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Design Research in the Netherlands: Introducing Logarithms 
Using Realistic Mathematics Education 

David C. Webb 
University of Colorado at Boulder 

Henk van der Kooij 
Freudenthal Institute for Science and Mathematics Education 

University of Utrecht, The Netherlands 

Monica R. Geist 
Front Range Community College 

Westminster, Colorado 

This article describes Realistic Mathematics Education (RME), a design theory for mathematics education 
proposed by Hans Freudenthal and developed over 40 years of developmental research at the Freudenthal 
Institute for Science and Mathematics Education in the Netherlands. Activities from a unit to develop student 
understanding of logarithms are used to exemplify the RME design principle of progressive formalization. 
Starting from contexts that elicit students’ informal reasoning, a series of representations and key questions 
were used to build connections between informal, pre-formal and formal representations of mathematics. 
Student and teacher comments from the pilot of this unit in a College Algebra course at a U.S. community 
college suggest this approach may benefit students who have been underserved by traditional approaches to 
mathematics instruction. 
 
Keywords: instructional design principles; student reasoning; problem contexts; representations; progressive 
formalization; realistic mathematics education; logarithms 

The historical foundations for teaching school 
mathematics in the United States emerged during the first 
half of the 20th century, an era dominated by behaviorist 
assumptions regarding student learning. These origins 
established a sustained mathematical experience in the 
United States that, until recently, often favored students 
with recall skills, a desire for precision, and a tolerance for 
repetition as practice (De Corte, Verschaffel, & Greer, 
1999). Left behind, unfortunately, have been a multitude of 
students who are nonetheless capable of doing 
mathematics. Often those students who struggle with 
higher mathematics desire opportunities to make sense of 
mathematical relationships, which are the foundation of a 
more robust understanding of mathematics. 

Realistic Mathematics Education 

In many mathematics classes, particularly in post-
secondary developmental mathematics courses, teachers 
believe that students need to be told how to solve a 
problem, instead of motivating students to think for 
themselves. Students watching a teacher work through 
several examples (i.e., worked-example instruction; 
Sweller & Cooper, 1985) followed by individual student 

practice on assigned problem sets is still the principal 
method of instruction in U.S. mathematics classrooms. 
Rarely do secondary and community college students have 
the opportunity to explore a new topic or representation 
through meaningful problem contexts. Instructional 
approaches often focus on student training in formal 
mathematics without including contexts and pre-formal 
representations, which is counterproductive for many 
students who desire to make sense of the mathematics they 
encounter. For such students, the lack of relevance and 
mathematical sense making often results in frustration, 
disengagement and dropping the course. 

During a two-week study to test the feasibility of 
adapted Dutch materials in U.S. community college 
classrooms, we collaborated on the design of a unit to 
promote student understanding of logarithms using the 
instructional design theory of Realistic Mathematics 
Education (RME). Originally proposed by the Dutch 
mathematician Hans Freudenthal in the 1970s, an essential 
principle of RME is that engagement in mathematics for 
students should begin within a meaningful context. The 
development of understanding and the ability to make 
sense of mathematical representations begins with the 
student’s own informal reasoning, or in the words of 
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Freudenthal (1991), with “common sense.” 
Drawing from a cognitive perspective of 
learning, students connect prior knowledge to 
new mathematical representations, concepts, 
and skills. As a result, a more robust way of 
knowing and doing mathematics is constructed 
from the student’s perspective. This approach 
gives students a greater sense of ownership. 
Although the role of the teacher is essential to 
help students collectively negotiate the 
meanings and use of conventional 
mathematical terms, symbols, representations, 
and procedures. It is important to point out 
here that the “realistic” aspect of RME is not 
just because of its connection with real world 
contexts, but it is related to the emphasis that 
RME puts on offering students problem 
situations which are imaginable. The Dutch translation of 
“to imagine” is “zich realiseren,” and so it is this 
emphasis—on making something real in your mind—that 
gives Realistic Mathematics Education its name (van den 
Heuvel-Panhuizen, 2000). Real world contexts can be used 
but this is not always necessary. More often, contexts are 
idealized to motivate powerful mathematical strategies. 

