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Mathematical Modeling: How Can Students Learn to Model?

Werner Blum
University of Kassel

This paper deals with the learning and teaching of mathematical modeling. After a definition of modeling competency, 
some empirical results about students’ learning of modeling will be a reported. After that, five criteria for quality 
teaching of modeling will be discussed. Finally, a modeling unit for the ninth grade will be presented, as well as some 
results of the accompanying research.

Keywords: mathematical modeling, modeling competency, independent learning, quality teaching, cognitive activation, 
teacher feedback

Introduction

The title of this paper—as suggested by the symposium organizers—addresses learning, but it will turn out 
that its content will be more about teaching, because the short answer to “How can students learn to model” is not 
simply “by doing it independently,” but “by quality teaching!” In this context, “learning to model” means acquiring 
modeling competency.

The paper will comprise four parts. First I will address the notion of modeling competency. Second, the focus is 
on the learning of modeling: What do we know empirically about students’ independent modeling activities? In the 
third part, the question arises as to how these activities can be supported by quality teaching. The fourth and final 
part presents a modeling unit for the ninth grade that we have developed, as well as some results of the research 
that accompanied its creation.

Mathematical Modeling Competency

As a concrete introductory example, I will use the “Filling up” task (Blum & Leiß, 2006) to which I will refer 
several times (Figure 1). It is a modeling task designed for ninth grade students.

Override (Hidden running head text):
Blum
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Figure 1.
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The task is about a certain Mr. 
Stein—a real person—who lives in 
Trier, which is close to the border 
with Luxembourg, and who drives to 
Luxembourg in order to fill up his 
Volkswagen. You can see from these 
numbers that we designed this task 
about ten years ago.

This is a real world situation 
and, according to Henry Pollak’s 
famous maxim, “Here is a situation, 
think about it” (Pollak, 1969), we will 
analyze this situation, and as a tool 
we will use the version of the modeling 
cycle proposed by Blum & Leiß (2007) 
and seen in Figure 2.

The numbered steps can be 
summarized in the list below.

1. Constructing
2. Simplifying/ Structuring
3. Mathematising
4. Working mathematically
5. Interpreting
6. Validating
7. Exposing

This seven-step version shows an idealized typical way in which the relationship between mathematics and the 
real world, or according to Pollak (1979) the “rest of the world,” is. In our example, the cycle starts with the task, 
which is now a section of the real world. The first step is to build a mental model of the real situation: There is 
Trier, and there is some road to Luxembourg; there is a gas station behind the border, and we have to structure, 
to simplify, and to idealize the situation in order to make it mathematically accessible. Thus, we build a real model 
of the situation, and in this first approach we are only interested in the price and nothing else. As a result, we have 
two prices and can make some assumptions: Fifty liters for the volume of the tank, and eight liters per hundred 
kilometers for the consumption. We are now prepared to build a mathematical model (Figure 3).

We carry out some calculations and find a difference of 9.78 Euros. We interpret this result to mean that Mr. 
Stein saves approximately 10 Euros per tank of gas if he drives to Luxembourg in order to fill-up his car. We round 
it off since, as John Maynard Keynes famously quipped, it is better to be roughly right than precisely wrong. The 
next important step is the validation of the result: What have we ignored? The air pollution, the time, the risk of 
an accident, etc. Who is Mr. Stein? Does he have the time to drive to Luxembourg? A lot more variables come into 

Figure 2.
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play, thus, we may choose to refine the model and go around the loop illustrated earlier several times until we are 
satisfied. Ultimately, we write down our solution.

This seven-step cycle of the modeling process is a blend of models that come from cognitive psychology, especially 
the mental model, from linguistics, and from applied mathematics, where usually the step from the situation to the 
mathematics is much shorter.

