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Mathematical Visualization 

Jonathan Rogness 
University of Minnesota 

Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, 
both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can 
be particularly important as we search for ways to work with students raised with constant visual stimulation, 
from video games to MTV. Computer generated images, animations and interactive demonstrations permeate 
all areas of mathematics education, making it important for educators and researchers to determine how best to 
harness these tools to increase student learning. This survey article discusses what we know, and do not know, 
about creating effective visualizations and describes possible avenues for future work in the area. 

Note: Based on a colloquium presentation at Teachers College in April 2011. 

Keywords: Visualization, Möbius Transformations, Animations, YouTube. 

Introduction 

Although well-drawn diagrams have long been a part 
of mathematical education, the advent of computer 
graphics in the last thirty years has enabled an explosion of 
mathematical visualizations for use in research and 
teaching. Computer based images and interactive 
visualizations are now widely used in both K-12 and 
postsecondary courses; an online search for the phrase 
“interactive calculus applet” currently returns nearly nine 
million web pages. This trend seems likely to continue as 
modern systems make it even easier for educators to create 
compelling visualizations for students. 

However, quantity does not ensure quality, and there 
are many open questions about which visualizations are 
most effective in increasing student learning, and about 
how they should be used in the classroom. This article 
serves as a short survey of these issues and as a primer for 
those who wish to use or even create visualizations. The 
first section describes three particularly effective 
visualizations to provide context for the rest of the article. 
The second section discusses what makes for an effective 
visualization. The third section describes why visualization 
is important for mathematics education, followed by a 
fourth section discussing open questions and possible 
research in the field. Finally, a short appendix lists some of 
the current tools available to create your own 
visualizations. 

Examples 

There are far more students and instructors in calculus 
courses (and below) than in junior- or senior-level 
undergraduate mathematics courses, so it would stand to 
reason that the vast majority of visualizations are created 
for those lower level courses. The examples in this section 

are somewhat unusual in that they are based on higher 
level material. This choice was made for two reasons: (a) 
to remind readers that even advanced “theorem and proof” 
based mathematics courses can benefit from visualizations, 
and (b) to point out that a truly exceptional visualization 
can take a high level concept and make it understandable 
to a less advanced student, or even the general public. 

The examples in this section are freely available 
online, and readers are highly encouraged to download 
them. The static images in the figures below do not do 
them justice. 

Example 1: Geodesics. A geodesic on a surface is a 
generalization of a straight line on a plane. On a small 
enough scale, a geodesic will always indicated the shortest 
path between two points on the surface. A careful 
mathematical definition of geodesic involves fairly 
sophisticated notions from metric space theory or 
multivariable calculus, but informally one can think of a 
geodesic as the path a small ant would trace out on the 
surface while always crawling straight ahead, never 
turning left or right. 

This characterization of geodesic paths is illustrated 
wonderfully in the opening scene of (Polthier, Schmies, 
Steffens & Teitzel, 1997), which may be freely 
downloaded at http://page.mi.fu-berlin.de/polthier/video/ 
Geodesics/Scenes.html. The one-minute video shows a 
motorcycle following a wild path around a three-
dimensional figure-eight surface, looping around the 
surface and through its holes. A few well-chosen camera 
angles make it clear that the handlebars on the motorcycle 
never turn to the left or right. See Figure 1. In other words, 
the motorcycle is driving straight ahead, and the seemingly 
random path on the surface is in fact a geodesic. This 
powerful visualization makes a complicated idea from 
differential geometry accessible to students in middle or 
even elementary schools. They may not be able to write 
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Figure 2. 

down a rigorous definition involving derivatives of 
parametric paths in space, but students who watch the 
video can gain an accurate understanding of what a 
geodesic is. 

Example 2: Curved Spaces. We live in a three-
dimensional universe—or, at least, are limited by human 
vision to seeing a three-dimensional universe. Many 
people assume that the universe is shaped like 3, i.e. a 
three-dimensional space which stretches forever in every 
direction. Surprisingly, this might not be the case. To 
understand why, it can help to drop down a dimension and 
think about video games. 

The two-dimensional space 2 is a flat plane which 
stretches out forever in every direction. There are other 
spaces which have a finite area and yet allow a two-
dimensional object to move forever in any given direction. 
For example, in the video game Asteroids, if the player’s 
spaceship reaches the top of the screen it reappears on the 
bottom; similarly, if it flies off the side of the screen, it 
reappears on the opposite side. The ship can fly forever 
without ever changing direction, and yet its “universe” is 
limited to the area of the computer screen. 

