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This paper reviews the challenges that higher-level skills present to assessment designers. The discussion is illustrated by 
exemplar tasks from two Shell Centre projects that emphasize modeling. From the various roles that assessment plays, 
the analysis starts with summative assessment, describing the multi-dimensional nature of task difficulty involving 
unfamiliarity, complexity and the degrees of autonomy expected of the student, as well as the technical demand. It 
distinguishes expert, apprentice, and novice tasks through the lengths of the chains of reasoning they involve and the 
expertise in mathematical practices they demand. An outline of the design principles for formative assessment that 
enhances learning includes some “do’s” and “don’ts,” leading to a look at future prospects and the strengths and 
limitations of computer-based assessment.

Keywords: Assessment; tasks; modeling; summative; formative; difficulty; computer-based

Introduction and Background

First, it’s a great pleasure to be here, taking part in this tribute to Henry—a long-time friend and co-conspirator 
in moving forward the learning of modeling skills in K–12 education. The structure of this talk is: first some 
background, then some task exemplars, something on the roles of assessment, on summative and formative assessment 
and, finally, future prospects. As ever, I will use examples to clarify what I mean. Language tends to be interpreted 
within the reader’s experience; examples make this more difficult. You will find a considerable overlap with Alan’s 
talk (see page 13) because, although he’s an insight-focused researcher and I’m an educational engineer, we have 
somehow managed to work together constructively since 1982. That, too, was Henry’s doing—he persuaded the 
International Program Committee for the Adelaide ICME that we should lead the Problem Solving Theme. The 
quote was “Hugh and Alan deserve each other.” We have to acknowledge the justice of that—who else would tolerate 
either of us for long? Because it’s not really possible to understand things in detail in talks, you’ll find this one will 
go at my usual warp speed. I want to cover a lot of ground, giving you a kaleidoscopic series of impressions and 
hoping you may find something useful among them.

Now the background. Henry and I have quite a lot of history in common. We both came to math education 
as mathematician-modelers, Henry from a distinguished position at Bell Labs and me as a theoretical physicist. 
We were early explorers of teaching modeling. I taught my first modeling course in 1963. Of course, like Monsieur 
Jourdain in the Molière play who was surprised to discover he’d been speaking prose all his life, most people have 
always done some modeling—but to be aware of it and to talk about teaching it is something else. And, well, Henry 
and I have been doing that ever since—fifty years of modeling, with some real progress but an awful lot still to do 
until it becomes a way of thinking for everybody.

We at the Shell Center are educational engineers; our aim is to find ways to help people who want to teach 
math better. For this to be scalable, things must be reproducible, namely materials. Now we all know that materials 
on their own aren’t enough, but good tools can enable people to do things better, whether in the classroom, in 
professional development, or in assessment.

Override (Hidden running head text):
Burkhardt
Assessing Modeling
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Assessment Tasks for Modeling

The examples I shall use come mainly from Shell Center projects on modeling, along with the assessment they 
involved. I shall concentrate on two projects that are modeling focused. Numeracy Through Problem Solving (Shell 
Center, 1987–89) was perhaps our greatest modeling project. It is materials-directed modeling, based on three-week 
modules with real outcomes. There are 5 modules: Design a Board Game, Produce a Quiz Show,1 Plan a Trip, Be a 
Paper Engineer,2 and Be a Shrewd Chooser about consumer decision-making. In each module the students work in 
small groups through four stages.

 t Exploring the domain: This is done mainly through examples we provide, all with faults3 that the students 
identify.

 t Generating ideas: The brainstorming phase, where each group develops its ideas.
 t Refining the plan: This thing is going to happen and be judged, so detailed and careful planning and carrying 

through is essential.
 t Evaluating the outcome: The students evaluate the products of the various groups.

Their work is directed by a “Student Guide,” which is designed to present open challenges but to ensure, through 
checklists later in the Guide, that no essential step is left out—for example, the parent permission letter in Plan a 
Trip, or testing the questions in Quiz Show for fairness. The modules had real outcomes. The trips actually took 
place out of school, and the kids evaluated them. The board games were made as well as designed and they were 
played by the class, which evaluated each of them. Similarly with the “TV shows,” which were great—though, 
happening in real time, this was the most challenging 
module for teachers to manage.

The assessment was of two kinds. In the course of 
the modules, there are assessment tasks that enable the 
teacher to check that all the students really understand, 
and are involved in, what is going on in their group. 
Figure 1 is an example from stage one of Design a Board 
Game, where students are learning about game design 
by finding faults in games we provided. Two of you play 
against each other. Your counters are on Start. You flip 
a coin. If you get heads, you move one square; if you 
get tails, you move two squares. What’s wrong with this 
design?

