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Modeling in the Common Core State Standards 

Kai Chung Tam 
Macau, PRC 

The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging 
task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both 
one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the 
need for mathematical modeling in school mathematics and scrutinizes the strengths and weaknesses of CCSS 
with respect to current practices for teaching mathematical modeling. 

Keywords: Common Core State Standards, teaching mathematical modeling, application of mathematics 

Introduction 

The Common Core State Standards (CCSS) of English 
Language Arts and Mathematics represent an effort to 
establish a shared set of educational standards for most 
states and territories (NGA, 2009). Their widespread 
adoption puts the topic of mathematical modeling on the 
surface of discourse. Over the last half-century, a 
significant effort has been put into developing appropriate 
applications of school mathematics in teaching and 
learning. Due to this emphasis, many thoughts and 
exploratory practices have been produced and, perhaps, 
incorporated into classrooms; however, a crucial step 
towards institutionalizing mathematics curricula with a 
major emphasis on modeling and application has not been 
made until this point. 

The phrase mathematical modeling is, of course, not 
new to curriculum developers and theorists, as there is 
already extensive use of the words model or modeling in 
current standards documents (e.g., NCTM, 1989, 2000) 
and assessment work (NAGB, 2008). Consider some 
standards taken from the New York State Mathematics 
Core Curriculum, Standard 3 (NYSED, 2005): 

A.CN.3  Model situations mathematically, using 
representations to draw conclusions and formulate 
new situations 
A.CN.4  Understand how concepts, procedures, 
and mathematical results in one area of 
mathematics can be used to solve problems in 
other areas of mathematics 
A.CN.5  Understand how quantitative models 
connect to various physical models and 
representations 
The framework used in the NYS Mathematics Core 

Curriculum follows the NCTM’s five-content-strand and 
five-process-strand model (cf. NCTM, 1989, 2000); every 
content strand crosses with each of the process strands. For 
example, A.CN.3 belongs to Algebra, one of the Content 
Strands, and also belongs to Connection, one of the 

Process Strands. The terms “model” and “modeling” 
mostly appear under two process-strands, Representation 
and Connection. Without further description of the phrases 
“model situations,” and “understand how...can be used,” 
especially how these requirements interact with the 
content, teachers cannot implement the standards listed 
above. All the standards in the Connection Strand within 
Algebra are identical to those within Geometry (coded as 
G) and those within Algebra 2 & Trigonometry (coded as 
A2), namely, A.CN.x = G.CN.x = A2.CN.x for any x from 
1 to 8. This suggests that the standards associated with 
modeling are not necessarily clearly defined for teachers, 
and, as such, may not set very high expectations for 
students in the area of mathematical modeling. It is 
reasonable to require that students strive for connections 
within and between Algebra 1, Geometry, and Algebra 2, 
but there appears to be no significant expectation of 
improvement in those skills because no distinction exists 
to signal progress. While the effort put into writing the 
NCTM Standards (NCTM, 1989, 2000) cannot be ignored, 
especially the vivid illustrations of those standards 
regarding the Algebra, Connection, and Representation 
strands, the descriptions of the standards were, largely, too 
general for state curricula to be enriched and clarified. 

In consideration of identifying “criteria” by which to 
evaluate, it is possible to propose some necessary 
conditions to help provide some analysis. On one hand, 
basic requirements that are intended for all students should 
be clearly defined so that they can be operationalized 
easily by educators. On the other hand, more general 
descriptions of an ideal should be provided so that 
educators can make sense of it and are able to connect the 
standards to other curriculum goals. This article will first 
introduce the need for teaching modeling in the 
mathematics curriculum, and then examine how the CCSS 
captures modeling as one of its important standards with 
respect to both clarity and generality and the requirements 
for these conditions. 
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Desire for Modeling in Mathematics Curricula 