Over the past 40 years, research faculty at the 
Freudenthal Institiute for Science and Mathematics 
Education (FiSME1) have focused on design and 
development research in mathematics education 
(Gravemeijer, 1994; de Corte, Greer, & Verschaffel, 
1996). As a result, the Netherlands has sustained a 
successful track record in international comparisons of 
mathematics achievement (e.g., TIMSS and PISA). In the 
United States and other countries, research projects that 
have utilized approaches based on FiSME’s research have 
demonstrated similar success in motivating teacher change 
in classroom practice in elementary (Cobb, McClain, & 
Gravemeijer, 2003), middle (Romberg, 2004; Her & 
Webb, 2004), secondary (de Lange, Romberg, Burrill, & 
van Reeuwijk, 1993), and college level mathematics 
(Rasmussen & King, 2000; Larsen & Zandieh, 2007), with 
resulting gains in student achievement (Romberg & 
Shafer, 2008). To exemplify the design principles used for 
RME curriculum, instruction and assessment, this article 
focuses on Exponents and Logarithms, a unit developed 
for U.S. community college students enrolled in College 
Algebra (based on the original unit Exponenten en 
Logaritmen, designed by Jan de Lange [1978]). 

Progressive Formalization 

At the heart of RME is the didactical construct of 
progressive formalization. The “process of going from the 

                                                           
 
1 http://www.fi.uu.nl/en/ 

concrete to the abstract” has been espoused in education 
psychology literature in the United States for at least a 
century (cf. Dewey, 1910) and can be traced back to 18th 
century education-related writings in Europe (e.g., 
Rousseau, Pestalozzi, Froebel, Montessori, etc.). Yet, 
RME offers more than a way to support student transition 
from the concrete to the abstract. RME instructional 
sequences are conceived as “learning lines” in which 
problem contexts are used as starting points to elicit 
students’ informal reasoning. That is, the context is a 
source for new mathematics. 

When appropriate, the teacher introduces students to 
pre-formal strategies and visual models that are 
progressively more formal to support their mathematical 
sense-making. Pre-formal strategies are often more 
abbreviated and efficient (e.g., the use of “chunking” of 
larger values when solving a division problem rather than 
using repeated subtraction or directly counting members of 
a group). Pre-formal models are representations that can be 
used to solve problems across various contexts, such as a 
ratio table or a double number line to solve a proportion. 
Pre-formal strategies and models offer the additional 
benefit of being more closely related to how a student 
reasons about a problem. Sometimes not as efficient as a 
formal algorithm, pre-formal strategies and models are 
often better understood. Treffers (1987) described this as 
“horizontal” and “vertical” mathematization, where 
horizontal mathematization is the process of developing 
mathematical tools to solve a problem in a realistic context 
and vertical mathematization is advancing within 
mathematical domains. 

Problem contexts, visual representations, pre-formal 
strategies and formal mathematics are intertwined in RME 
curriculum and instruction. Contexts are not added at the 
end of the learning line, where they are often excluded or 
perceived as an afterthought. Instead, contexts serve as 
realistic starting points to support student engagement and 
elicit student thinking. These contexts are then coupled 
with successive problems, representations, and strategies 

Figure 1. Iceberg for fractions 
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to develop a coherent learning line that continues to build 
and strengthen the connections between contexts, concepts, 
procedural knowledge, and student understanding of formal 
mathematics. To convey how progressive formalization is a 
requisite principle in the design of instructional sequences, 
FiSME researchers developed the “Iceberg Model” to 
illustrate how informal, pre-formal and formal mathematical 
models and strategies are used by students to develop a 
“floating capacity” for the understanding of formal 
representations of mathematics (see Figure 1). 

The iceberg consists of the “tip of the iceberg” and a 
much larger area underneath, which is designated as the 
“floating capacity.” The tip of the iceberg represents the 
formal procedure or symbolic representation of interest. 
However, before this formal level is reached, skills and 
insights at a less formal level need to be elicited from 
students and developed (floating capacity). Using this 
approach, students’ prior knowledge is assessed through 
their responses to realistic contexts, which motivate the use 
of mathematical language. Later, students use structured 
models, which lead to a deeper understanding of more 
symbolic, formal representations (Boswinkel & Moerlands, 
2001; Webb, Boswinkel & Dekker, 2008). 

This model has been an effective way to communicate 
that starting with formal procedures and ignoring the 
meaningful representations below the surface is not the 
most effective way to facilitate student understanding of 
mathematics. The direct-formal approach, in the absence 
of other well-known representations (e.g., fraction bars, 

arrays, number line, etc.), encourages students primarily to 
use recall as their approach. In contrast, taking advantage 
of less formal representations may have greater potential 
for relating students’ informal knowledge, promoting 
number sense, facilitating student problem solving, and 
establishing representational connections which lead to a 
deeper understanding of mathematics. 