Mathematically we say the opposite edges of the 
screen are glued to each other. If the screen were made of a 
bendable material, we could physically glue these edges 
together, revealing that Asteroids is in fact played on a 
torus which has been cut open and laid out flat so that we 
can display it on a computer screen. See Figure 2, which 
shows a series of frames from a video available at 
http://www.math.umn.edu/~rogness/visualization.shtml. 
After the torus is cut open and laid flat, portions of the 
spaceship appear in all four corners of the resulting 
rectangle. 

Moving back up a dimension, the possible shapes of 
our universe are mathematical objects known as 3-
manifolds, which are typically not defined in the American 
curriculum until advanced undergraduate or beginning 
graduate level courses in topology. The Euclidean space 

3 is just one of the possibilities; in others, it could be 
possible to fly in a spaceship and, as in Asteroids, 
eventually return to one’s starting point without having 
changed direction. 

We can construct a space by generalizing the two-
dimensional example above. Instead of a rectangular 
computer screen, imagine a cubical room. The room has 

Figure 1. 
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Figure 3(a) and 3(b). 

      

Figure 4(a) and 4(b). 

the peculiar property that, if you 
walk through any wall, you 
reappear on the opposite side of the 
room. Similarly, if you move 
through the floor, you find yourself 
coming through the ceiling at the 
top of the room. This special room 
is known as the 3-torus. 
Mathematically we again say the 
opposite sides of the 3-torus are 
glued to each other, but the 
limitations of our human senses 
make it impossible to create an 
illustration analogous to Figure 2. 
One cannot draw an accurate three-
dimensional picture in which all 
three pairs of opposite sides of the 
cube are stretched around and 
joined together. Hence to visualize the space, we are 
limited to imagining what it would look like from the 
inside. 

If you stand in the middle of the 3-torus and look 
straight ahead, your line of sight will pass through the front 
wall and come out of the back. The result is that you will 
see yourself from behind, in what appears to be a second 
copy of the room. (However, it is in fact the same room!) 
Similarly, if you look to the right, left, down, up, or at any 
other angle, you will see yourself in the room, but from 
different angles. It will appear as though you are 
surrounded by cubes stretching off forever in every 
direction, despite the fact that your entire “universe” 
consists of the one cubical room with finite volume. 

Understanding what the inside of a 3-manifold looks 
like is a difficult proposition indeed. Fortunately a 
mathematician named Jeffrey Weeks has created a 
computer program called Curved Spaces which allows 
users to fly through 3-manifolds to analyze their shape; the 
software is freely available to download for multiple 
platforms at http://www.geometrygames.org. (The website 
also has programs to help visualize the two-dimensional 
example described above.) Figure 3(a) shows what it 

would look like to stand inside a 3-torus which contained a 
large Earth in the middle. Notice how the multiple Earths 
seem to appear in every direction; the 3-torus appears to be 
infinitely large, but it is in fact finite—the size of one cube, 
whose opposite sides are glued together in a special way. 
Curved Spaces includes a variety of 3-manifolds for users 
to explore interactively, many of which are created with 
non-cubical rooms. Figure 3(b), for example, shows 
Poincaré Dodecahedral Space, in which a spaceship flying 
through a pentagonal face of a dodecahedron reappears on 
the opposite side of the polyhedron. 

Curved Spaces is a fantastic piece of software, and 
perhaps the single most effective mathematical 
visualization tool this author has encountered. It makes 
complex, graduate-level mathematics accessible to school-
age children; at the University of Minnesota it is regularly 
used in enrichment programs for students as young as 
fourth grade. 

Readers who are interested in further exploration of 3-
manifolds are highly encouraged to read (Weeks, 2001). 
Weeks is a masterful writer and received a MacArthur 
Fellowship in recognition of his work helping students 
understand and visualize manifolds. 



ROGNESS 

4 

      

Figure 5(a) and 5(b). 

Example 3: Möbius Transformations Revealed. A 
Möbius Transformation is a function of the form 
f (z) = (az + b) /(cz + d) where a, b, c, d, and z are all 

complex numbers, and ad − bc ≠ 0. They are well 
known in complex analysis as functions which are 
conformal and which send circles and lines on the complex 
plane to circles and lines. See Figures 4(a) and 4(b) for the 
effect on one particular Möbius Transformation; the points 
in the colored grid in Figure 4(a) are sent to the 
corresponding points in Figure 4(b). Notice that the 
straight line segments were sent to arcs (i.e. segments) of 
circles, and the arcs still meet at right angles. Surprisingly, 
the colored grid has been turned inside out, so that the gray 
region of the plane is now bounded, and the colored areas 
stretch out to infinity. 

