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An Analysis of a Misconception of Probability among 
Future Mathematics Teachers* 

Patricia Jendraszek 
Mercy College 

Probability is receiving increased coverage in all levels of education. Knowledge of the Law of Large Numbers 
may be an important factor in developing a true understanding of the subject. Study results evidence a lack of 
awareness of this fundamental principle among teachers of mathematics.  Study results also suggest that 
additional probability preparation in teacher education may address this deficiency and allow probability to be 
taught more effectively. 

According to a well-known evolutionary biologist, 
“misunderstanding of probability may be greatest of all 
general impediments to scientific literacy”; yet, 
misunderstandings and misconceptions in probability are 
common (Gould, 1996, p. 7). Part of the difficulty 
experienced in understanding probability may be attributed 
to its ambiguous nature. 

The nature of probability has been the subject of many 
philosophical debates. Philosophers of probability 
distinguish between classical probability, frequentism, 
subjectivism, Baysianism, and many other types and 
subtypes of probability (Galavotti, 2005; Gillies, 2000; 
Hacking, 1975; Mellor, 2005). These distinctions are 
sometimes difficult to grasp and may be irrelevant to 
understanding probability in any practical sense; however, 
for the purpose of understanding the role of probability in 
education, it is important to distinguish between classical 
probability, frequentism, and subjectivism. 

Both the classical and frequentist approaches assign 
probabilities based on mathematical calculations. Put 
simply, classical probability is theoretical, or a priori, 
whereas frequentism is experimental, or a posteriori 
(Jones, Langrall, & Mooney, 2007). For example, a 
classicist would evaluate the probability of the outcome of 
a “6” on one toss of a single die as one favorable outcome 
out of six possible equi-probable outcomes, or 1/6. A 
frequentist would toss the die many times, record the 
results, and evaluate the probability of a “6” as the ratio of 
the number of times a “6” was tossed over the total number 
of tosses. If enough tosses were observed, the frequentist 
and classicist determinations would likely be nearly the 
same.1 Many educators have argued that both facets of 
probability should be taught in order to cultivate both a 

                                                           
 
1See discussion of the Law of Large Numbers below. 

theoretical and experiential understanding of the topic 
(Kvatinsky & Even, 2002; Steinbring, 1991).2 

Subjectivism or subjectivist probability, by contrast, 
measures probability as a degree of personal belief. 
Confusion could result from a failure to recognize the 
dichotomy inherent in considering probability as an 
objective mathematical computation versus viewing 
probability as a subjective assessment of personal belief. 
Cultivating an awareness of this dichotomy may allow a 
deeper understanding of probability as well as a more 
reasoned approach to the subject (Greer & Mukhapadhyay, 
2005; Hacking, 1975; Kvatinksy & Even, 2002). 

While some misconceptions may be due to the 
ambiguous nature of probability, many others result from 
the misapplication of common mathematical or logical 
algorithms. Such misconceptions in probabilistic reasoning 
are common even among the mathematically sophisticated. 
Even a mathematician and educational researcher who 
specializes in probability has reported sometimes “falling 
prey” to these misconceptions (Shaughnessy, 1992). 

The Research Study 

Regardless of the conceptual difficulties, the study of 
probability has received significantly greater emphasis at 
the elementary, secondary, and college levels (Lutzer, 
Rodi, Kirkman, & Maxwell, 2007; NCTM, 2000). 
Whether this increased emphasis will result in greater 
student comprehension depends greatly upon the 
probability knowledge of teachers and their ability to 
address student misconceptions (Stohl, 2005). In order to 
evaluate the mathematics teachers’ understanding of the 
concept of probability, the investigator tested future 
elementary, secondary, and college mathematics teachers 

                                                           
 
2Note that not all probabilities can be calculated using the pure 
classical approach; for example, a weather forecaster cannot rely 
solely on this approach to calculate the likelihood of rain on a 
particular day. 

*This article presents certain findings from a dissertation study 
that tested many different types of misconceptions of probability 
and considered other factors that may affect understanding of 
probability concepts (Jendraszek, 2008). 
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for evidence of misconceptions of probability and 
correlated the incidence of these misconceptions with 
aspects of their background, attitude, and education 
(Jendraszek, 2008). The method and overall results of the 
research study are described below; however, this article 
focuses on the portion of the study related to knowledge of 
the Law of Large Numbers. 