Notice that there are some easy faults to find 
and some subtle ones—an example of the “ramp” of 
challenge that we aim to design into assessment tasks, 
so that all students can show what they can do at their 
own level. What we were trying to do was to see their 
ability to reason logically, which is very important in 
game design.

In addition to this “basic level” assessment, we had 
exams on these projects at the end of the course. There 
were two exams, at “standard” and “extension” levels, 
set by the exam board. This had a great advantage. All 
the kids had worked through the modules, so you knew 
that they had the background necessary, and you could 

1 British for a TV game show, with contestants, questions and scores.
2 Paper Engineer is about the design of pop-up cards and boxes. In it, students show geometrical reasoning at a much higher level than 
in an imitative geometry course.
3 Faults are crucial. Commercial products, board games for example, are all highly refined so students can never match them. An 
unexpected spin-off was the students’ delight at getting things with stupid errors from the examination board!

Coin Chutes and Ladders

Figure 1.
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see how far they could generalize what they had learned—an example of assessing problem solving with a controlled 
“transfer distance.”4

Figure 2 is an interesting voting systems problem from Plan a Trip. Choosing where to go for the class trip 
turned out, rather to our surprise, to be an important part of the work. Kids felt strongly and yet had to arrive at 
a class consensus on where to go, which demanded well-designed activities.

This task enables me to pay tribute to one of the great creations of modeling teaching and learning in the last 
fifty years, namely For All Practical Purposes from Sol Garfunkel and COMAP (I think, Henry was involved, too). If 
you don’t know that book, then you certainly should. In it, there’s an example, if I’ve got it right, of five candidates, 
five voters and five voting systems, each of which gives a different winner on the same data. That’s clever.

Design a Tent (Figure 3) shows a rather old-fashioned tent. (This is a thirty-year old task.) I chose it to illustrate 
the challenge of designing a task that is open enough to be valid modeling, yet with sufficient guidance so that 
students do not go in too wildly different directions—important if you want to score responses reliably. Figure 3 gives 
the open version. If you set a problem as open as that, in what is supposed to be a fifteen-minute task in an exam, 
the kids get lost. So the version we actually used gave a little more scaffolding:

Your task is to design this tent, drawing patterns for materials. 
The constraints are:

 t Big enough for two adults and baggage
 t Big enough to move around kneeling
 t Bottom a rectangle of plastic
 t Sides and the two ends will be made from a single sheet of canvas
 t Two vertical tent poles

The next example involves reasoning from data. It is based in a piece of software that, first, collects 100 reaction 
times from two “contestants,” Joe and Maria (the teacher and a student works well), then enables the user to present 
the data in a variety of displays or summary statistics. The students’ task is to use this same data to construct two 
arguments: (1) that Joe is quicker than Maria, and (2) that Maria is quicker than Joe.
This builds understanding of how data is used in politics and marketing—and thus intelligent scepticism about 
conclusions. This is an extraordinarily important insight in an era where our politicians, and even our businesses, 
try to avoid the “lie direct,” but by careful selection and presentation of data, can make entirely opposite cases. The 
students also learn about the strengths and weaknesses of various ways of presenting data. Notably how summary 
measures (mean, median, mode, etc.) are far less informative than distributions of various kinds—throwing away 
most of the information, they are a relic from the days before computers. One distribution is particularly good for 
giving insight. You rank order each set of reaction times, then make a scatterplot of corresponding pairs. Differences 
show up in the position, slope, and curvature of the graph. [Officially the percentile-percentile plot, there must be 
better name; we call it the Gilbert diagram after the software designer’s cat.]

My final example (Figure 4) in this brief tour d’horizon of assessment tasks that involve modeling is from our 
current Mathematics Assessment Project, which Alan has already introduced to you. Of course, this is a linear 
programming problem, but these students haven’t been taught that technique. So for them it’s a non-routine 
modeling problem (though it’s already been “cleaned up” somewhat—you’re given just the necessary information).

This leads me to an important distinction, shown in Figure 5.5 Illustrative applications are, or should be, 
associated with every new mathematical topic—the focus is on the topic and you see various places it can be applied. 
That’s very important for linking your mathematics to the real world, but it’s not modeling; it’s learning about 
models. In active modeling the situation is the focus. You have to decide which elements of your mathematical tool 
kit can be useful in tackling and understanding the situation, and then to find an effective way of using them in 
solving the problem. Autonomy of the solver is the essence.

4 Transfer distance is a technical term representing how different two problems are.
5 Thanks are due to Malcolm Swan, the Shell Center’s lead designer and director, for this and so much else.
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Plan a Trip: Voting
Six people are planning a day out.
Six different places have been suggested: Ice rink, Bowling alley, 
Swimming pool, Zoo, Castle, and Snooker hall. 
They take a vote. 
Which would be the best place for the trip and why?