Möbius Transformations Revealed is a short film 
created at the University of Minnesota by Douglas Arnold 
and this author for the 2007 International Science and 
Engineering Visualization Challenge, in which it won 
Honorable Mention. A primary goal of the film was to 
show non-mathematicians how beautiful mathematics can 
be, but the video is more than random pretty pictures. It 
illustrates a theorem which states Möbius Transformations 
can be constructed by copying the original points onto a 
sphere via inverse stereographic projection, moving and 
rotating the sphere as necessary, and then projecting the 
points on the sphere back to the plane. Figures 5(a) and 
5(b), for example, show how to represent the Möbius 
Transformation used in Figure 4 using a sphere. 

Anecdotal reports from students and instructors 
around the country suggest that, for large numbers of 
students, this representation of Möbius Transformations 
has proven easier to understand than the algebraic 
descriptions contained in typical complex analysis books. 
This alone would make the video a highly successful 
visualization. However, Möbius Transformations Revealed 
has an interesting follow-up story. A low resolution 
version of the was uploaded to YouTube.com so that the 
creators could easily share it with others. Much to their 
surprise, it appeared on the YouTube home page as a 

featured video, eventually garnering nearly two millions 
views. 

With so much content online, it is rare for any video to 
go viral, let alone a video illustrating high level 
mathematics. News outlets such as Minnesota Public 
Radio and the Associated Press took notice and further 
publicized the film. While the general public may not have 
known—or cared—about the theorem illustrated in the 
video, they could enjoy the mesmerizing images and colors 
in the movie and get a glimpse of the world of 
mathematics beyond simple arithmetic and algebra. Hence 
Möbius Transformations Revealed became an ambassador 
of sorts for mathematics as a whole. 

For more information about the mathematics behind 
Möbius Transformations Revealed, see (Arnold & 
Rogness, 2008). The film is available for download at 
http://www.ima.umn.edu/~arnold/moebius/.  

What Makes a Visualization Good? 

In an ideal world this article would list twelve steps 
that every reader could follow to decide if a certain 
visualization would be effective in the classroom. 
Unfortunately the situation is not so clear. Indeed, it is not 
certain what makes a visualization good or bad, or even 
what the definition of visualization should be. After 
surveying 247 articles related to visualization in science 
and mathematics education, (Phillips, Norris & Macnab, 
2010) states: “Perhaps the most defining feature of the 
current state of empirical research on visualization is the 
lack of consensus about the most elemental issues that 
surround it, including settling on a definition for 
visualization… and deciding how to document both short-
term and long-term effectiveness.” 

After evaluating the literature, (Phillips, et al., 2010) 
do identify five characteristics of effective visualizations. 
Their descriptions are summarized here; for full references 
for their conclusions, see the original source. 
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1. Color. There is some evidence to suggest colorful 
images may be more effective in triggering student 
learning than simple black and white images.  

2. Realism- or lack thereof. Abstracts line diagrams 
that focus on the essential details of a concept may 
be more effective than overly complicated images 
which include unnecessary detail. 

3. Relevance. This can refer to cultural relevance, for 
example of geometric designs in art, or in the 
relevance of the images to the problem at hand—is 
the visualization really necessary to help solve the 
problem, or does it serve as a distraction? 

4. Interactivity. The ability to control and interact with 
the visualization seems to be an effective way to 
stimulate student learning; this is similar to the use 
of physical manipulatives in a classroom. 

5. Animation. Many mathematical concepts depend on 
a changing parameter which can be represented as 
time. Animations can provide a more accurate 
representation of such ideas than a static image. 

Having identified these characteristics, one might 
hope we have an algorithm for making an effective 
visualization: create a colorful image, relevant to the 
problem at hand, which includes only the essential details, 
and allow the image to vary with time as appropriate, 
perhaps through the control of the student. Unfortunately, 
these guidelines might be helpful, but they provide no 
guarantee about the effectiveness of the resulting image. 

The problem is that incorporating these five features 
of effective characterizations is not a simple yes or no 
proposition. All of these characteristics live on a spectrum, 
and there are choices to be made. For example, color can 
certainly make an image more visually arresting, but too 
many colors, or clashing color combinations, could be 
detrimental. Certain color combinations might be highly 
effective for some students, but useless to those who are 
color blind. All of these issues must be balanced, and the 
right balance depends not only on the subject matter but on 
the viewer—and no two viewers are exactly the same. 

To further illustrate the difficulties in identifying, let 
alone creating, good visualizations, the reader is 
encouraged to think about the three examples described 
earlier. What makes them effective? How do they make 
use of the five features of visualizations described in this 
section? Certainly all three use visually arresting, colorful 
images. They all describe complex ideas, but the pictures 
have been simplified to show only essential features. Two 
of them are animated movies while the third, Curved 
Spaces, is a highly interactive visualization. 