The Law of Large Numbers and Applicable Mathematics 

One common misconception considered in the study 
concerned ignorance of the effect of increasing sample 
size, called the Law of Large Numbers. Consider, for 
example, the probability of getting 2 heads in 3 coin tosses 
compared with the probability of getting 200 heads in 300 
tosses. Many people see that the ratio of heads to tails is 
equal and assume that the probabilities are, therefore, the 
same. 

It is simple to calculate the probability of getting 2 
heads in 3 tosses because all eight possible results could be 
easily listed (HHH, HHT, HTH, HTT, THH, THT, TTH, 
and TTT). Three of these results show 2 heads; therefore, 
the probability of getting exactly 2 heads in 3 tosses is 3/8 
or 0.375. It is considerably more difficult to enumerate 
each possible outcome for 300 tosses. For 300 tosses, the 
number of possible sequences of heads and tails is 2300 
(2.037 x 1090). In this case, the binomial distribution 
formula can be used to calculate the probability of getting 
200 heads in 300 tosses. 

If an event occurs N times (for example, a coin is 
tossed N times), then the binomial formula can be used to 
determine the probability of obtaining exactly r successes 
in the N outcomes, where $ is the probability of success on 
any one trial: 

P(r successes in N trials)  

% & rNr

rNr
N ''(
'

) $$ 1
)!(!

!  

In the example above, N would equal 300, and r would 
equal 200. In any toss of a fair coin, the probability of 
heads, !, is ½ (50%), thus: 

P(200 heads in 300 tosses) 

% &100200 5.01)5.0(
)!200300(!200

!300
'(

'
)  

10000000024.010041.2 9 )() '  
(rounded to four significant figures) 

Thus, the probability of 200 heads in 300 tosses is 
0.00000000241, substantially less than 0.375, the 
probability of 2 heads in 3 tosses. 

This problem could be answered without any 
calculations if one were familiar with the Law of Large 
Numbers. The Law of Large Numbers states that as the 
sample size increases, the probability distribution in the 
sample will represent the theoretical probability distribution 

in the parent population more and more closely. It was first 
stated without proof by the Indian mathematician 
Brahmagupta in the 7th century and later, in the 16th 
century by the Italian mathematician Cardano. A rigorous 
proof was not published until 1713, by Jacob Bernoulli in 
his work Ars Conjectandi. The Law of Large Numbers was 
not known by its present name until Poisson first referred to 
it as “La loi des grands nombres,” in 1835 (Sheynin, 1968).3 

In the case of the coin toss example, since the 
probability of heads is ½, it is clear from the Law of Large 
Numbers that the greater the number of tosses, the more 
likely it is that the number of heads will be closer to ½ of 
the tosses. For 300 tosses, there will likely be about 150 
heads. The graphs on the following page illustrate the 
probability distributions of heads in coin tosses, as the 
sample size increases from 3 to 30 to 300 to 3000. It is 
evident from these graphs that the probability of deviation 
from the mean decreases greatly as sample size increases. 

There are three problems in the study that could be 
answered using the Law of Large Numbers. The 
provenance of these problems is discussed in the next few 
pages under “Prior Studies.” The first asks a question 
similar to the example above: 

The likelihood of getting heads at least twice when 
tossing a coin three times is: 

a. smaller than 
b. equal to 
c. greater than  (Correct) 

 the likelihood of getting heads at least 200 times 
 when tossing a coin 300 times. 

d. None of the above answers is correct. 

Note that this problem compares the probability of getting 2 
or more heads in 3 tosses with the probability of 200 or 
more heads in 300 tosses. In this case, there are four 
successful outcomes (HHT, HTH, THH, and HHH). The 
total number of possible outcomes is 8; therefore, the 
probability is 4/8 = 1/2. The probability of 200 or more 
heads in 300 tosses is more difficult to calculate. It requires 
101 iterations of the binomial formula, summing of the 
probabilities of 200 heads, 201 heads, 202 heads, etc., up to 
300 heads. This process is most easily accomplished using a 
computer or calculator. The formula for the calculation is: 

P(r or more successes in N trials)  

% & rNr
N

r rNr
N ''(
'

) * $$ 1
)!(!

!  