Figure 2.

Design a Tent

Your task is to design this tent, drawing 
patterns for materials.

 

Figure 3.

Making Soft Toys

How many of each should they make to maximise profit?

Figure 4.
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Roles of Assessment

To get an overview of what I have covered so far, let’s summarize the range and variety of modeling task types 
that could, and should, be included in the curriculum. They include (with examples) the following.

 t Planning (Making Soft Toys)
 t Design (Design a Tent)
 t Evaluate and recommend (Reaction Times)
 t Critique and improve (Coin Shoots and Ladders)
 t Investigate (Voting methods)

I want to make a very important point that is too often ignored in assessment design: people can only autonomously 
use math they have thoroughly understood and connected—that does not normally include math they have just 
learned.6 For students, there is a few year gap between the math they can do in an imitative exercise and the math 
they can call on when faced with a non-routine problem, whether in pure maths or modeling.

Now let us look at assessment more broadly. Of course, assessment tasks are much more than measurement 
tools. They are a compact way to show the performance goals of the curriculum. This is particularly true for high-
stakes tests where, in most classrooms, What You Test Is What You Get (WYTIWYG). Teachers get criticised for 
“teaching to the test,” but that is the main way our society judges them—their “bottom line.”

Why do we assess? Well, there are various reasons, notably:

1. Summative assessment is for reporting. Its purposes are: to celebrate achievement; to reward effort and 
success; to select learners for groups, courses, or careers; to maintain records so that teachers, administrators, 
and parents can be informed of progress.

2. Formative assessment is assessment for learning. Its purposes are: to diagnose difficulties and so inform 
teaching; to motivate learners by showing them what they still need to learn. Formative assessment should 
be a week-by-week activity.7

6 Unless you are a professional mathematician; they learn to use math they don’t even know—but they know the method exists, and 
where to find it.
7 Having frequent tests is better called periodic assessment; it is not formative assessment unless it leads to specific modifications of 
teaching in the light of what students show.

 

Figure 5.
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3. Evaluative assessment for research. Its purposes are: to assess teaching methods to see how they work in 
various circumstances; to gain further insight into teaching and learning; to develop tools and processes that 
enable teachers to work more effectively.

I’ll say something about each of the first two, before going into each in more detail. Formative assessment needs 
rich detailed feedback. You want as much as you can, provided it’s really informative, in a form that will motivate 
learners. The “give no scores” point surprised me very much, but the research is clear: If you give students scores, 
they don’t pay heed to anything else. Interviews with kids said the same thing. For much summative assessment 
you only need one reliable number—for accountability purposes, nobody cares what it measures. This is clear 
because they’ve been giving “math tests” that, whatever they assess, don’t assess mathematics. They assess some 
tiny fragments of mathematics that are easy to assess. Alan’s told the ongoing story of that. One reliable number 
per student is plenty—often “they” only want one number per class (so they can sack the teacher) or per school (to 
justify “special measures”).

Summative Assessment

The Common Core State Standards for Mathematics set out learning goals that represent both higher standards 
and greater challenges. Modeling is explicitly featured for the first time, and in two ways: as a mathematical practice 
at all grades and as a content label in high school. I like the authors’ summary of what doing mathematics well 
involves:

Proficient students expect mathematics to make sense. They take an active stance in solving mathematical 
problems. When faced with a non-routine problem, they have the courage to plunge in and try something, 
and they have the procedural and conceptual tools to carry through. They are experimenters and inventors, 
and can adapt known strategies to new problems. They think strategically. (Common Core State Standards 
Initiative, 2010, p. 4)

How far do our current tests assess this? Not far. So what should be done? The two assessment consortia, SBAC 
and PARCC, have built test specifications using a psychometric model based on “claims” and “evidence.” Alan and 
I wrote the first draft “content specification” for Smarter Balanced (SBAC), the essentials of which have survived 
in the final version. Briefly, the four claims are:

 t Concepts & Procedures: “Students can explain and apply mathematical concepts and interpret and carry out 
mathematical procedures with precision and fluency.”

 t Problem Solving: “Students can solve a range of complex well-posed problems in pure and applied mathematics, 
making productive use of knowledge and problem solving strategies.”

 t Communicating Reasoning: “Students can clearly and precisely construct viable arguments to support their 
own reasoning and to critique the reasoning of others.”

 t Modeling and Data Analysis: “Students can analyze complex, real-world scenarios and can construct and use 
mathematical models to interpret and solve problems.”

These are admirable performance goals (PARCC’s are similar but less specific). Though they are well outside US 
assessment practice, good international examples of assessment from around the world show that, and how, they 
can be assessed in practice.