Provided the background above, we define modeling competency (see Blum, Galbraith, Henn & Niss, 2007) 
to mean an individual’s ability to construct and to use mathematical models by carrying out appropriate steps 
according to the problem, and/or analyzing or comparing given models. We can regard the seven steps in the cycle 
as corresponding to modeling sub-competencies (see Maaß; 2006; Kaiser, 2007).

What Do We Know About Students’ Independent Modeling Activities?

Based off of this question, we can pose another: What are students able to do if they are confronted with 
such problems and can work on them independently? Of course, if we see the number of steps that are necessary, 
it is clear that modeling is a cognitively demanding activity. It involves several competencies (Niss & Højgaard, 
2011) including reading a text and all the other steps in the modeling process. In addition, real world knowledge 
is necessary, along with a lot of procedural and conceptual mathematical knowledge. As a result, it is no wonder 
that modeling is empirically difficult as evidenced every three years by the results of the PISA tests. Furthermore, 
we know empirically that each step of the modeling process is a potential cognitive barrier and can be a source 
for getting stuck or for making mistakes; it is, in the words of Peter Galbraith and his group, a potential blockage 
(Galbraith & Stillman, 2006). Or as Hugh Burkhardt and his group in the Shell Center expressed it thirty years ago, 
“The weakest link in the modeling chain will set the limits on what they can do” (Treilibs, Burkhardt & Low, 1980).

Let us take a closer look at the first step: “Understanding the situation and constructing a situation model.” 
Figure 4 shows a student’s solution to the “Filling up” problem; one does not need to understand the German in 
order to see what was carried out.

This is a typical solution with regard to the maxim: “Ignore the context, just extract all data from the text, 
and calculate something according to a familiar schema.” This is a very well-known substitute strategy all around 
the world, as well as in Germany, and I know it is also very popular in the United States. This is often called the 
“suspension of sense making in the word problem game” (Verschaffel, Greer & DeCorte, 2000). Here are three more 
examples where the answers are often given by “proportional reasoning”:

 t The 100 m world record for men is 9.58 sec. What is the 1000 m world record?
 t 2 eggs take 5 minutes to get boiled. How long will 9 eggs take?
 t Henry VIII had six wives. How many did Henry IV have?

The second step of “simplifying, structuring, idealizing” can also provide a cognitive barrier. Here is a solution 
of a grade nine student to the “Filling up” 
problem (translated):

You cannot know if it is worthwhile since 
you don’t know what the Golf consumes. 
You also don’t know how much he wants 
to fill up.

The student stopped here. He obviously 
understood the situation and identified the 
relevant variables, but then did not make any 
assumptions. This is a very clear outcome of 
a lot of studies: Students do not like to make 
assumptions by themselves. They are used to 
problems where all the necessary information 
is already given in the problem statement.

The sixth step of “Validating” is difficult 
to observe in a written solution, but often 

Figure 4.
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there is no validation at all. It is part of the silent didactical relation between teacher and students: Only the teacher 
is responsible for the correctness of the solution, not the students themselves.

Another observation is that normally students do not seem to have strategies available, and they frequently do 
not reflect upon their solutions nor are they able to transfer them, even to a structurally similar situation. If, for 
instance, the situation is not about driving with a car to fill up, but the question is whether or not it is worthwhile 
to drive to a department store in order to buy something because it is cheaper there, students consider this as a 
new task. Hence this is a special instance of situated cognition, that is, everything you learn, you learn in specific 
contexts, and transfer does not take place unless it is organized. Transfer is especially difficult for modeling; so what 
can “modeling competency” signify? Perhaps there is no such thing as “general modeling competency.” Modeling 
competency always carries with it, so to speak, the indices of the context in which it was developed. For example, 
in our project CO²CA (“Conditions and consequences of classroom assessment”) it turned out that the correlation 
between modeling in an environment where the Pythagorean Theorem was the mathematical background and 
modeling where linear functions were the background is only 0.6.