Using Progressive Formalization 
to Introduce Logarithms 

In most textbooks, logarithms are introduced as the 
inverse of exponentials ( y = bx ⇔ x = logb y ). Using formal 
notations of exponential rules, logarithmic rules (e.g., log a + 
log b = log ab) are derived. Although mathematically correct, 
this approach does not offer students a meaningful basis to 
relate logarithms to more familiar mathematical 
representations. To conceptualize logarithms, students need 
to understand exponential growth. 

Using the RME approach, a lesson series on 
logarithms initially developed for use in the Netherlands 
(de Lange, 1978), was translated and adapted for use as a 
replacement chapter in a College Algebra course at a 
community college. The lesson series had three parts. Part 
A addressed exponential processes in real life contexts. 
Part B focused on formal exponential functions and the 
rules of exponents. In part C the logarithm was introduced 
using the context of time and growth. 

Informal and Pre-Formal 

The concept of exponential growth 
was presented by contrasting linear and 
exponential growth in a quasi-realistic 
context: 

The initial context and question in 
Figure 2 addresses a misconception about 
percentages and is an opportunity to 
contrast exponential and linear growth. In 
the class, discussions about the different 
growth patterns led to the characteristics 
of linear and exponential growth, which 
served later as a pre-formal model for 
further reasoning about exponentials and 
logarithms (Figure 3). Although this use of 
the double number line may seem 
misleading, the similarities between the 
two visuals (i.e., constant additive and 
constant multiplicative growth) establish 
the relationship between the slope of linear 
functions and the base for exponential 
functions. In both cases, the duration of 
the growth period, t, will be a particular 
variable of interest. 

Figure 2. Introduction to Unit 

Figure 3. Visualizing Characteristics 
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Additional examples of problems that 
relate informal and pre-formal reasoning 
include an investigation of bacteria that is 
reported to double in volume every two 
hours (Figure 4). The choice of doubling as 
a growth factor for E. coli over a given 
time period is intentional in order to 
generate a pattern that is easier for students 
to work with than the real growth factor. 
The choice of doubling as growth factor 
also plays a role when the concept of a 
logarithm is introduced. In addition, the 
use of the graph for different volumes and 
related ratios emphasizes the stability and 
predictability of function when the 
difference between two time periods is the 
same. 

The Switch to Logarithms 

After working with exponentials, the first problem in 
the logarithms section introduces a context that requires 
analysis of graphs and tables for the area covered by a 
water plant (duckweed) that doubles in size every day 
(Figure 5). Students are asked to interpret a graph to 
determine the time it takes for the water plant to grow to x 
square meters. This becomes an extension of the foal and 
bacteria problems. While completing a table with values 
that can be read from the graph, students are asked to find 
times for areas that cannot be found in the graph. 

A table that summarizes many different times and the 
respective areas for duckweed is then presented to students 
(Figure 6). Students are asked to find patterns in the table 
and explain why these patterns make sense. Using the 
notation t(A) as an abbreviation of “the time (t) it takes to 
cover area (A) when starting with an area of 1 square 
meter,” t(8) = 3 means that it takes 3 days for the area to 
grow to 8 m2, or eightfold its original area. Likewise, t(20) 
= 4.32 means that it takes 4.32 days for the original 1 m2 to 
grow to 20 m2. 

Using the table, students find patterns like: t(5) + t(3) 
= t(15), t(25) = 2⋅ t(5) and t(18) − t(2) = t(9). The patterns 
make sense to students and are pre-formal precursors to the 
product, power, and quotient rules for logarithms. 

Formalization 

Between the sections on exponents and logarithms, 
context-oriented problems are progressively decreased 
while increasing the formal representation of exponential 
growth and decay. Visual representations, such as the 
double number line, are used to study mathematical 
structure and generalizable aspects of exponential 
phenomena. Yet during the discussion of the rules for 
exponents and related concepts, students often refer back 

to the previously explored contexts as a referent for 
making sense of more formal representations. Further 
generalization of this relationship eventually leads students 
to propose the product rule. Depending on the student’s 
varying abilities to reason with abstract symbolic 
representations, some will reason with logarithms without 
any reference to context while others will refer back to 
contexts involving time.  

For example, the expression log2 (5) + 3 can be 
considered within the context of time-area as the time it 
takes to quintuple in area plus three more days (during 
which the area grows 8 times, 2x2x2), resulting in the time 
it takes to reach 40 times the original area. The formal 
representation of this situation is: 

log2 (5) + 3 = log2 (5) + log2 (23) = log2 (5 × 8) = log2 (40) 

Even for those students who are comfortable with 
symbolic representations, this instructional approach 
provides them with conceptual referents that are generative 
and could be applied when they encounter new problem 
situations. 