Since high stakes assessment is much more than “just measurement,” exemplifying performance goals for most 
teachers, taking the standards seriously implies designing tests that meet them—“tests worth teaching to” that 
enable all students to show what they can do across the range of performances that the standards imply. This we 
call balanced assessment. It is defined through two strategic design principles.

 t Curriculum balance: Design so that teachers who “teach to the test” will be led to deliver a curriculum that 
is balanced across learning goals.

 t Curriculum value: Design test tasks that are valuable learning activities. People say, “Oh, we can’t afford 
more than forty minutes. Learning time is so valuable.” In most classrooms, the time they spend sitting for 
balanced examinations built from rich tasks will be one of the most valuable learning activities—tests should 
be designed so that is so.
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Balanced Assessment for the Mathematics Curriculum was the first funded project that Alan and I, in 1992, got 
together for—and the work has been ongoing ever since in various forms.

Alan has already been nearly rude enough about psychometrics, but I would like to throw in my two pennies 
on the effect on test design. The standard psychometric view of “measurement theory” is too narrow, with an 
overwhelming focus on statistical error. In most scientific fields, two kinds of error are recognized: systematic error 
and statistical error. The accuracy of a measurement is determined by compounding these, not by choosing the 
smaller. In educational assessment, systematic error is not included. It consists in not assessing what you are really 
interested in, for example by focusing on what is easy to assess. Systematic error is not easy to quantify, so it is 
absorbed into the various uses of validity. The test of a test’s value remains simple. In order of priority:

1. Validity: Is this a test worth teaching to?
2. Reliability: Can it provide one reasonably reliable score for each student?

But let’s get back to design.

Summative Assessment—Design Challenges

Balanced assessment requires higher-level design skills than traditional testing—in everything but statistics. So 
how do you develop rich tests? First one must design tasks that involve good mathematics—thinking and reasoning 
and problem solving, using concepts and skills—along with rubrics that give appropriate credit. Then you observe 
students working on the tasks, talking with them, to find out the following.

 t Did they understand the task as we intended?
 t Were there unintended obstacles?
 t Had we covered all reasonable approaches in the rubric?
 t Did it enable students really to show what they can do?

Using this feedback, you revise the tasks and rubrics, iterating the process until the task works well. It’s more like 
developing curriculum than short test items. (MAP 2012) gives many examples of rich tasks.

This brings me to another important fact that is often ignored in assessment design. The difficulty of a task 
depends on various factors. It makes a task more difficult if you increase the:

 t complexity, by adding variables or more complex data, for example;
 t unfamiliarity, a task that looks different from those you have solved before;
 t technical demand, requiring higher-level math or longer chains of reasoning; and
 t autonomy, what is expected of the student—with less guidance from the prompt or the teacher.

So while students may be expected to do a routine imitative exercise that tests recently learned “up to grade” 
math, they will not be able to use that math in a complex non-routine task that they are expected to solve without 
help. Again, this is because autonomous problem solving requires techniques to be thoroughly understood and well-
connected—to standard applications and to other parts of mathematics. This takes a few years, even in classrooms 
that have moved beyond a “sequence of separate topics” approach to mathematics.

In light of all this, we have found it useful to distinguish tasks in a way that represents different emphasis on 
the mathematical practices.

 t Expert Tasks: Rich tasks in a form they might naturally arise—in the real world or in pure mathematics 
(rather like writing extended passages in ELA). These are likely to fully involve the mathematical practices 
and all four aspects of difficulty, so they must not be too technically demanding. They assess the mathematics 
you will take out of the math classroom into the world beyond.

 t Apprentice Tasks: Rich tasks but with scaffolding, structured so that students are guided through a “ramp” 
of increasing challenges. These involve the mathematical practices at a modest level, with less student 
autonomy.

 t Novice Tasks: Short items, each focused on a specific concept or skill that has been learned (like spelling 
or grammar items in ELA). These present only technical demand, so this can be “up to grade,” including 
concepts and skills just taught. They hardly involve the mathematical practices.

I chose these names because novices are learning the tricks of the trade. Experts solve problems as they arise. 
Apprentices do so under expert guidance. I’ll illustrate these three types. The two novice tasks in Figure 6 are better 
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than the average short item; they require a little thought—though elimination, which is not much used in really 
doing mathematics, remains the obvious strategy.

Short items are well understood. Now to where innovation is needed in US tests.

Expert Tasks

First, some expert task examples. Airplane turnaround (Figure 7) time gives the set of jobs they need to do 
on an airplane after it lands and before it takes off; how quickly could this be accomplished? To begin with, the 
students just add the times up. Then you give them a little bit more time. You ask, “Well, is that really the best 
you could do?” and some bright spark might say, “Well, while the passengers are getting out of the cabin and off 
the plane, could we unload the baggage?” And so on. Of course, this is a critical path analysis task in an informal 
problem solving form.

