in real life. Students are also able to
analyze and identify the important mathematical fea -
tures of the problem, how they are related, and how they
lead to its solution. 

The airport problem allows students to further
develop their abilities to learn to use appropriate tools
strategically, in this case Dynamic Geometry Software.
Representing the problem with GSP allows us to gain
insight about its solution which, in turn, leads to its
discovery. The use of GSP facilitates the process of

formulating, testing, and refining conjectures in ways
that would be impractical, if not impossible, using only
paper and pencil. 

Lastly, but not least, the airport problem afforded
students opportunities to look for and make use of
structure. After students are provided with a strategic
hint about how to construct ΔIJK and look for the
relevant feature of point L in relationship to ΔIJK, they
make use of this structural feature to use Viviani’s
theorem to further develop and complete the proof. As
they are faced with the case of ∠ABC measuring 120°,
they recognize the significance of reconstructing line
such that ΔIJK is still an equilateral triangle so that
Viviani’s theorem can still be applied to this situation.
As they consider the case when ∠ABC measures more
than 120°, students again make use of structure to
construct ΔIJK using the same initial procedure. 

To conclude, using Dynamic Geometry Software
facili tates the process of finding the unexpected solu -
tions to optimization problems by ourselves. It allows us
to experience the thrill of discovery, as no other teaching
or learning tool does. Paraphrasing Movshovits-Hadar
(1988), solutions to mathematical problems are an
endless source of surprise. Certainly, the airport problem
is not an exception! 
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