P(200 or more successes in 300 trials) 

% & rr

r rr
'

)
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'

) * 300
300

200
5.015.0

)!300(!
!300  

                                                           
 
3Afterwards, other mathematicians, notably Chebyshev and 
Kolmogorov, contributed to the refinement of the law, resulting in a 
Strong Law of Large Numbers and a Weak Law of Large Numbers. 
They are not really different laws, and the distinction is not really 
necessary to understand the general concept presented herein. 
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The resultant probability is 4.00 * 10-9 (four out of a 
billion), significantly lower than 0.5, the probability of 2 or 
more heads in 3 tosses. 

The second problem in the study dealing with this 
issue concerned hospital births: 

In a certain town there are two hospitals, a small one in 
which there are an average of about 20 births a day and 
a big one in which there are an average of about 60 
births a day. The likelihood of giving birth to a boy is 
about 50%, the same as that of giving birth to a girl. 
However, there are days on which more than 50% of 
the babies born were boys, and there are days on which 
more than 50% of the babies born were girls. Both 
hospitals like to keep track of the days when the rate 
significantly deviates from 50%, favoring either male 
or female births (in other words, when 60% or more of 
the births are of either sex). Consider, for example, the 
number of days in which the number of boys born 
exceeded 60% in the past year. In which of the two 
hospitals are there likely to be more such days? 

a. In the big hospital there were likely more days 
recorded where more than 60% boys were 
born. 

b. In the small hospital there were likely more 
days recorded where more boys were born. 
(Correct) 

c. The number of days for which more than 60% 
boys were born is likely to be equal in the two 
hospitals. 

d. You cannot tell. 

The Law of Large Numbers can also be applied to this 
question. Since the Law of Large Numbers indicates that 
the deviation from the expected 50% boy births would 
lessen as the sample size increases, it is clear that the 

number of days on which the percentage of boy births 
would exceed 60 is likely to be larger at the smaller 
hospital. This can be checked by evaluating the possibility 
of a single day of 60% or more male births at each 
hospital. 

At the smaller hospital it would be: 

% & rr

r r
'

)

'(
'

) * 20
20

12
5.01)5.0(

)!20(!20
!20  

2517.0)  
(rounded to four significant figures) 

At the larger hospital it would be: 

% & rr

r r
'

)

'(
'

) * 20
60

36
5.01)5.0(

)!60(!60
!60  

07750.0)  
(rounded to four significant figures) 

The third question dealing with the effect of sample 
size was a sports related question: 

Assume that the Yankees have a history of winning 
about 60% of their games. Which is more likely? 

a. The Yankees win 80 out of 100 games 
b. The Yankees win 8 out of 10 games (Correct) 
c. (a) and (b) are equally likely. 
d. None of the above answers apply. 

The Law of Large Numbers can also be used to answer this 
question. For this problem, it was presumed the team had 
an overall winning percentage of 60%. Applying this rule, 
it is more likely to achieve the higher winning percentage 
in the smaller sample of games. Thus, it is more likely for 
the team to win 8 out of 10 games than 80 out of 100. This 
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can be checked using the binomial formula, assuming the 
probability of winning any one game, $, is 0.6: 

P(winning 8 games in 10) 

% &28 6.01)6.0(
)!810(!10

!10
'(

'
)  

1209.0)  
(rounded to four significant figures) 

P(winning 80 games in 100) 

% &2080 6.01)6.0(
)!80100(!80

!100
'(

'
)  

00001053.010*053.1 5 )) '  
(rounded to four significant figures) 

Prior Studies 

Misconceptions of probability have been the subject 
of numerous studies by both psychologists and 
mathematics education researchers. Most of the pioneering 
work in identifying and analyzing misconceptions in 
probability, often referred to as “judgmental heuristics,” 
was undertaken by cognitive psychologists.4 Some of the 
earliest studies were published by Tversky and Kahneman, 
beginning in the early 1970s. Indeed, Tversky and 
Kahneman (1974) included the hospital question described 
above. Many of these studies addressed the incidence of 
probabilistic misconceptions, often in young adults and 
children, but few have tested misconceptions in teachers. 

