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ABSTRACT There are specific topics in college calculus that can be major stumbling blocks for
students. Having taught college calculus for four years to over a thousand students, we observed

that even the students who have already taken pre-calculus or calculus during their high school

careers had common misunderstandings. Students may remember a technique without retaining

the understanding of why it can be applied or what it is accomplishing, essentially only having
knowledge of a rote procedure. Educators can address these areas of difficulty by regularly
utilizing dynamic technologies such as Geometer’s Sketchpad and Desmos in the classroom to
fully illustrate calculus concepts. With these tools, teachers can help their students better
understand how to reason mathematically in calculus.

KEYWORDS college calculus, AP calculus, graphing software, teaching calculus theorems, student

expectations, dynamic, questioning

Introduction

Over half of the students who enroll in a college Calculus
I course have taken calculus in high school (Bressoud,
Carlson, Mesa, & Rasmussen, 2013). Yet despite
familiarity with the material, certain concepts in calculus
elicit common mathematical errors or lapses in
reasoning. During the first semester of teaching college
calculus, there was an assumption on the authors’ part
that students who had taken calculus in high school
would easily grasp the material. After four years of
teaching calculus we realize that even the students
familiar with the concepts still experience common
misunderstandings. We will examine several of these
common calculus stumbling blocks and discuss how
teachers can address these misunderstandings when
presenting the material.

Definition of a Derivative

In our experience, many students view the definition of
the derivative as a rote procedure, and a complicated one
at that. Students often breathe a sigh of relief when the
derivative shortcuts are introduced and wonder why
they even had to learn the formal definition in the first
place. However, not grasping the underlying concept of
a derivative as the limit of a difference quotient can lead
to a lack of understanding of several fundamental con-
cepts in calculus. Students who do not internalize these
concepts may struggle with later material, such as rates
of change.

The tendency to view the formal definition pro-
cedurally is understandable. Students begin working
with function notation as early as middle school when
they define, evaluate, and compare functions (National
Governors Association Center for Best Practices & Council
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of Chief State School Officers [NGA Center & CCSSO)],
2010). As students begin the journey toward calculus, they
first come to understand a function as an input/output
machine. They are given a rule and have to use the rule
to find an answer to a question. Once students reach
algebra 2 and pre-calculus, they begin to see functions as
expressions to be manipulated or simplified (NGA Center
& CCSSO, 2010); indeed many pre-calculus students
manipulate a difference quotient at some point as they
learn more advanced factoring and expansion techniques.

In contrast, calculus is dynamic; behavior is not only
examined at a specific and static point, but as a certain
point is approached, or as the distance between two
points approaches zero. This can be challenging, since
“students frequently treat variables as symbols to be
manipulated rather than as quantities to be related”
(White & Mitchlemore, 1996, p. 91). Making this leap in
understanding is essential; virtual graphing software can
help students see the bigger picture (National Council
of Teachers of Mathematics [NCTM], 2014). The Desmos
software’s slider capabilities are helpful in presenting
calculus and mathematics more dynamically to students
and in ways that would be difficult with just a chalk-
board.

In Figure 1, a parabola and its difference quotient
function are graphed on the same screen. The student
first creates a line by choosing the desired point of
tangency and a second point some distance (h) away. By
then dragging the second point closer to the point of
tangency, and seeing the effect it has on the behavior of

the secant line, the student gains an insight about
relationship between limits and derivatives. The student
also gets a feel for what the parameter “i” does by
moving the second point closer and closer to the point
of tangency.

As students explore with sliders, teachers can en-
courage mathematical discourse by asking guiding
questions such as “What happens as I approaches zero?
What happens when & is exactly zero?” (NCTM, 2014).
These questions help students understand the important
relationship between secants, limits, and the tangent
line. Ideally this conceptual understanding will result in
a procedural fluency that the students retain even when
the visual representation is no longer available.

Even when a visual representation is available, teachers
and students must use graphing software with caution.
Graphing software may not clearly indicate asymptotes
or holes the way students are accustomed to seeing in
their textbooks. To that end, both teachers and students
are encouraged to not use graphing software exclusively,
but to augment the visual representation with both
tables and algebraic analysis of functions. This will give
a true picture of the domain.