The need to apply school mathematics to the real 
world in an efficient way is important given the obvious 
gap between what needs to be taught and what is actually 
taught in schools. In fact, it is not easy to measure this gap, 
but many would agree that “pure” mathematics (as 
opposed to “applied” mathematics) continues to play a 
dominant role in mathematics classrooms; this may not be 
desirable, especially for those who perceive that school 
mathematics is not likely to be useful in their life, even for 
STEM professionals. For example, an associate professor 
at University of Washington observed that even engineers 
use “reasoning that look[s] very different from the 
activities of school math” (Stevens, 2007). Of course, this 
observation has to be carefully interpreted. Optimists 
might suggest that the engineers were invisibly influenced 
by their schooling in mathematics, even if they do not 
necessarily recognize it. Pessimists might insist that the 
most efficient education is to learn whatever directly 
precedes it in practice. Whether a student should learn a 
given mathematical topic in advance or on an ad hoc basis 
cannot be justified by reason alone, but needs to consider 
the results of rigorous experiments or carefully recorded 
experiences. The appropriate time for teaching 
mathematical content is at the heart of curriculum 
development in the inclusion or exclusion of any given 
topic. Certain content becomes debatable, when, for 
example, complex numbers are superficially introduced 
because engineers and mathematicians will need them for 
the future, whereas the average student likely will not. 
Delayed gratification is often a discouraging aspect of 
learning, and the hope that an average student could 
recognize its beauty is not likely the case, as Pollak (2007) 
pointed out. 

Even so, it is still doubtful if such gratification is 
really delayed, or simply disappears. Freudenthal (1968) 
pointed out that learning whole-number arithmetic is not at 
all easy, but children usually grasp it quite well since they 
are able to see whole numbers in the world; in contrast, 
children rarely see fractions, and have difficulties 
mastering operations with them. Even physicists tend to 
stick with old approaches in the analysis of rigid bodies as 
if they have forgotten modern linear algebra, which is 
more convenient. Such discrepancies occur not because 
teaching pure mathematics is bad, but because it is not 
learned in the way that is connected to contexts. 

In sum, the main reasons for teaching modeling are 
that every child can benefit from its power of application, 
and that mathematics can not only be learned in an isolated 
way but also be seen in the real-world. 

Conventional Definition of Modeling and its Teaching 

Before looking at how CCSS treats modeling, there is 
a concern with the vocabulary that is commonly used: 
modeling and applications. Many definitions (e.g., Pollak, 
2003; Blum, 2005) describe modeling as a process 
depicted by one or more modeling cycle(s), in which the 
following are performed: (1) understand and identify the 
issue in the real world, (2) formulate the structure of real-
world situation, (3) translate to a mathematical model, (4) 
derive some mathematical facts from the model, (5) 
translate the resulting facts back to the real-world (this is 
called interpretation), and (6) validate the results 
(Figure 1). All but step (4) connect to the real-world. 

(Adopted from Blum, 2005) 

Figure 1 

If the results of the modeling process are not satisfactory 
because of a discrepancy with what is observed, one can 
repeat the process by considering a simpler real-world 
situation, and/or modifying the model, and so on. Though 
every detail in this depiction of the modeling process 
might not be absolutely accurate in all situations, it is quite 
true that the essence of the modeling process “[goes] from 
the real to the conceptual or mathematical, and then back 
to the real” (Mario Juncosa, as quoted in Pollak, 2003). A 
person who is familiar with modeling, at least in a 
particular situation, should be able to move back and forth 
between the real-world and the mathematics in order to 
solve a problem. Another important feature of 
mathematical modeling is the fact that a mathematical 
model, as a product of the modeling process, is at least as 
valuable as the specific result: a model has the ability to 
regenerate solutions (hence it is reproducible), and it can 
also be reused for situations with similar structures, albeit 
in different contexts. For teachers, then, it is particularly 
useful to identify a few “classical” situations. In high 
school mathematics, for example, efficiency of airline 
routes, population growth trends, and the trajectory of a 
flying baseball are rich phenomena—as opposed to 
isolated applications—that can become motivation for 
learning many mathematical topics, such as Euler circuits, 
functions, vectors, probability and statistics. These 
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situations, and the mathematics surrounding them, are even 
reusable in college mathematics courses, including 
differential equations and dynamical systems. Moreover, 
mathematical models developed from such classical 
situations are also likely adoptable to other contexts. 

The framework for including modeling in the 
classroom can be classified into two contrasting types: 
modeling as a vehicle vs. modeling as a goal (Blum, 1993; 
Gershenfeld, 1999). The former relies on the conviction 
that mathematical modeling provides rich examples 
through which students can retain the mathematics that 
they have learned, and can extract important mathematical 
content. The latter treats the modeling process as a key part 
of mathematical content that needs to be taught and 
grasped, with recognition that the process is comprised of 
a different set of skills from what is needed for “pure” 
mathematics. 