As early as 1992, Shaughnessy called for more study 
of misconceptions of probability among teachers. A recent 
review of research indicated that there is a deficiency of 
research addressing teachers’ probability content 
knowledge (Jones, Langrall, & Mooney, 2007). Several 
recent studies have considered issues regarding the 
probability knowledge of teachers and prospective teachers 
(Begg & Edwards, 1999; Carnell, 1997; Carter & Capraro, 
2005; Fischbein5 & Schnarch, 1997; Koirala, 1998, 2002; 
Quinn, 2004; Watson, 2001; Zaslavksy, Zaslavsky, & 
Moore, 2001). Although illuminating, they are generally 
limited in scope. Further, no studies were found that 
considered the effect of possible variations in content 
knowledge among different levels of mathematics teachers 
or the effect of other factors such as the amount of the 
teachers’ probability preparation. 

                                                           
 
4(Kahneman & Tversky, 1972, 1973, 1982; Tversky & Kahneman, 
1971, 1973, 1974, 1982). There are numerous examples of 
psychologists who continued these cognitive studies (Falk & Konold, 
1992; Fischbein, 1975, 1999; Konold, 1991; Konold, Pollatsek, Well, 
Lohmeier, & Lipson, 1993). 
5The work of Efraim Fischbein was the inspiration for this study. 
There have been other studies following Fischbein investigating the 
development of misconceptions across age (Rubel, 2002), and across 
age and gender (Kennis, 2006), but these studies exclusively tested 
middle and high school students. 

Four of the above studies posed questions regarding 
sample size to college students or teachers. Tversky and 
Kahneman (1974) included the hospital question, 
Fischbein and Schnarch (1997) included the hospital 
question and a version of the coin toss question, Carter and 
Capraro (2005) included another version of the coin toss 
problem, and Koirala (1998) addressed the sample size 
issue in the context of determining experimental 
probability.6 The Yankees problem was originally used by 
Rubel (2002). 

In Tversky and Kahneman (1974), of the 95 
undergraduate students who answered this question, only 
21, or 22%, correctly answered that the smaller hospital 
was likely to have more aberrant days. Of the incorrect 
answers, 53, or 56%, answered that the number of such 
days was about the same, and 21, or 22%, answered the 
larger hospital. Both of the incorrect answers demonstrate 
ignorance of the Law of Large Numbers. 

Fischbein and Schnarch (1997), whose study included 
a group of 18 prospective teachers along with groups of 
students in grades 5, 7, 9, and 11, used two problems 
testing the effect of sample size. The first involved a 
version of the hospital problem, originally used by Tversky 
and Kahneman (1974), above. Not one prospective teacher 
answered this problem correctly. All of the prospective 
teachers that chose to answer this question, 89% of the 
sample, indicated that the number of days should be about 
the same in both hospitals. Only one participant in the 
study, a ninth grader, was correct. In contrast, when asked 
to compare the probability of getting 2 heads in 3 coin 
tosses and 200 heads in 300 tosses, 50% of the prospective 
teachers answered correctly. Forty-four percent thought the 
likelihoods equal, and 6% thought it would be more likely 
to get 200 heads in 300 tosses. 

Carter and Capraro (2005), in their online study of 108 
pre-service elementary teachers, also included a question 
on sample size and the Law of Large Numbers. They asked 
for a comparison of the probability of getting 3 tails in 5 
coin tosses with the probability of getting 3000 tails in 
5000 coin tosses. Only 13.9% of the prospective teachers 
answered correctly. Of the participants, 81.5% thought 
both events were equally likely. 

Koirala (1998) did not specifically address the sample 
size question but did address the Law of Large Numbers. 
He found, in the conduct of a study of 16 secondary 
teachers with backgrounds in probability, that 8 of the 16 
teachers expressed unease with generating a probability 
based on the frequentist approach because they were not 
sure how many trials were necessary. Koirala used an 
                                                           
 
6In a study of 22 in-service and 12 pre-service New Zealand teachers, 
Begg and Edwards (1999) included a hospital question similar to the 
one above. It asked whether a large or small hospital would be more 
likely to have days with more than 80% female births. However, no 
results for this question were reported, although it is clear that few, if 
any, correct answers were given. 
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experiment concerning whether tacks would land on their 
side or on their backs when thrown. Two thought that even 
1000 trials would be insufficient to generate a reliable 
estimate of probability, indicating that they were relatively 
unfamiliar with the Law of Large Numbers. Note that this 
knowledge is crucial to the understanding of how to use 
experimentation in the probability curriculum, which many 
would say is essential for fostering a true understanding of 
the concept of probability in students (Kvatinksy & Even, 
2002; Steinbring, 1991; Stohl, 2005). 