Utilizing Theorems

Students are first formally introduced to theorems and
proofs in their high school geometry class (CCSSO,
2010), and initially may see them as routine exercises.
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Figure 1. Desmos Software graphing a function and its difference quotient
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These types of exercises can sometimes lack the visual,
dynamic, and active representations of functions that
students need to embrace in a calculus course. In
addition, in a calculus course students are required to
critically analyze and check the assumptions and given
information before applying a theorem or executing a
proof. After working through a series of logical steps,
students then also have to interpret their results in the
context of the problem. This new, added workload makes
applying theorems and executing proofs difficult for
some first-semester calculus students. Specific examples
are discussed along with strategies for improving
understanding.

Intermediate Value Theorem

The Intermediate Value Theorem is a beautiful existence
theorem that is introduced at the high school level in pre-
calculus or calculus. However, we have found that
students can find it challenging because questions
invoking the theorem require students to understand and
prove why a root must exist given certain conditions.

Students have spent significant portions of their
mathematical lives finding the exact root(s) of a function
using algebraic methods or the graphing calculator. The
Common Core State Standards for High School Algebra
place a heavy emphasis on solving equations as a
process of reasoning (CCSSO, 2010); many students
enter college well-equipped to solve various types of
equations in their mathematics courses. We have found
that many students feel uncomfortable stopping at
stating that a root exists for a given function on an
interval. The exercise may seem pointless to them
without having a specific value at the end of the problem
they can point to. Understanding why it is useful to
merely identify if there exists a root can help students
gain confidence in utilizing this theorem.

The Intermediate Value Theorem also sometimes gets
applied blindly by students who do not first check for
continuity. It is possible that they simply assume that
during the “Intermediate Value Theorem section” of the
course, the functions they are asked to work with must
be continuous or the Intermediate Value Theorem could
not be applied. Yet thinking about the curriculum in this
compartmentalized fashion can be problematic, and it is
necessary to become accustomed to rigorously checking
that all the conditions are being met before utilizing a
theorem.

This mindset can have implications far beyond a
mathematics classroom and extends to real-world
mathematics and STEM projects, whereas a simple
oversight can have serious consequences. A project
could be assigned for each student to research and
present real-world examples where assumptions were
made that ultimately did not hold, and what the
repercussions were. This emphasizes the importance of
checking all assumptions, and provides the students
with an opportunity to explore an issue in their area of
interest.

As an example, consider the space shuttle Challenger,
which exploded after take-off and killed all seven crew
members. A review found that no one involved in
making the final decision to launch in the cold weather
had data on how the O-rings would perform at such low
temperatures (Vaughan, 1990). This is a stark example
that a teacher could provide to illustrate the importance
of checking that all conditions are met.

Some students may not check for continuity because
they do not know how to determine if a function is
continuous without graphing it. Other students may not
realize the need to ensure that the function is continuous,
which points to a lack of understanding of the theorem
itself. A non-continuous function could meet all of the
other requirements showing the existence of a root,
when a root in fact does not exist. A student who cannot
explain why a function needs to be continuous often
benefits from seeing a graph of this case.

For example, a college calculus exam problem involv-
ing the Intermediate Value Theorem could state:
“Determine if ¥x = x>~ 1 has a solution on the interval
[-%,%2].” Students who do not carefully examine the
continuity of the related function f(x) ="x - x*+ 1 can in-
correctly conclude that since f(—%2)< 0 and f('5) >0 then
f(x) =Yx—x>+1 must have a root on the prescribed inter-
val. Graphing software tells a different story (Figure 2).

Our students are usually surprised to realize their
conclusion was wrong when they see the presence of a
vertical asymptote; the function never crosses the x axis
on the given interval [-15,%].

Problems such as these often pose the greatest
challenge for students, especially on examinations. Pro-
jecting the graph and carefully questioning students
while reviewing the problem can help students
understand the danger of blindly applying theorems.
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Figure 2. Desmos Software graphing a discontinuous function

Mean Value Theorem

Often the Mean Value Theorem is introduced as the
location on the function where the tangent line would
be parallel to the secant line segment. Indeed, the
Advanced Placement Calculus curriculum specifically
stresses that students must understand the geometric
consequences of the Mean Value Theorem (College
Board, 2012). Dynamic software such as Geometer’s
Sketchpad allows teachers and students alike to visu-
alize this; students enjoy being able to physically drag
the tangent line to a location where it would be parallel
to the secant segment.