This task (Figure 8) involves
 t formulating the problem mathematically,
 t understanding exponential growth, and
 t knowing it can’t go on forever, and why.

Now you may be able to think of some fairly recent examples of people who have not understood that exponential 
growth can’t go on forever. And some of them are in jail for a thousand years because of that. But anyway, it’s a 
golden principle of exponential growth. The important thing is not just the growth rate. It’s how it’s going to crash. 
That’s deep modeling understanding.

People talk about the difficulty of scoring complex tasks. Figure 9 is the scoring rubric for the Ponzi task. What 
we do with scoring rubrics is that we identify the core elements of performance. The total, by the way, is determined 
by how long the task should take. We find that a point per minute is about the right balance between giving points 

 

Figure 6.
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for different aspects of performance and having to make too-fine decisions. So part one gets three points, with partial 
credit if you get part of the way there. Notice seven of the ten points are not given for arithmetic but for modeling 
issues.

Proportional reasoning is at the heart of elementary modeling. The next task (Figure 10) looks like a very 
standard “three-number proportion” calculation. But the task for the students is different.

Asking students to critique other student responses is a design technique we find very powerful in various 
ways. Abdul, he’s the good guy and explains his reasoning. The students’ task is to explain the others’ reasoning. 
Writing the units in helps. One of the great things in the Common Core State Standards is that Quantity, and 
thus continuous variables, is in from the very beginning, running parallel with counting variables: Number. I’ll do 
Dorothy. Five over four; that was five dollars for four pounds, so that’s dollars per pound. She uses something called 
the unitary method. How much for one pound? And then you multiply by the number of pounds. Now many teachers 
teach that as the method. In contrast, Stef first calculates a scaling factor from the weights, , then scales up the cost 
by that factor. All proportion problems are scaling problems—in some places they teach that approach, sometimes 

Airplane Turnaround
How quickly could they do it?

 

Figure 7.

Ponzi Pyramid Schemes
Max has just received this email

From: A. Crook 

To: B. Careful

Do you want to get rich quick? 

Just follow the instructions carefully below 

and you may never need to work again:

1. Below there are 8 names and addresses. Send $5 to the name at the top of  this list.

2. Delete that name and add your own name andaddress at the bottom of  the list.

3. Send this email to 5 new friends.

��If  that process goes as planned, how much money would be sent to Max?

��:KDW�FRXOG�SRVVLEO\�JR�ZURQJ"�([SODLQ�\RXU�DQVZHU�FOHDUO\��
��:K\�GR�WKH\�PDNH�3RQ]L�VFKHPHV�OLNH�WKLV�LOOHJDO"

Figure 8.
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as a purely operational thing. The answer has one unit—dollars in this case. Of the three numbers you’re given, one 
has the same units as the answer, and the other two have the same units as each other. So it’s a scaling problem, 
and you just take the ratio of the last two and all you have to decide is whether it gets bigger or smaller. How about 
Tim? Put in the units and you’ll see that each side is the cost per pound expressed as ratios. Tim says (or rather 
doesn’t, but he should) that the ratios will be equal. Now I would say, and I’m not sure how well you score on this, 
that you only understand this form of proportional reasoning if you understand all those methods of thinking about 
it, that they will give the same answer, and why. Of course, the reason why they’re equivalent is that they are just 
rearrangements of the same mathematics.

One of the reasons why students find proportional reasoning harder than they should is that the modeling aspect 
is suppressed. Consider these three tasks.

 t Joe buys a six-pack of coke for $3 to share among his friends. How much should he charge for each bottle?
 t If it takes 40 minutes to bake 5 potatoes in the oven, how long will it take to bake one potato?
 t If King Henry VIII had 6 wives, how many wives had King Henry IV?

So, fifty cents, okay, that’s “two-number proportion”; everybody can do that. Now if it takes forty minutes to bake 
five potatoes in the oven, how long will it take to bake one potato? Certainly, there are a number of students who 
will divide 40 five by 5. Is that wrong? Yes—unless it’s a microwave oven. It’s a modeling problem. And my favorite 
example: If King Henry VIII had six wives, how many wives had King Henry IV? (Laughs). Sometimes, there is no 
model—just facts, 2 (not 3) in this case, and with less drama.

But seriously, in the proportion units in every math textbook I know, all the problems will be proportion 
problems, which completely eliminates the modeling challenge that is otherwise clear in tasks like Traffic Jam 
(Figure 11). Notice that the rubric in Figure 12 again gives credit for the main modeling demands. Finally, for 
amusement, Figure 13: which sport might be represented by that speed-time graph? (another Malcolm Swan task, 
from 1984).

 

Figure 9.
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Proportion—four ways

In the grocery store
4 lb of tomatoes costs $5.
How much will 7 lb cost?