Gender Studies 

Since this study found statistically significant gender 
differences in performance, it is relevant to review the 
research on this issue. Studies examining gender 
differences in probability and statistics performance are 
rare, although Liu and Garfield (2002) investigated gender 
differences in probability reasoning and misconception 
levels in student samples in Taiwan and in the United 
States, using the Statistics Aptitude Assessment test. The 
most striking finding was the higher level of performance 
by Taiwanese students of both genders in probability 
reasoning and freedom from misconceptions. In the US 
sample, women had a higher incidence of misconceptions 
than men, but Taiwanese men had significantly higher 
performance scores and fewer misconceptions than 
Taiwanese women, who outperformed US men on both 
criteria. 

With respect to the related topic of statistics, in 1996, 
Schram published a meta-analysis of male and female 
achievement in college-level applied statistics classes. 
Schram found that undergraduate men had an advantage in 
statistics achievement as measured by exam scores, but 
women outperformed men when achievement was 
measured by course grade (see also, Brooks, 1987; Buck, 
1987). 

More research has been done on gender differences in 
mathematics performance in general, which has some 
relevance to this study. In general, males tend to out 
perform females on higher-level problem solving tasks 
which  may include probability reasoning (Fennema, 
1974). Gender differences on mathematical performance 
tests tend to increase with age (Hyde, Fennema, & Lamon, 
1990) and among the gifted (Benbow & Stanley, l980, 
1983; De Lisi & McGillicuddy, 2002). 

Study Purpose and Method 

The purpose of the study was to evaluate teacher 
knowledge of certain pivotal probability topics, given that 
such understanding has been identified as a key factor in 
educational results (Shulman, 1986). Recent reviews of 
research in probability education have specifically 
mentioned the shortage of studies that evaluate the 

probability knowledge of teachers (Jones, Langrall, & 
Mooney, 2007; Stohl, 2005). 

The study examined misconceptions of probability 
among students (n=66) at a graduate school of education. 
All participants intended to teach mathematics at the 
elementary, secondary, or college levels. Most participants 
had teaching experience. Participants filled out a 
questionnaire concerning their educational background, 
their views of the importance of the study of probability, 
and their understanding of the concept of probability 
(including the effects of their beliefs on their view of 
probability). All reported some formal instruction in 
probability. Participants also completed a supervised 19-
question multiple-choice test of probabilistic concepts and 
misconceptions and provided explanations for their 
answers. 

It was necessary to assign a value to probability 
preparation that would permit comparison among 
participants. A numerical score was assigned to the level 
of probability coverage in high school and college based 
on the answers provided in the background questionnaire. 
These questions asked whether the participant had taken 
any full-semester or year-long courses in probability and 
for descriptions of the level of probability coverage in 
other courses. Numerical scores from 0 to 4 were assigned 
separately to high school probability preparation and 
college probability preparation based upon the criteria in 
the following table: 

Criteria for Comparing Levels of Probability Preparation 

Level of Coverage 
Numerical 
Score 

No coverage 0 
Minimal or unmemorable coverage 1 
Some but not substantial coverage in 
one or more courses. 

2 

One course covering probability in a 
substantial manner. 

3 

More than one course covering 
probability in a substantial manner. 

4* 

*There were no scores of 4 at the high school level in the sample. 

Overall Study Results 

Overall, the average rate of correct responses on all of 
the test problems was 56%. Average success rates on the 
individual test items ranged from 98% to 3%. All 
participants demonstrated a basic understanding of the 
concept of probability and could carry out simple 
probability calculations. Participants at all levels showed 
evidence of the equiprobability bias (miscounting of 
outcomes in a question concerning two dice), exhibited 
ignorance of the effect of sample size, and were seldom 
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successful on counter-intuitive conditional probability 
problems. 

Probability preparation, especially at the college level, 
was found to be strongly related to performance on the 
probability test. Participants who intended to teach at the 
secondary and college levels generally performed better 
than those who intended to teach at the elementary level, 
which may be related to the caliber and timing of their 
probability training. 