Yet it is impossible to attribute the success of these 
visualizations to the specific color, layout, or interactive 
controls chosen in their design. Would the geodesic video 
be any less instructive if the figure eight surface were a 
different color? If the colors in Möbius Transformations 
Revealed were arranged differently, would student learning 
be diminished? While these questions may seem silly, they 

reflect the fact that there are no definitive answers. In the 
end, to paraphrase Potter Stewart, “We know a good 
visualization when we see it,” but it is difficult to be more 
precise. 

In the end, trying to write out specific guidelines for 
creating visualizations is as fruitless as describing how to 
write the perfect novel. In both fields we can describe 
aspects of successful creations, but there will always be an 
intangible quality that defies quantitative evaluation. It is 
interesting to note that in a (highly unscientific) survey 
conducted by this author of post-secondary mathematics 
faculty who are heavily invested in creating and using 
visualizations—including some of the creators of the three 
examples above, and members of a Mathematical 
Association of America task force which was evaluating 
online resources for multivariable calculus—none of them 
had surveyed the educational literature to help guide their 
decisions about color, interactivity, or the design of their 
images. In short, they are “winging it,” trusting their own 
pedagogical, mathematical and artistic instincts to decide 
what would be most effective in facilitating student 
learning. 

The Need for Visualization 

After reading the previous section one might be 
tempted to give up on the creation and evaluation of 
visualizations for the mathematics classroom, but this 
would not be a responsible approach to dealing with our 
students. The current generation of students has been 
raised with constant visual stimuli, whether television, 
computer graphics, or other media, and have come to 
expect such presentations. It is important not to pander to 
this view and replace the symbolic calculations and logical 
arguments of mathematics courses with entertaining but 
uninformative visual images. However, as educators we 
must find the best way to engage our students in the 
material. If that includes flashy pictures, so be it, as long as 
we then begin the process of training students to back up 
their ideas with proper mathematical reasoning and 
writing. 

It is also worth noting that visualization is not just 
useful for education, but has become an important tool in 
mathematical research. The proof that the Costa surface is 
a complete minimal embedded surface of finite topology, 
for example, was driven by the analysis of computer 
generated images. One of the mathematicians involved in 
the proof, David Hoffman, wrote an excellent article 
(Hoffman, 1987) describing the process, and concluded: 
“The computer-created model is not restricted to the role 
of illustrating the end product of mathematical 
understanding, as the plaster models are. They can be part 
of the process of doing mathematics.” Similarly, Jeffrey 
Weeks, creator of Curved Spaces, wrote “It began with a 
desire to show people the images that mathematicians 
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already had in their heads. But then... I found that the 
interactive visualizations not only allowed me to 
communicate mental images I already had, but actually 
gave me new mental images, in effect deeper 
understandings of things I had thought I had already 
understood.” (Weeks, personal communication, 2011) 
These mathematicians are just two of many whose 
research has been heavily influenced by computer 
graphics. Hence the use of visualizations in mathematics 
classrooms does not just help students understand 
concepts; their use provides important training for students 
to do mathematics in the classroom and beyond. 

Walter Whiteley, a mathematician at York University, 
makes the further point that using visualization can help 
develop visual reasoning skills, an area often overlooked in 
our curriculum. When students struggle with algebra skills, 
it is generally expected that they can improve with practice 
and good teaching. Yet students who say they cannot think 
visually are often told not to worry; some people just are 
not “wired” to think that way. Whiteley has stated a 
number of claims related to the importance of visualization 
in both mathematics and mathematics education, including 
the following; for full details and citations related to his 
claims, see (Whiteley, 2004): 
• Visuals are widely used, in diverse ways, by 

practicing mathematicians. 
• Visual reasoning in solving problems is central to 

numerous other fields: engineering, computer 
science, chemistry, biology, applied statistics. 

• We create what we see. Visual reasoning or “seeing 
to think” is learned. It can also be taught and it is 
important to teach it. 

• Children begin school with relevant visual abilities, 
including 3D. In North America, this declines 
through school. 

• Visually based pedagogy opens mathematics to 
students who are otherwise excluded, such as those 
with special needs or learning styles. 

As educators this leaves us in an uncomfortable 
position. Visualization in the mathematics classroom is 
important for a variety of reasons: initial engagement of 
students’ interest; improving student understanding of a 
concept, particularly for visual learners; development of 
visual reasoning skills; and as an important tool for 
mathematical exploration and research. At the same time, 
we are unable to identify precisely what makes any 
particular visualization effective or not. Where do we go 
from here? 