Look at the four student responses below.
Abdul, Dorothy, Stef and Tim work out the correct answer in four 
different ways. Abdul explains his method, but the others don’t.
Write in explanations, and units, that justify their work.

Figure 10.
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Traffic Jam

12 miles long on a
two-lane freeway

How many cars?

2-second reaction time
How long to clear?

Figure 11.

Figure 12.
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Apprentice Tasks

Apprentice tasks are like climbing a mountain with a guide—an important transition to build expertise so you 
can climb without a guide. Since they take space, I’ll show just one. The core task, finding and using a general rule, 
comes only at the end—the top of the ramp of challenge. The design of apprentice tasks involves guiding students 
through a ramp of challenge. “Patchwork” (Figures 14 and 15) does this by giving

 t multiple examples that ease understanding;
 t specific numerical cases to explore—by counting; and
 t a helpful representation—the table.

Only then, does it
 t ask for a generalization—rule, formula; and
 t present an inverse problem.

Apprentice tasks assess growing expertise but, given the guidance, make only modest demands on the mathematical 
practices.

Computer-Based Testing

Computer-based testing is very much in fashion, promising cheap assessment under controlled conditions. 
Computers have great strengths and great weaknesses (see ISDDE 2012, Section 4). The following different phases 
of testing show both.

 t Are computers good at the effective handling of the testing processes? They’re brilliant.
 t Do they provide better ways of presenting tasks? They can. You don’t have to just use words, you could 

actually have animations and so on and so forth.
 t Do they provide a natural medium for students to work on the math? No. If you have tried doing algebra on 

a computer, you know it’s lousy. Diagrams too. (Things are getting better with tablets.)
 t Are there effective ways of capturing a student response? Well, yes, if you scan the student’s written paper 

in, but not if the computer wants to understand it.
 t Are there reliable ways to score a student’s response? Fine for novice tasks, but no good for complex tasks. 

When people say, “We’ve got computer scoring. It really works for complex tasks” be skeptical. People 
have been trying to do this for fifty years. I just send them a written student response with diagrams, notes 
and arrows and ask them to explain how they analyze it to give scores to the students. Never a reply. Cost 
effective human scoring works very well. Scan the stuff in and present it to scorers on screen with rubrics.

 t On effective ways for collecting and reporting results, they’re brilliant.

Which sport?

Figure 13.
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Figure 14.
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Figure 15.
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Crossing the chasm, a computer simulation, illustrates these points (Figure 16). The software enables students 
to explore how the bridge strength depends on each of the three variables. (There is a nice ramp of difficulty: the 
strength is proportional to the width—pretty obvious if you think of planks side by side; less obvious are how 
they increase with thickness and decrease with span, where students have to conjecture and check.) Figure 17 has 
examples of two different systematic approaches. It is important that the students had to both choose an appropriate 
representation and organize the results of their investigation in it. (Computer task designers would have to guide 
them, reducing the demand. Equally, scoring responses not in a standard form is beyond current or likely AI.)

Integrating Professional Development

There are cost issues, which I don’t have time to say much about.8 Let me just say that there is everything to 
be said for integrating professional development with assessment, and that scoring training can be particularly good 
professional development. The Hurdles Race (see page 17) task that Alan showed is one that we used a lot with 
teachers. We show the task, get the teachers to work on it, then show them six pieces of student work. We ask them 
to rank order them, then to construct a scoring rubric and score the responses. We then show them our scoring 
rubric. This leads to tremendous discussions about mathematics, pedagogy, and assessment. On that particular 
task, we threw in a wild card—we gave two points out of eight for the quality of the commentary. We had wonderful 
arguments about whether that deserves credit in a math test.

8 For example, $1 tests are very expensive in that teachers use a lot of teaching time for otherwise unproductive test prep—with a real 
cost of around $200.

 

Crossing the Chasm

Figure 16.
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Formative Assessment for Modeling

So now for the second of the purposes I listed, formative assessment. Paul Black and Dylan Wiliam (1998, 2001) 
in their review of research—the thing that triggered all this activity—say that formative assessment is:

. . . all those activities undertaken by teachers, and by their students in assessing themselves, which provide 
information to be used as feedback to modify the teaching and learning activities in which they are engaged. 
Such assessment becomes ‘formative assessment’ when the evidence is actually used to adapt the teaching 
work to meet the needs.

This research review shows that, when well done, formative assessment produces substantial gains in student 
learning. Now the challenge is this: most work to implement formative assessment has been done through professional 
development. Several years with skilled leaders were needed before “the penny began to drop for many of them.” 
That’s too expensive to do on a large scale, even if you could find the leaders. So our challenge in the Mathematics 
Assessment Project was to see how far materials could support formative assessment. The result is a set of formative 
assessment “lessons” that we call Classroom Challenges, twenty for each grade from 6 through high school.