Gender differences were observed. The overall correct 
response rate of males (64%) was significantly greater than 
that of females (52%). Males and females also tended to 
answer differently, based on the type of question; many of 
these differences were statistically significant, including 
those with respect to sample size. 

Specific Results for Sample Size Problems 

Three problems were included to test for knowledge 
of the effect of sample size. The first involved comparing 
the probabilities of outcomes from coin tosses. 

The likelihood of getting heads at least twice when 
tossing a coin three times is: 

a. smaller than 
b. equal to 
c. greater than  (Correct) 

 the likelihood of getting heads at least 200 times 
 when tossing a coin 300 times. 

d. None of the above answers is correct. 

Analysis of Correct Responses to Coin Toss Problem 

Participant 
Level 

Number
Correct 

Number 
Incorrect 

n=66 
Total 

% 
Correct

% 
Incorrect

Doctoral 5 9 14 36% 64% 
Masters 6 15 21 29% 71% 
Elementary 4 27 31 13% 87% 
Total 15 51 66 23% 77% 

 

Overall, 23% of participants answered this question 
correctly. There were no significant differences among the 
levels of participants ("2=3.457, df=2, p=.178), but there 
was a tendency for higher scores at higher levels of 
mathematics education. The 23% accuracy rate on this 
problem is less than the 50% rate reported by Fischbein 
and Schnarch (1997) and somewhat greater than the 13.9% 
reported by Carter and Capraro (2005). 

Most of the errors resulted from a mistaken attempt to 
apply proportionality. The most commonly given incorrect 
answer was (b). Forty-one participants, 62% of the sample, 
answered that the likelihood of getting heads at least twice 
in three tosses is the same as getting heads at least 200 
times in 300 tosses. Proportionality was specifically given 
as the reasoning employed by 24 participants, although it 
may be implied in even more. Answers to this question 

show a fundamental lack of knowledge of sample size. 
Only five participants specifically mentioned it. 

The second problem, the hospital question, was first 
used by Kahneman and Tversky (1974). 

In a certain town there are two hospitals, a small one in 
which there are an average of about 20 births a day and 
a big one in which there are an average of about 60 
births a day. The likelihood of giving birth to a boy is 
about 50%, the same as that of giving birth to a girl. 
However, there are days on which more than 50% of 
the babies born were boys, and there are days on which 
more than 50% of the babies born were girls. Both 
hospitals like to keep track of the days when the rate 
significantly deviates from 50%, favoring either male 
or female births (in other words, when 60% or more of 
the births are of either sex). Consider, for example, the 
number of days in which the number of boys born 
exceeded 60% in the past year. In which of the two 
hospitals are there likely to be more such days? 

a. In the big hospital there were likely more days 
recorded where more than 60% boys were born. 

b. In the small hospital there were likely more 
days recorded where more boys were born. 
(Correct) 

c. The number of days for which more than 60% 
boys were born is likely to be equal in the two 
hospitals. 

d. You cannot tell. 

Analysis of Correct Responses to Hospital Question 

Participant 
Level 

Number
Correct

Number 
Incorrect 

n=66 
Total 

% 
Correct 

% 
Incorrect 

Doctoral 3 11 14 21% 79% 
Masters 7 14 21 33% 67% 
Elementary 6 25 31 19% 81% 
Total 16 50 66 24% 76% 

 

Twenty-four percent of participants correctly answered 
this question. Mathematics masters students did slightly 
better than the other two groups. Doctoral and elementary 
students performed similarly on this problem. There were no 
significant differences between the levels of participants 
("2=1.409, df=2, p=.494). The correct response rate of 24% 
is very close to the 22% rate reported by Tversky and 
Kahneman (1974). No prospective teacher in the Fischbein 
and Schnarch (1997) study answered this question correctly. 

With respect to the 50 incorrect answers, 22 
participants indicated that sample size does not matter. The 
greatest number of participants chose option (c) indicating 
that the number of days should be the same in both 
hospitals, often mentioning that 60% was the same 
proportion in both hospitals. Option (d), the second most 
popular answer, indicated that you cannot tell which 
hospital would be more likely to have days with over 60% 
male births. Those who answered in this manner often 
mentioned in their explanations that sample size does not 
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matter. They also often expressed that other unspecified 
factors were in play. For example, one participant 
indicated, “Size of the hospital does not matter since you 
are looking at percentages not numbers of births.” 