Results from the College Algebra 
Two-week Pilot 

The results presented here are used to illustrate the 
reactions from community college students (who were 
generally unsuccessful in their prior experiences with high 
school algebra) and Monica Geist (who had over 10 years 
experience teaching College Algebra). According to Geist, 
students were engaged at a higher level than at any other 
time in the course, or in any other mathematics course that 
she had taught. With so much emphasis on realistic 
examples and visual representations, students had 
something to “hook” their new knowledge onto. When 
contemplating how logarithms were previously taught, 

Figure 4. Growth of E.coli 
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Geist realized that students did not have a schema for 
understanding logarithms. For students from previous 
semesters, it seemed that logarithms were a set of random 
rules that had to be memorized in order to pass the test. In 
response to the RME unit, Geist noted that students were 
able to propose more complex and related mathematical 
structures and offer generalizations of mathematical 
relationships. Students were motivated to ask timely, 
unsolicited questions that promoted further discussion of 
complex mathematical structures and proposed the general 
rules for exponential and logarithmic functions before they 
were presented explicitly in class. The two-week trial 
demonstrated that students could acquire a profound 
understanding (Ma, 1999) of the connection between 
exponential growth and logarithms.  

The time invested in developing student understanding 
of exponential growth was the key to their understanding 
of logarithms. This principle of using realistic contexts to 
promote student understanding is rarely found in units on 
logarithms. Typically, the format of algebra textbooks 
introduces concepts and principles first with applications 
problems presented later, assuming there is enough time to 
get to the application problems. For this community 
college instructor, the level of student engagement and the 
questions students asked convinced her that this approach 
was a significant improvement over the previous approach. 
To her, the most compelling evidence of success was the 
mathematical insights shared by her students. The 

following are a selection of students’ reflections about 
their experiences with logarithms, previously “the most 
misunderstood concept of the entire College Algebra 
course”: 

• I had to figure it out for myself, so it stuck in 
my brain. 

• I understood the main idea. It wasn’t just 
performing problems, it was understanding the 
why behind the problem. It used to be if you put 
a problem in front of me, I couldn’t do it unless 
you told me what you wanted me to do. Here I 
understand everything and can just do it. 

• It taught me more than just how to “do” the 
problems—I understand it! Loved the 
experience, it was great! (P.S. You should 
really do every chapter like this. I’m serious!) 

• I came out of this with some understanding and 
I think under different circumstances that may 
not be the case. The visual charts and graphs 
were very helpful as was the fact that we were 
able to use both words and math on the test to 
get our points across. 

It is noteworthy that the response of many students in the 
end-of-unit evaluation survey revealed an appreciation of 
learning and understanding mathematics, and not merely 
an interest in earning a passing grade. Their feedback 
indicated the viability of this approach for increasing the 
students’ understanding of algebra. 

No Rewards without Risks 

From this example and the other 
design experiments that were previously 
noted, Realistic Mathematics Education 
and the principle of progressive 
formalization serve as generative design 
principles for both developing 
instructional materials and informing 
instructional decisions. Teachers who 
choose to use this approach need to 
understand that contexts can initiate the 
investigation of new mathematics, and 
that pre-formal models and strategies 
should be welcomed for promoting the 
understanding of formal mathematical 
goals (Webb, 2008). 

Implementation of such materials is 
not trivial. It demands a deeper 
understanding of the targeted 
mathematics topics and a greater 
relational understanding (Skemp, 1978) 
of how contexts and representations can 
be used to elicit student reasoning and 
promote learning (e.g., Webb, 2010). 
Using unfamiliar and innovative materials 
requires an instructor to take risks with 
their students, since this was most likely 

Figure 5. Graph of Duckweed 

 
Figure 6. Table of Area vs. Time 
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not the way the instructor learned mathematics. The co-
authors of this paper worked to design lessons and to 
support the instructor in distributing the risk (Webb, 
Romberg, Burrill & Ford, 2005). In spite of uncertainty, 
the instructor’s commitment to implement these materials 
was rewarded by the students’ tangible success when faced 
with challenging content and the instructor’s own 
motivation to adapt other courses by using RME and 
progressive formalization. This subsequent adaptation of 
additional courses by Geist and, soon after, by other 
instructors in her department (Geist, Webb & van der 
Kooij, 2008) attests to the utility of RME in informing the 
design of a more student-centered mathematics classroom. 
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