Classroom challenges are of two kinds: Concept development lessons and Problem solving lessons, which include 
modeling. On the former I’ll be brief. They are focused on sense making within mathematics. Why formative 
assessment? There’s a lovely quote from one of the teachers in the trials:

I thought if I taught them all the pieces, they could put them together. I now know they can’t.

The missing component has been the mathematical practices, summarised in my earlier quote.

Problem Solving Lessons

Problem solving lessons have the following structure:

In 15–20 minutes of a prior lesson

 t each student tackles the initial, unscaffolded problem—often a modeling problem. Students tackle the problem 
unaided. The work is collected in, not to be scored but to be looked through by the teacher so as to see what 
sorts of solutions are emerging.

Figure 17.
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In the main lesson

 t Pairs or groups work on the problem, comparing approaches. Strategic hints are supplied to students that are 
still struggling.

 t Whole class discussion. The payoff of mathematics is brought out by collecting and comparing solutions. 
This may be supported by students critiquing a range of sample responses, chosen by us to show a variety 
of approaches, including some using more powerful mathematics than is likely to have arisen in the class.

 t Individual work. Building on the discussion, students improve their solutions to the initial problem, or one 
very much like it.

We aim to design materials that are open for the students but very supportive for the teachers, who are often outside 
their comfort zone in this kind of teaching. We suggest hints, because it’s hard to invent good hints. They’re always 
in the form of questions, not directions.

Teachers need both specific and generic support to achieve the changes we call “role shifting.” Normally teachers 
play the directive roles: manager, explainer, and task setter, with students as imitative responders. The challenge of 
teaching problem solving and modeling is to move the teacher into facilitative roles: counselor, fellow student, and 
resource, with students becoming investigators, managers, and explainers. Piaget set out levels of understanding, 
roughly: imitation, retention—we’re quite good on those—explanation, adaptation, and extension. We’ve not been 
good on the last three. Problem solving is about adaptation and extension, but explanation is crucial. The Common 
Core puts it well: the focus must move from answers to reasoning. Whenever you ask a student a question, a 
tremendous thing to do regularly is just to say, “Could you say that again?” or “Could you say a bit more?” You will 
often find a qualitative improvement—technically, the student turns an exploratory explanation into a performance 
explanation. They clarify what they’re doing.

Let’s look at an example, Matchsticks (Figure 18). We give them a formula sheet. There are a lot more formulae 
there than they need, but that makes them choose, giving them the option of treating the tree as a cylinder or a 
cone or whatever. At the discussion stage, we give them sample responses to discuss, asking each pair to consider:

 t What has this student done correctly?
 t What assumptions has (s)he made?
 t How can (s)he improve the work?

When the students have done this problem, 
they enjoy engaging with others’ reasoning. 
Alas, I don’t have time to go through the 
responses but you will find it interesting 
to look at them on the website. One 
student, Jabir, basically misses on all sorts 
of dimensions, confusing feet and inches, 
volumes and lengths, not to mention the 
calculations—but he has done some things 
correctly. Sherida has done much better. 
She has a problem relating cubic inches to 
cubic feet. She also commits the, for me, 
unforgiveable sin of writing an answer that 
cannot be good to more than one significant 
figure with all the digits that her calculator 
showed. Appropriate accuracy is important, 
but rarely discussed. Chan is much more 
explicit about stating his assumptions. And 
so on.

Making Matchsticks

Estimate how many matchsticks
can be made from this tree.

  80 ft tall
  2 ft diameter at the base.

Matchsticks are:
  1/10 inch square
  2 inches long

Figure 18.



50

Burkhardt

Now what’s the modeling process they’re going through here? They have to:
 t Understand the situation: that “fitting matchsticks into the tree” is a volume ratio problem;
 t Choose a model for the tree: “Roughly a cylinder? Or a cone? Shall I ignore branches?”;
 t Calculate the volumes, using formulas;
 t Get the units right, relating feet cubed to inches cubed;
 t Compute the ratio, handling the big numbers—which students love but find hard;
 t Choose appropriate accuracy—one significant figure;
 t Evaluate their answer: “Does this make sense?”; and
 t Ask: “How can we improve it? Do we need to?”

Where is the formative assessment? Teachers first see what students can do unaided—we help them analyze 
responses without scoring them. They then offer differentiated support to students as needed during the group work. 
Students get constructive feedback and, helped by the discussion of other students’ work, they move their reasoning 
on. And so, finally, teachers get before and after comparisons.