Another observation in several studies is that students usually do not follow this ideal-typical seven-step cycle. 
This is a special instance of Rita Borromeo Ferri’s modeling routes, also dependent on the thinking styles of students 
(Borromeo Ferri, 2007). Normally there is some jumping forth and back, some mini-loops occur, and sometimes 
students get stuck along the way.

How Can We Support Students to Acquire Modeling Competency?

This is the core question, and the obvious answer is: by quality teaching. We know a lot about quality teaching 
from empirical research and also from theories on teaching and learning (for an overview see e.g., Blum, 2011). Here 
are five aspects with fuller explanations below. These aspects are very much related to what Alan Schoenfeld pointed 
out in his presentation (see page 13), though they are listed under different headings. In all cases, the criteria are 
necessary but not sufficient.

1. Effective and learner-oriented classroom management; this is more or less related to surface structures but 
also important.

2. Cognitive activation of the learners. To be more precise, of all learners.
3. Meta-cognitive activation of the learners.
4. Competency-oriented orchestration of topics; students must have the opportunity to actually do all these 

activities; so this refers to the mathematical substance of it, the cognitive demand of the mathematics 
involved.

5. Appropriate feedback.

A.E.1

The classroom management (e.g., using time effectively, separating learning and assessment recognizably, using 
students’ mistakes constructively, or varying methods and media flexibly) is mostly content independent or subject 
independent. Many studies that have tried to find out which factors contribute to effective learning have shown 
that appropriate classroom management is a necessary condition. Group work is especially suitable for modeling 
and, more generally, a mixture between individual work, partner work, group work, and whole class work will be 
appropriate.

A.E.2

It is necessary to stimulate students’ own activities. Modeling is not a spectator sport, as has been said several 
times before, but rather must0 be done by the students themselves. An important distinction is between students 
working independently, and students working alone. Independent work means that the teacher is available, if 
necessary, and tries to let students work as independently as possible, but not to leave them alone in the desert. A 
key aspect, which sounds trivial but is in some sense the key to effective teaching, is always to seek a balance between 
students’ independence, on the one hand, and teacher’s guidance, on the other hand. This is the so-called principle 
of minimal support, which was perhaps first formulated by Hans Aebli, a Swiss pedagogue and one of the students 
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of Jean Piaget (Aebli, 1985). A key concept here is adaptive teacher intervention, i.e., an intervention which allows 
the individual to continue his/her work independently, which helps him/her to overcome a cognitive barrier but not 
more than that, and, in particular, does not prevent mistakes before a cognitive hurdle is even presented. Of course, 
whether an intervention is adaptive or not can only be judged afterwards: Did the student overcome the hurdle? If 
so, it could have been adaptive or not. If not, it was certainly not adaptive. Let us turn next to another example in 
the context of the “Filling up” task. A lot of students make a mistake by assuming the distance traveled is twenty 
kilometers, forgetting that the drive back needs to be accounted for. A simple but often successful intervention is 
to say, “Imagine the situation concretely. Imagine you are Mr. Stein and you drive to Luxembourg.” This strategic 
intervention often seems to be adaptive as students can discover their mistake by themselves. Here is a list of possible 
strategic interventions that ought to belong to the repertoire of the teacher, and for which the teacher must decide 
which items are appropriate and when they should be used.

 t Read the text carefully!
 t Imagine the situation clearly!
 t Make a sketch!
 t What is your intention?
 t What is missing?
 t What data do you need?
 t How far have you gotten?
 t How far are you from the solution that you are aiming for?
 t Does the result make sense?

If this not sufficient, then of course more content-related interventions can be appropriate. Empirical studies 
show that in everyday classrooms there are nearly no strategic interventions.