Future Directions 

Clearly there is no shortage of open questions for 
research related to visualization in mathematics education. 
While we may never find definitive answers, the more data 
we have about how students learn from visual stimuli, the 

more effective we can be in the classroom. Many of the 
most basic questions are too deep to answer in the near 
future; it will be many years, for example, before cognitive 
psychologists fully understand the process of how the 
viewing of a visual image or animation produces learning. 
However, there are many questions which could be 
addressed by current researchers. (Whiteley, 2004) 
suggests a number of research questions, including: 

1. Which visuals are used by experts when solving 
mathematical problems? How are they used? 

2. How do the visual practices of experts compare with 
the visual representations and processes supported 
by our teaching materials and pedagogies? 

3. How does a teacher recognize the mis-seeing and 
misinterpretation [of mathematical concepts] and 
support change? 

4. If a person does not use visual reasoning, is some 
portion of that skill set lost? At what ages? 

5. What proportion of our students would engage 
mathematics more effectively and more 
enthusiastically through visual processes? 

This author further suggests the following questions as 
possible avenues of research. 

1. When should a visualization be used in the 
classroom? In some cases this may be a simple 
pedagogical choice, but with some concepts this 
may be critically important. Showing students a 
visualization at the beginning of a lesson may help 
engage students and motivate the rest of the lesson. 
In other cases it may intimidate and confuse 
students, and they will tune out before learning the 
theoretical concept behind the image. 

2. Many geology departments around the country have 
used a so-called GeoWall system to display images 
in three dimensions, similar to the systems used to 
show three-dimensional Hollywood movies in 
multiplex theaters. Would the use of this system in 
multivariable calculus and other courses improve 
student learning of concepts in three dimensions? 

Answering one of these questions, or any of the others 
which may have occurred to readers, would provide useful 
information for educations. The creation of visualizations 
will always remain an inexact science, but given their 
importance in mathematics, we have a duty to learn as 
much about their use as possible. 

Practical Advice for 
Creating and Using Visualizations. 

Some people have the patience and skills to write 
computer programs from scratch to display the precise 
visual images they desire; Curved Spaces, for example, is 
written in C++ using OpenGL routines. Computer 
programming is not for the uninitiated, however. 
Fortunately there exist many higher level tools to create 
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visualizations, as well as collections of pre-existing 
materials which are appropriate for classroom use.  

A word of advice: do not attempt to reinvent the 
wheel. Many “standard” classroom demonstrations and 
visualizations have already been done, and done well. 
There is no need to write a program which will accept a 
function )(xf  and graph its derivative )(' xf . There are a 
multitude of programs and online applets which have this 
functionality, and your time would be better spent on other 
endeavors unless you have a very specific need which they 
do not implement. Finding these programs can sometimes 
be difficult, however; an online search for calculus applets 
returns millions of results, many of which are out of date 
and of low quality. One useful resource is the Course 
Communities section of the Math Digital Library, run by 
the Mathematics Association of America (MAA). On this 
site faculty from around the country have evaluated 
visualizations and other online resources for use in the 
classroom: http://mathdl.maa.org/mathDL/61/.  

Other useful tools include: 

GeoGebra. This dynamic geometry software allows 
you to create highly interactive demonstrations, and 
automatically export them to web pages which use a java 
applet. The GeoGebra website includes hundreds of 
visualizations created by users around the world. 
(Available at http://www.geogebra.org/.) 

Mathematica, Maple and Sage. These applications are 
powerful computer algebra systems with extensive 
graphing capabilities. Mathematica and Maple are 
expensive commercial packages, whereas Sage is free and 
is developed by a network of mathematicians around the 
world. The use of a computer algebra system (CAS) can 
greatly simplify the creation of visualizations; the CAS can 
handle the computations of derivatives, locations of objects 
and other details, all of which can be very tedious otherwise. 
The movie of a spaceship on a torus (see Figure 2) was 
created wholly within Mathematica. (Available at 
http://www.wolfram.com, http://www.maplesoft.com, and 
http://www.sagemath.org.) 

POV-Ray (Persistence of Vision Raytracer). 
Raytracing software allows a user to give a simple 
description of the mathematical objects in a scene—a 
sphere, a plane, and so on—along with the placement of 
light sources and then generates an image of the scene; this 
is the type of software used by computer animation 
studios. POV-Ray is freely available and has extensive 
documentation online. The individual frames of Möbius 
Transformations Revealed was rendered using POV-Ray, 
although some of the mathematical computations used to 
describe the scene were done with Mathematica. 
(Available at http://www.povray.org. Sage also has a built 
in raytracer called Tachyon.) 
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