I have to move on. Let me leave you with a lovely task, Having Kittens, and the samples of student work 
from the formative assessment lesson. Figure 19 is an advertisement outside a veterinarian’s office. We talked 
about “multipliers” before (Laughs) and I asked what they were, so I thought I would show you the prize example 
(Laughs). Figure 20 has some samples of representations that the kids have tried to get on this exponential upon 
exponential problem. It generates wonderfully rich mathematical discussion. (Try it for yourself. You’ll find the 
figure is realistic, even ignoring what I call the Randy Tom effect—the potentially enormous number that one male 
descendent and all the females in the neighborhood might produce!)

Summarizing, it’s not a trivial matter to produce one of these formative assessment lessons, because formative 
assessment needs “adaptive expertise.” Most teachers need both specific and generic support to develop the range 
of mathematical and pedagogical skills needed. Results are encouraging, with millions of lessons downloaded9 by 
teachers and teacher leaders so far. This work has involved a design team of about eight people working at the Shell 
Center, led by Malcolm Swan. Each Classroom Challenge costs about twenty-five thousand dollars to develop. Why 
so expensive? The “authorship” approach works for a brilliant teacher in their own classroom where they can get 
the feedback as they go along. But if you want stuff to be both ambitious and robust in the hands of more typical 
teachers, you have to trial it through cycles of development like any other product—and that’s expensive. Within 
MAP, there’s a broader team with a research program that Alan has referred to. The project is directed by Alan and 
me, with Malcolm Swan, Daniel Pead, and Phil Daro—the chair of the standards writing group for the Common 
Core. It shows the sort of scale needed to turn ambitious goals into robust products.

Future Prospects

Now to future prospects. As Alan just hinted, the signals are mixed. The learning goals embodied in the 
Common Core are admirable, as are the performance goals in the Smarter Balanced content specification. Realizing 
these goals will take many people outside their comfort zones, particularly in the design of rich tasks that will work 
well with kids in exams, or indeed in lessons, and in implementation that works smoothly.

The whole process must have public credibility. For example, SBAC initially chose to have a computer-adaptive 
test plus, for assessing higher-level skills, two days of classroom performance tasks, handled and scored by the 
class teacher. They then said that the classroom tasks weren’t going to count in the final scores. But even hadn’t 
they said that, the classroom assessment scores would not have credibility unless you took great care to engineer 
the circumstances to insure that the students were indeed doing the tasks themselves and not having Mom or Pop 
doing it, or the teacher feeding them the answers. So one of our victories, we think, is that there will be a timed, 
written examination as part of the SBAC tests, scored by humans, for the assessment of Claims 2, 3, and 4. One of 
the current dangers is SBAC overestimating the in-house expertise of testing companies. People do what they know 
how to do, so psychometricians will do Item Response Theory, and test designers will design short items because 
that’s what they’ve always done. To develop rich performance tasks requires bringing in new skill sets, which needs 

9 Free for non-commercial use from (MAP, 2012)
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Is this figure of 2,000 realistic?

Assessment Task: Having Kittens

ts.

Figure 19.
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Sample Student Work

Sample Responses
to Discuss: Wayne

Sample Responses
to Discuss: Ben

Sample Responses
to Discuss: Alice

Figure 20.
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a collaboration of assessment folk who already have a track record designing rich tasks and math education folk who 
understand what is needed.

Whether that will happen we don’t know. Pushback is inevitable. There are those who fear the changes that 
are needed educationally on grounds of cost, complexity, litigation, and straight conservatism. We have to be ready 
for this and be prepared to face it—indeed the battle is on. The initial sample of candidate performance tasks from 
both consortia was a “don’t know whether to laugh or cry” travesty. But on the hopeful side, SBAC have appointed 
a distinguished “math board” (including Alan) to review proposed tasks, and they have made their views clear.

Let me just finish with a little commercial for ISDDE, the International Society for Design and Development in 
Education. This is a body of about a hundred people, mostly professional designers of educational materials in math 
or science. We met last week in Berkeley. The Society’s goals are: to improve standards in design, to build a design 
community, and to increase the impact of good design on policy and practice. We think we are having some success. 
The last goal is, of course, the most difficult, but you might like to look at the Society’s e-journal, Educational 
Designer and, since this talk is about assessment, at the working group report on assessment design (ISDDE, 2012). 
This report was quite influential with both SBAC and PARCC in their strategic planning, for example in getting 
acceptance of WYTIWYG as an empirical fact of life, and the responsibilities that flow from this. One new concept 
is “strategic design” (Burkhardt, 2009). We’re all concerned about the design of lessons and tasks and how they work 
with kids and teachers; but how the whole thing fits into the education system it aims to serve is often neglected. 
Such poor strategic design is the main source of low impact and unintended consequences. This is why there’s so 
much wonderful stuff out there that nobody uses. So for any important test, ask:

Does this test assess the practices beyond novice level and encourage good teaching?

If not, fight.
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