Place for Modeling in CCSS 

The CCSS document for mathematics was organized 
into three parts: (1) a set of Standards for Mathematical 
Practice that contain general statements about attitudes and 
competencies that define proficiency in mathematics, 
regardless of content and grade level; (2) elementary-
school standards, listed under each grade from K to 8; (3) 
high-school standards, listed under six Conceptual 
Categories (Number & Quantity, Algebra, Functions, 
Modeling, Geometry, and Probability & Statistics) 

Modeling is an exception to this system of organization: 
it is both one of the Standards of Mathematical Practice 
and one of the Conceptual Categories. Also, the specific 
modeling standards are not listed under the same Category, 
but are integrated within all the other Categories. This 
indicates that modeling is perceived as needing unique 
consideration, but also may give rise to some confusion. Is 
modeling treated as a goal, since it is listed as a 

“standard”? Or is modeling a vehicle for learning other 
topics? 

Given the importance and complexity of modeling, it 
is necessary to evaluate whether the CCSS offers a 
balanced stance for its use in classroom mathematics. 
Applying the two conditions stated in the introduction, the 
following two qualities in regard to modeling standards 
will be examined: 

Definiteness: Are the basic requirements of each 
modeling standard specific enough so that 
mastery can be operationalized? Also, are there 
coherent descriptions of what constitutes the 
expectations of an ideal student who is successful 
in modeling? 
Relevance: Are the ideal expectations of modeling 
reflected by the basic requirements? How do the 
expectations and requirements resemble a widely-
accepted point of view? 
All the Standards of Mathematical Practice, including 

modeling, apply to every grade. For grades K through 8, 
the whole modeling process is not required as its own 
standard, but many standards do reflect steps in the 
modeling cycle. Theoretically, these standards can appear 
in every domain. For each domain, various standards from 
grade 6 incorporate some of the modeling steps (Table 1). 

Definiteness 

The ubiquitous nature of mathematical modeling 
sets it as important enough to be included as a standard for 
each grade and each content domain, but not clarifying its 
particular role has similar drawbacks to those regarding 
NCTM’s ‘Connection Strand’ of Standards. Fortunately, the 
CCSS do not repeat an identical description of modeling 
standards throughout the grades and domains; it attempts 
to describe what modeling is really about at each place. A 

Table 1 

Content Domain Standard An Excerpt of the Standard Modeling Step(s) Involved
(reference Figure 1) 

Ratios and Proportional 
Relationships 

6.RP.1 ...use ratio language to describe ratio relationship 
between two quantities....  

(2)(3) 

The Number System 6.NS.7c Write, interpret, and explain statements ... -3 ºC > -7ºC 
to express the fact that -3 ºC is warmer than -7 ºC 

(3)(5) 

Expressions and Equations 6.EE.9 Use variables to represent two quantities in a real-world 
problem that change in relationship to one another... 

(1)(2)(3) 

Geometry 6.G.1 Find the area of ... polygons by composing into 
rectangles .... apply these techniques in the context of 
solving real-world and mathematical problems. 

(1)(2)(3) 
(4)(5) 

Statistics and Probability 6.SP.5d ...relating the choice of measures of center and 
variability to the shape of the data distribution and the 
context in which the data were gathered 

(5) 
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good example of definiteness is the Statistics and 
Probability section of grade 8. The four standards [8.SP.1 
– 8.SP.4] provide a good idea of what eighth graders need 
to learn, such as how to interpret the slope and intercept of 
a linear model in an experiment. Another example is from 
the Kindergarten standards: 

K.CC.5  Count to answer ‘how many?’ questions 
about as many as 20 things arranged in a line, a 
rectangular array, or a circle, or as many as 10 
things in a scattered configuration; given a 
number from 1 – 20, count out that many objects. 
K.CC.6  Identify whether the number of objects 
in one group is greater than, less than, or equal to 
the number of objects in another group, e.g., by 
using matching and counting strategies. (Include 
groups with up to ten objects.) 

These specific statements strongly relate to the modeling 
process, in which counting constitutes a representation of 
data, and comparing is useful for analyzing data and for 
interpreting and validating the results. Such definiteness 
and clarity is not surprising because the mathematical 
outcomes of grade K are generally more well-defined. It is 
clear, after all, that if a child cannot count to 10 when 
entering first grade, then s/he has some mathematical 
deficiencies. In contrast, consider the following standard: 

8.EE.8c  Solve real-world and mathematical 
problems leading to two linear equations in two 
variables. 