A.E.3

Cognitive activation is not enough. We know from a lot of studies that meta-cognitive activation is equally 
important (Schoenfeld, 1994; Burkhardt & Pollak, 2006; Stillman, 2011) especially if we hope for transfer. Transfer 
does not occur by itself, and in order to have some transfer, it is necessary to switch to the meta-level and to make 
students aware of what they are doing, with accompanying or retrospective reflections. A promising approach is 
to try to advance learning strategies. Strategies on an intermediate level are still not task-specific but specific for 
certain types of tasks. Here is the strategic instrument that we have used in the DISUM project for ninth-graders, a 
four-step modeling cycle (“Solution Plan”; see Blum, 2011). Seven steps are too complicated to use, but four steps 
are appropriate for students:

Understanding the task l�Searching for mathematics (that means building a mathematical model, comprising 
steps two and three in the seven-step cycle) l�Using the mathematics l�Explaining the result (comprising steps 
five to seven in the seven-step cycle).

If this is not satisfactory, then the cycle will start again. This is something that we gave to teachers as a tool 
for their interventions and support, and to students for helping them in the solution process; it will be returned to 
later on.

A.E.4

Competency-oriented orchestration of the topics. This means students need to have the opportunity to practice 
their desired competencies. Modeling is only learned by modeling, arguing by the arguing, and so forth. Important, 
too, are links between topics, vertical and horizontal links, as well as intelligent practicing. As noted before, no 
transfer can be expected. Modeling can be learned best by modeling activities, and this is a long-term learning 
process beginning with early implicit models, and continuing indefinitely with repetition and practicing. Some 
teachers believe repetition and practicing are old-fashioned; however, it is clear that our brains need repetition and 
practice in order to effect noticeable change.
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A.E.5

An important quality aspect is appropriate 
feedback. According to Hattie & Timperley (2007) 
we have to have a permanent connection between 
a sound diagnosis and stimulating feedback and 
support for students by appropriate interventions. I 
will refer here to some results of the CO²CA project 
(“Conditions and Consequences of Classroom 
Assessment”; see Besser, Blum & Klimczak, 2013). 
We are still in the process of evaluating the data 
(39 grade 9 classes) because it turned out that 
the variation among the teaching styles was much 
bigger than initially expected. Every participating 
teacher had to teach a thirteen-unit lesson with the 
topic being Pythagoras’ Theorem, beginning with 
an introduction, including a proof of the theorem, 
intra-mathematical applications, word problems, 
and finally modeling problems on the level of 
grade nine. In two of the three conditions that we 
had, there were diagnostic sheets for formative 
assessment, implemented in three of the lessons. 
The third and last diagnostic sheet contains the 
modeling task “Cable car,” which fits into this topic 
area (Figure 5).

This task pictured was positioned on the left 
of the sheet, together with the student’s solution 
(not pictured). The right of the sheet was reserved 
for feedback from the teacher (not pictured). There 
are several ways of solving the task. One does not need the Pythagorean Theorem, but because the task is given 
within the unit on this theorem, nearly all of the students used it. One of the most important aspects of feedback 
is not only that weaknesses should be reported but also strengths, which are often omitted. Thus, the first part 
of the feedback is: “What are you already quite good at?” Subsequent is feedback such as “You can still improve 
in the following aspects that I saw in your solution if you follow my hints,” followed by some corresponding hints. 
One of the research questions asked what the effects of the teachers’ hints were. There was a parallel version of 
this “Cable car” task in the post-test of the study, so we could compare how the students solved this task in the 
diagnostic sheet and how they solved it on the final test. The hope was, of course, that everybody would be able to 
solve it on the final test because the diagnostic sheet revealed all the problems and the students received individual 
written feedback. What were the effects of this written feedback? We have identified certain patterns. The feedback 
was mostly successful if the teacher gave both a strategic hint on the meta-level and a hint referring concretely to 
the task. Here is an example: A student’s solution was nearly correct (apart from an inappropriate preciseness in 
the digits) but he forgot to double his result because there are two ropes in the cable car, one up and one down (as 
can be seen in the photo). The teacher reported back to the student: “You made a mistake. You didn’t consider the 
two rope,” and he gave the meta-hint: “Look closely at the picture!” The same student provided a correct solution 
on the final test. Also noteworthy in this case, the teacher’s feedback about rounding off was successful. Therefore, 
it is a combination of reference to the task and meta-level that helped. In other cases, when there was either only a 
meta-hint without reference to the task or only a concrete reference to the task without a meta-hint, the feedback 
was often not successful. An example of such a case: A student who made the same mistake of not doubling, and 
the teacher only gave the meta-hint: “Imagine the situation.” This was not successful, and the student made precise 

Figure 5.
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the same mistake on the final test. So strategic interventions are important but not sufficient, and there must also 
be a link to the concrete task.