Once students have this understanding, the dis-
cussion can evolve into how the Mean Value Theorem
identifies when the average rate of change of a function
is equal to its instantaneous rate of change. The difficulty
arises when students have to algebraically find the value
of c to satisfy the conclusion of the Mean Value Theorem.
Students often stop a step short by setting f'(c) equal to
the slope of the secant line segment and calculating the
slope of the secant line segment. Yet this will only tell the
student what the slope of the tangent line needs to be; a
student stopping at this step has not determined where
on the function this will happen.

Failure to complete the process points to confusion as
to what exactly is being determined when the Mean
Value Theorem is applied, and what the value of c really
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represents. Linking the algebraic work back to the graph
in Figure 3 is a way to remedy this type of misunder-
standing. Having to move the tangent line to find a loca-
tion where the slope is equal to the slope of the secant
line emphasizes that students are finding exact
coordinates, specifically the location where the tangent
line and secant line are parallel.

In addition, we have seen that many students often
forget to check the differentiability and continuity
requirements. Again, visualizing certain functions that
do not meet these requirements—yet would (falsely)
allow a student to solve for a value of ¢ that actually does
not produce a tangent line parallel to a secant line
segment—is beneficial. Consider the function f(x) = x*
on the interval [-1, 1] in figure 4.

Without examining the graph and its non-differ-
entiability at x=0, students can potentially set up a
calculation and arrive at an answer that does not make
any sense.

Finally, students tend to also have difficulty distin-
guishing between the hypotheses and conclusions of the
Intermediate Value Theorem and Mean Value Theorem.
The Scoring Commentary from the 2013 AP Calculus AB
examination revealed that given an applied situation
about rates, the most common (incorrect) answer was the
Intermediate Value Theorem, instead of the Mean Value
Theorem (College Board, 2013b).
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Figure 3. Geometer’s Sketchpad Software visualizing a function’s tangent and secant lines
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Figure 4. Desmos Graphing Software graphing a function with a cusp
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Question 3
t
(minutes) | O 1 2 | 8] 4 5 | 6
ct)
(ounces) 0 53] 88 [11.2/12.8]13.8|14.5

Hot water is dripping through a coffeemaker, filling a large
cup with coffee. The amount of coffee in the cup at time ¢,
0 <t< 6, is given by a differentiable function C, where t is
measured in minutes. Selected values of C(t), measured in
ounces, are given in the table above.

(@) Use the data in the table to approximate C'(3.5). Show
the computations that lead to your answer, and indicate
units of measure.

(b) Is there atime t, 2 <t <4, at which C'(t) =27 Justify
your answer.

Figure 5. AP Calculus AB Question #3 on 2013 exam
(College Board, 2013a)

Given the similar hypotheses of both the Intermediate
Value and Mean Value Theorems, many students saw
part (b) of the question in figure 5 as an opportunity to
apply the Intermediate Value Theorem. Since students
had to provide an estimate for C’(3.5) in part (a), it
seemed only natural to do the same for part (b) by
thinking of the Intermediate Value Theorem in reverse.
Once again, a deeper knowledge of the hypotheses of the
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theorems would help a student realize that differen-
tiability is associated with the Mean Value Theorem, not
the Intermediate Value Theorem. For this reason it is
helpful when teaching the Mean Value Theorem to take
some extra time to compare and contrast it to the Inter-
mediate Value Theorem.

L’Hopital’s Rule

Another very powerful theorem in calculus is I'Hopital’s
Rule; when this topic is initially taught, often virtual
graphing software is used to illustrate the need for the
rule. At this time, teachers revisit the idea of a “hole” or
discontinuity and tie it into the new concept of an inde-
terminate form.

It is important to note that holes are not always
properly represented with graphing software, since these
devices plot discrete points. Functions with holes may
initially appear to be continuous when in fact they are
not. This is also an opportunity to discuss the importance
of not over-relying on technology, but using it as a tool
to augment other approaches. When a particular device
lacks the capability to initially illustrate a hole, the points
where a discontinuity may occur can be determined
algebraically. The Desmos software, as shown below,
then allows the user to “click” on a suspected hole to
reveal its coordinates. Consider the problem, 1111101 sinx as
shown in figure 6.