The third and final problem dealing with the effect of 
sample size involved numbers of winning games for the 
Yankees. 

Assume that the Yankees have a history of winning 
about 60% of their games. Which is more likely? 

a. The Yankees win 80 out of 100 games  
b. The Yankees win 8 out of 10 games (Correct) 
c. (a) and (b) are equally likely. 
d. None of the above answers apply. 

In this problem, 26% of all participants answered 
correctly. This compares to 29% in Rubel (2002). The 
results evidence the greatest difference between the 
elementary education participants and masters and doctoral 
students compared to the other two sample size problems. 
This difference was significant ("2=8.004, df=2, p=.018). 

Sixteen participants provided correct explanations, 
including references to sample size or the Law of Large 
Numbers, many more than the five participants who 
mentioned this with respect to the coin toss problem. Most 
of the participants who erred in this problem chose option 
(c), indicating that the errors resulted from a mistaken 
attempt to apply proportionality. All but two of the 24 
participants who provided explanations for option (c) 
specifically mentioned that 8/10 = 80/100. The two other 
participants indicated that the Yankees always had a 50% 
chance of winning, somewhat surprising because the 
underlying winning percentage was given as 60%.7 

Compared to the other sample size questions, this 
question had the greatest number of answers that reflected 
an inability to choose which event was more likely, with 
20 participants choosing option (d). In 18 of the 20 
answers, this was most often due to confusion between the 
stated 60% historical winning record and the two 
possibilities stated. For example, Participant 4 stated “6/10 
and 60/100 are more likely,” and Participant 27 indicated 
                                                           
 
7This may be an attempt to use the 50-50 approach (Rubel, 2007). 

“8/10 = 80/100 = 80% but 60% = 6/10 = 60/100.” Nearly 
all of the participants who incorrectly answered option (d) 
were also concerned with applying proportions. 

Analysis of Correct Responses to Yankee Problem  

Participant 
Level 

Number 
Correct

Number 
Incorrect 

n=66 
Total 

% 
Correct 

% 
Incorrect

Doctoral 6 8 14 43% 57% 
Masters 8 13 21 38% 62% 
Elementary 3 28 31 10% 90% 
Total 17 49 66 26% 74% 

Analysis of Probability Questions and Problems by Gender 

With respect to the sample size questions, males 
consistently outperformed females.8 For the coin toss 
question, 17% of females answered correctly, while 35% 
of males answered correctly, but the difference was not 
significant ("2=2.461, df=1, p=.117). For the hospital 
question, 13% of females answered correctly, while 50% 
of males answered correctly, a significant difference 
("2=10.366, df=1, p=.001). For the Yankees question, 11% 
of females answered correctly, while 60% of males 
answered correctly, also a significant difference 
("2=17.595, df=1, p=.001). 

The males in the sample did better in all questions 
concerning sample size. It is possible that men may be 
more aware of the Law of Large Numbers. This may be 
especially true with respect to the Yankees question, 
because men may be more familiar with sports statistics. 

                                                           
 
8Males do better in some categories of misconceptions and females in 
others. Males do seem to outperform females in more categories and 
by greater amounts, but this may be in part due to the much greater 
concentration of males who will teach at the secondary and college 
levels. 

Results by Gender for Sample Size Questions 

Question 
Description 

Question 
Number 

n=46 
Females Correct % F 

n=20 
Males Correct  % M 

n=66 
Total Correct % Total M or F 

Hospital 6 6 13% 10 50% 16 24% M** 
Coin Flips 10 8 17% 7 35% 15 23% M- 
Yankees 14 5 11% 12 60% 17 26% M** 

The final column indicates when either gender outperforms the other, using the designations F or M, 
 and whether the result is of statistical significance. 
 
( * =  Statistical Significance at .05, ** = Statistical Significance at .01, - = not statistically significant) 
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Probability Preparation 

The following table reflects the participants’ average 
levels of probability coverage in high school and college 
and their total coverage (obtained by adding the high 
school and college figures) by level and gender. Not 
unexpectedly, the math doctoral and masters students show 
a much higher level of coverage in college. Elementary 
participants show slightly higher levels of high school 
preparation, which may be due to their age, since 
probability instruction has recently become more prevalent 
in grade school curricula. 