Certainly a variety of word problems exist for eighth 
graders to solve, but what are some restrictions? Do they 
have to or at least know how to use a system of equations 
to solve the problem, even if a one-variable approach or 
other informal approaches are possible? What context and 
level of depth is necessary for students of this age? Will 
3/4 or 11 be included as a solution? It is still not a 
common practice1 to determine specific details of 
mathematics content requirements as the grade levels 
increase. Even less determined are the standards of 
competencies for mathematical modeling, which have 
become a focus of recent research (e.g., Lesh et al., 2007). 
The vagueness pointed out above calls for a more thorough 
scrutiny of the specifications of standards. Higher grade 
levels are reasonably more demanding. 

As for high school modeling standards, the degree of 
definiteness varies greatly between different standards. 
Some standards are written precisely, such as “Derive the 
formula for the sum of a finite geometric series (when the 
common ratio is not 1), and use the formula to solve 

                                                           
 
1 Here is an exception: automatically generated tests need very 
specified “test templates” in order to produce similar test items 
(Stocks and Carrington, 1993). Computer generated tests might not 
serve to test students’ ability of modeling, but the way of 
specification might inform the writing of standards. 

problems. For example, calculate mortgage payments.” (A-
SSE.4). Others can be more obscure: “Use inverse 
functions to solve trigonometric equations that arise in 
modeling contexts [...] and interpret them in terms of the 
context.” The standard lacks description of what contexts 
are preferred (artificial context? idealized situations? real 
industrial problems?), and how deep an interpretation is 
required. 

Relevance 

Throughout the CCSS document, model has two 
apparently different usages depending on the context: (1) 
in phrases such as concrete models, to model some 
mathematical concept by objects, by symbols, or by 
drawings, etc., the meaning of model (in its verb form) 
partially overlaps with that of represent, or describe; (2) 
model as in mathematical modeling, where the CCSS has 
defined mathematical modeling as “the process of 
choosing and using appropriate mathematics and statistics 
to analyze empirical situations, to understand them better, 
and to improve decisions.” This description indicates that 
modeling is to be treated as a goal. The modeling cycle is 
defined in a way that is not very different from the 
conventional one; however, in contrast to the conventional 
definition, modeling in the CCSS does not necessarily 
include the whole process of solving a real-world problem. 
For example, descriptive modeling involves only the first 
three steps without deriving new facts from the model. 

From grade 1 through grade 6, “models” are usually 
physical objects or graphical representations, the role of 
which are to visualize certain mathematical concepts, such 
as whole numbers, the four arithmetic operations, 
fractions, and decimals. In grade 7, however, the newly 
introduced probability model is itself a mathematical 
model. In grade 8, students are asked to “construct a 
function to model a linear relationship between quantities” 
[8.F.4]. These grade level standards imply not only that a 
model can be concrete or graphic and represent some 
mathematical ideas, but that it can also be abstract, and be 
represented by mathematical ideas and symbols. As a 
consequence, a more rigorous and explicit description of 
mathematical modeling is to be introduced at the high 
school level. Students who are able to grasp the evolution 
of modeling in CCSS, as the meaning moves from 
concrete manipulatives to abstract mathematical models, 
should benefit more from the mathematics they learn in the 
classroom and its application beyond. 

As mentioned, high school modeling standards are 
embedded in other Conceptual Categories. This feature is 
reasonable because modeling emphasizes the connection 
between mathematical content and the applications, but it 
also raises the following problems about relevance: 

(1) When a modeling standard is listed in another 
Conceptual Category, say, Geometry, should modeling be 
treated as a vehicle to teach geometrical concepts, or 
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should a teacher treat modeling as a goal, seeing the 
geometrical concept as a product offered by the modeling 
process? The two different purposes are more or less 
competing unless a unified approach is developed. As one 
of the Conceptual Categories, modeling is to be treated as 
a goal. This is also evident in that many CCSS standards 
mention that the content should be understood in contexts; 
however, the contexts are not specified, making the goal 
obscure. After all, traditional word-problems could be 
thought of as mathematics in contexts, but when they are 
used as mere exercises of routines that students have 
learned, they are not adequate for the teaching of modeling 
(Pollak, 1969). Indicating some classical situations and 
models might help to define better what constitutes goal of 
modeling. 

(2) When a standard is not indicated as a modeling 
standard, is it not required to be understood in context? 
This can be misleading. For example, the complex number 
system (N-CN) is not listed as a modeling standard, but it 
can model periodic signals2 and also can model planar 
transformations very conveniently. Recognizing vectors as 
having both magnitude and direction (N-VM.1) is not a 
modeling standard, but there is an authentic question of 
determining whether a physical quantity is a vector or a list 
of scalars. For example, electric current apparently has 
direction and magnitude but is not a vector. 