I would like to close this part of the paper by emphasizing that a lot of competencies are necessary on the 
teacher’s side for teaching modeling (e.g., Doerr, 2007; Kaiser, Schwarz & Tiedemann, 2010). First of all, all the 
competencies that the students ought to achieve have to be achieved by the teacher himself/herself. Important parts 
of the pedagogical content knowledge of teachers comprise a theoretical dimension such as knowledge of aims for 
modeling and modeling cycles, a task dimension with analysis and construction of modeling tasks, an instructional 
dimension, and a diagnostic dimension (see Borromeo Ferri & Blum, 2010).

A Teaching Unit for Modeling in the Ninth Grade

I would like to present a teaching unit for modeling in the ninth grade on the Pythagorean Theorem, but one 
that also included other modeling tasks, in particular, tasks related to the study of linear functions. In the DISUM 
project (see Schukajlow, Leiss, Pekrun, Blum, Müller, & Messner, 2012) we have developed a so-called operative-
strategic way of teaching that tries to incorporate several of these quality teaching aspects discussed in the third 
section. The guiding principles were that: 

 t The teacher’s guidance should aim at students’ active and independent solutions;
 t There was a systematic change between independent work in groups (individual, pairs, whole group, then 

individual again) and whole-class activities (for students’ presentations and retrospective reflections); and
 t Students’ work and teachers’ coaching should be based on the four-step “Solution Plan” (see section 3).

We confronted this teaching with what we call directive teaching. The guiding principles here were:
 t The development of common solution patterns for the whole class; and
 t A systematic change between whole-class teaching oriented towards the “average student” and students’ 

individual work on exercises.

This kind of teaching is what, according to classroom observations both in Germany and in the United States, 
characterizes about ninety percent of everyday teaching. In some sense this is the most demanding way of teaching 
because the teacher has always to be in control of everything, yet will never know what the majority of the students 
really do. We modeled these two ways of teaching in an ideal-typical way and tried to implement them as optimized 
teaching styles, with teachers especially trained for that purpose. All were experienced teachers from a reform 
project in Germany called SINUS. Thus, it was not simply good teaching versus bad teaching, but rather a study 
concerning two optimized ways of teaching. The unit comprised ten lessons with a pre- and post-test, approximately 
ten lessons with modeling training, and tasks accessible to grade nine students, which included the “Filling up” 
task among others. The solution plan was introduced in the third lesson, and in the final two lessons there was the 
individual practicing of modeling.

What were the results? In the first phase of the project, when students had no solution plan, there were no 
differences between the two groups with regard to their progress in solving intra-mathematical technical tasks. 
However, the really interesting result is that only the operative-strategic group made significant progress in modeling 
tasks. So, after ten lessons of training in modeling with the directive teaching style, it had no effect; although the 
teachers tried to be as effective as possible, they were only effective in the technical part of it, i.e., not in modeling 
sub-competencies, such as proposing assumptions or interpreting mathematical results. In the second phase of 
the project, the students had the solution plan, but now the students in the operative-strategic teaching made 
significantly more progress in modeling tasks (by one standard deviation). 

In conclusion, the above mentioned seems to be a promising approach. What we have not yet done (because 
the DISUM project was carried out prior to the CO²CA project) is to implement the appropriate use of feedback 
into the operative-strategic teaching style. We assume that, if implemented correctly, this will lead to even more 
promising results.
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