Once the need for I'Hopital’s Rule has been shown,
our students are typically excited to learn that they

Figure 6. Desmos Software graphing a function with a hole.
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can skip a messy geometric proof and simply take the
limit of the derivative of the numerator over the
derivative of the denominator to determine the value of
the limit. The ease of the shortcut sticks with students
and unfortunately may cause them to blindly apply
I'Hopital’s Rule without checking for an indeterminate
form.

Forgetting to check for an indeterminate form can
In the

beginning of a calculus course, many students learn

sinx

have consequences. Take for example 1}2;)1 .

ways to algebraically manipulate limits like this by using
multiplication and trigonometric identities. We have
seen that once the semester progresses, students may
instead go straight to using I'Hopital’s Rule, and obtain
a completely incorrect answer since the function did not
have an indeterminate form.

It is worth noting that 'Hopital’s Rule is not on the
list of Advanced Placement (AP) topics and does not
appear on the AP test. Because of this, some students
will come out of high school calculus having never
learned it. If they go into college calculus confident that
they have seen all of the material before, they may be
surprised to discover this portion of the course will not
be a review for them, but will be new —and important—
material.

Y arctanx

Curve Sketching
While curve sketching is a relatively straightforward
practice to grasp, the reality is that even the strongest
students can struggle with it, though the building blocks
are familiar (Baker, Cooley, & Trigueros, 2000). Students
entering calculus have worked with the domain, range,
intercepts, and asymptotes of a function many times
before. In calculus, the connection is made between the
concept of a limit as x approaches infinity and a
horizontal asymptote; the limit is identifying the long-
term behavior of the function. Yet when students are
asked to determine the horizontal asymptote, in our
experience they often revert back to prescribed rules
about degrees and leading coefficients; we find that they
are not as comfortable using a limit argument. This may
point to a lack of understanding about what exactly a
horizontal asymptote is showing, and why a function
may cross a horizontal asymptote. These minor con-
fusions can cause trouble when sketching the function.
Curve sketching also requires students to determine
where the function is increasing or decreasing. While
mathematically this is not difficult, our students some-
times mistakenly believe that a function’s graph cannot
only increase or only decrease, but must exhibit both
behaviors. Illustrating a monotonic function such as
f(x) = arctan(x), can be illuminating (figure 7).

Create Account

Figure 7. Desmos Software graphing a monotonic function.

USING DYNAMIC SOFTWARE TO ADDRESS COMMON COLLEGE CALCULUS STUMBLING BLOCKS



36

When learning how to identify where a function is
increasing or decreasing, it is also worth examining the
behavior of a function with vertical asymptotes. This
provides the opportunity to discuss the need to conduct
a sign analysis on every interval. Students may try to
conduct a sign analysis on only one interval, then
assume the behavior changes on the next interval —if it
was increasing, it must then switch to decreasing. Of
course this assumption cannot be made; a sign analysis
must be done for each interval to accurately determine
the behavior of the graph, as the function f(x) =5
illustrates (figure 8).

The function in figure 8 also addresses another com-
mon error we have observed; students can carry out
correct supporting work, yet doubt the results when
they determine the derivative has the same sign on each
interval. If they do not realize this behavior of decreasing
on every interval, or increasing on every interval, is pos-
sible, they may think their own work is incorrect. This
same issue can also arise when determining where a
function is concave up and where it is concave down. By
becoming familiar with functions that exhibit these
behaviors, students can have the confidence to accurately
sketch the graph based on their work.

Conclusion

Teaching calculus is very rewarding, as it is an oppor-
tunity for educators to excite students about mathe-
matics and address common stumbling blocks that even
the strongest students may experience. Technology can
be a useful tool to demonstrate the more dynamic
aspects of calculus that would be difficult to illustrate on
a chalkboard. By employing a visual approach that
includes dynamic software, students can make connec-
tions between the behavior of the function they are
examining and the supporting algebraic work they have
been carrying out. Constantly linking concepts with
graphs as well as procedures, tables, and pointed ques-
tions can provide students with the big picture of
calculus, as well as an appreciation for all of the sub-
tleties that go along with it. This type of background
knowledge is essential for students as they continue
taking courses that utilize calculus concepts.
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Figure 8. Desmos Software graphing a function decreasing on every continuous interval.
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