Preparation by Level and Gender 

Participant Category 
Coverage in 
High School 

Coverage in 
College 

Total 
Coverage 

Females 1.0 3.3 4.3 
Males 0.6 3.6 4.2 

Doctoral 

Total 0.9 3.4 4.3 
Females 0.9 3.2 4.1 
Males 1.3 3.0 4.3 

Masters 

Total 1.1 3.1 4.2 
Females 1.3 1.5 2.9 
Males 1.8 2.0 3.8 

Elementary 

Total 1.4 1.6 3.0 
Females 1.2 2.2 3.4 
Males 1.2 3.0 4.2 

Total 

Total 1.2 2.5 3.7 

 

It was found that total score was significantly related 
to college preparation (r=.35, p=.004). As college 
probability preparation increased, total score increased. It 
was also found that total score was significantly related to 
total probability preparation (r=.29, p=.017). As with 
college preparation, as total probability preparation 
increased, total score increased; however, the relationship 
is not as strong as that of college-level probability 
preparation. Total score was not significantly related to 
high school probability preparation alone (r=.03, p=.80). 

That college-level preparation appears to have the 
strongest relationship with total score seems reasonable in 
that it is the most recent level of instruction for the 
participants, and is less likely to have been forgotten. It is 
also possible that higher-level coverage is more likely to 
address the areas of probability included in the probability 
test used in the study. The level of high school probability 
preparation may have less relevance to the misconceptions 
of probability tested, which are generally regarded as 
conceptually difficult. 

Females and males had about the same average high 
school preparation scores (1.2 units); male participants had 
better college preparation (men had 3.0 units and women 

had 2.2) and also had better overall preparation (men had 
4.2 units and women 3.4 units). Since college-level 
preparation was significantly related to performance, it is 
possible that the lower level of probability preparation of 
female participants accounts for much of the reported 
gender differences in these questions. 

Recommendations 

The primary limitations of the study concern the 
composition of the sample. All participants came from a 
single select school of education and were not randomly 
selected from schools of education or from the teaching 
population. A larger sample of randomly selected 
participants would generate results that could be 
considered more generally applicable to the entire teaching 
community. Nonetheless, these participants may fairly be 
considered representative of this institution and others like 
it, and, thus, the results may be considered applicable to 
this population. 

Additional participants, more evenly matched as to 
gender and mathematics education level, would be needed 
to form reliable conclusions concerning gender-related 
issues. This may be difficult, because the elementary 
education community is predominantly female. Further 
studies concerning gender differences in probability 
concepts and performance may contribute to an 
understanding of how to structure probability education for 
teachers as well as general education in probability. 

Implications for Teacher Education 

Recognition of the counterintuitive nature of 
probability and how to avoid falling victim to probabilistic 
misconceptions may be an essential and as yet unaddressed 
component of teacher education. Specifically, knowledge 
of the Law of Large Numbers and the effect of sample size 
is an important tool in understanding probability and 
statistics and may be key to teaching it properly. 

From the results of the study, it appears that teachers 
may need more instruction in order to properly recognize 
the effect of sample size.9 This can be accomplished with 
more instruction concerning the frequentist approach, 
which establishes probabilities through experimentation 
(Stohl, 2005). This instruction could be included in either a 
mathematical knowledge course or a pedagogy course. 
Steinbring (1991) advocated a dual classical/frequentist 
approach to probability to develop a deeper understanding 
in students, but it must first be addressed in teacher 

                                                           
 
9 The study also showed some instruction may be needed in 
compound probability, basic combinatorics, and conditional 
probability. 
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education in order to allow it to be taught properly 
(Kvatinsky & Even, 2002). 

One of the unique aspects of this study was the 
calculation and reporting of overall results and their 
correlation with probability preparation. A strong 
correlation was found between probability preparation and 
performance, especially probability preparation at the 
college level.10 

As suggested by Shulman (1986), Ma (1999), and 
others, teachers’ profound understanding of their subject is 
crucial to the quality of their teaching. The strong 
relationship found between probability preparation and 
performance in this study suggests that additional 
preparation in this area may allow future teachers to gain 
the fundamental understanding necessary to teach this 
subject more effectively. 
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