(3) There is potential misuse of the label “modeling” 
surrounding the standards about technology (e.g., A-
REI.11, F-IF.7). Although technology is a key tool in 
teaching and learning mathematics, what relates it to 
mathematical modeling is the fact that computational tools 
aid in solving more sophisticated models, and that 
graphical tools help students to see mathematics in a more 
vivid way. Technology can help, but does not necessarily 
imply mathematical modeling. 

(4) All of the standards within the Conceptual Category 
of Statistics and Probability are labeled as modeling 
standards. This is reasonable in theory, since statistics 
models data and their analysis, and probability models 
chance and random behavior. Actual practice, however, 
tends to treat statistics as a set of numerical tricks and 
using probability to model randomness in context is rarely 
addressed adequately in school mathematics (Moore, 
1990). Even topics closely related to and aligned with 
mathematical models do not necessarily imply the actual 
use of modeling in the classroom! 

In essence, mathematics that can be applied may not 
be learned in a way that it can be applied, and mathematics 
that is related to real applications3 may not be taught as it 
relates to applications. 
                                                           
 
2 sine and cosine also work, yet they do not have mathematical 
properties as efficient as complex numbers. 
3 One belief is that all mathematics are more or less related to 
applications, especially when pure number theory has been applied to 
cryptography (Personal communication with Henry Pollak). 

Final Remarks 

Implementing, on a large scale, excellent 
mathematical teaching in the area of modeling and 
application is particularly challenging. Burkhardt (2006) 
provided Henry Pollak an overview of the development of 
modeling curricula to inform future directions (cf. Pollak, 
2003, for a more detailed, historical review of modeling 
curricula in the United States; de Lange, 1996,for an 
international sketch). Establishments, including the 
production of materials, development of courses, and some 
reforms at the institutional level, were restricted to a small 
scale; most parts of the mathematics curricula continue to 
have only a weak connection to the real world. Burkhardt 
identified four barriers to curriculum change: systemic 
inertia; the real world (which often causes unwelcome 
complications in actual computations); limited professional 
development; and research of the development itself. 
These notions will continue to shape further developments. 
As Burkhardt mentioned, “key levers for tackling 
resistance to change are curriculum descriptions, 
supported by well-engineered materials to support 
assessment, teaching, professional development and public 
relations (in the literal sense) that are well-aligned with 
each other” (p. 190; italics and parentheses in original). A 
later summary of the Netherlands’ “realistic mathematics 
education” by Vos (2010) also claimed that the Dutch have 
solved the first three of these barriers, though a lack of 
research exists. Indeed, what Vos described was that their 
success was based on a well-engineered practice rather 
than strong research. This is likely the case, since research 
can retain, replicate, summarize, or generalize successful 
practice at a higher probability, but it cannot replace the 
creativity and careful execution of a successful curriculum. 

Logically, the “next step” following the CCSS is to 
bring modeling into classrooms. The “next step”, indeed, 
has been started for decades. Many textbook series, such as 
Connected Mathematics (Lappan, et. al, 2003) and Core-
Plus Project, (Schoen & Hirsch, 2003) were aligned with 
NCTM Standards and supported an interest of application. 
The Consortium for Mathematics and Its Applications 
(COMAP) has been producing materials in different 
formats for the purpose of modeling and applications since 
1980. COMAP also developed a series, Mathematics: 
Modeling Our World, (Garfunkel, Godbold, & Pollak, 
2000), which is of particular importance because it is both 
standard-based and focused entirely on mathematical 
modeling. COMAP is also supporting a current project that 
will result in A Handbook of Mathematical Modeling for 
the CCSS, which is based on the modeling standards and 
contains lessons designed to engage both teachers and 
students in modeling activities. As implied by Burkhardt’s 
view, these efforts have not yet attained enough prevalence 
because the mere interaction between standards and 
textbooks might not be adequate. Systemic inertia has to 
be moved by a joint effort of curriculum developers, 
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textbook writers, teachers and students. Although the 
CCSS modeling standards are not specific enough, the 
emphasis on modeling affords the opportunity for 
educators to think about how modeling and applications 
should look like in classrooms and, eventually, to reshape 
school mathematics to be more valuable for all students. 
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