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Figure 1 

The Mathematics of Global Change 

Kurt Kreith 
University of California at Davis 

This paper is a descriptive and preliminary report on recent efforts to address two questions: 1) Can school 
mathematics be used to enhance our students' ability to understand their changing world? and 2) What role 
might computer technology play in this regard? After recounting some of the mathematical tools that led to a 
better understanding of celestial change, an analogous approach is used to address terrestrial change here on 
earth. This involves an incisive look at Fibonacci's rabbit problem and leads to the consideration of “a 
Copernican metaphor,” one in which efforts to address environmental issues are related to the transition from a 
geocentric to heliocentric model of the solar system. 

Keywords: Computer technology, celestial change, terrestrial change, Fibonacci, solar system. 

Introduction 

Amid the pomp and splendor of a Harvard graduation, 
the question “Why is it hotter in summer than winter?” 
was posed to 23 individuals—students, faculty, and 
alumni. Only two were able to answer correctly, and a 
remarkable video (still available online) presents some of 
the animated but incorrect efforts at explanation. This video 
has been used to support establishment of “The Private 
Universe Project” at Harvard’s Center for Astrophysics as 
well as a number of science education reform programs 
supported by NSF, the Annenberg Foundation, and others. 

The apparent lack of interest by the mathematics 
education community in such matters strikes one as 
curious. School mathematics has an important role to play 
in conveying an understanding of phenomena such as 
seasonal change, while topics from astronomy provide a 
wealth of engaging applications. Shouldn’t the use of 
mathematics in understanding the world about us figure 
prominently into mathematics curricula? 

Such questions were brought to the fore in October, 
2010 when Terence Tao delivered the American 
Mathematical Society’s annual Einstein Lecture. Rather 
than speaking about his work in one of the many areas to 

which he has contributed, Tao used much of this occasion 
to describe the role of elementary mathematics in 
developing a sense of scale for the earth, our solar system, 
and the cosmos (see Figure 1). He also discussed the role 
that such numeracy played in arriving at an understanding 
of celestial change, notably Kepler’s laws. Under the 
heading “The Cosmic Distance Ladder,” much of Tao’s 
presentation was accessible to students conversant with 
basic geometry and proportional reasoning. Inherent 
interest aside, Tao’s lecture also provides a point of 
departure for some rather different efforts to relate school 
mathematics to issues of global change. What follows is an 
account of one such effort aimed at students at grades 
8-12. 

The California State Summer School for Mathematics 
and Science, better known as COSMOS, is a four-week 
summer program for talented students that is offered at 
four campuses of the University of California. “The 
Mathematics of Global Change” is the title of a 2-week 
course that was offered in 2011 at UC Davis. Part of this 
course was presented in a rather traditional classroom 
format. This was, however, reinforced by a variety of 
computer lab projects that made use of spreadsheets, 
dynamic geometry software, and TI-83 calculators. 
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Geometry 

Tao began his ascent of the cosmic distance ladder by 
recounting Eratosthenes’ measurement of the size of the 
earth.1 Noting that the ancient Greeks lacked tools that we 
tend to take for granted, he asserted that such difficulties 
can be overcome “if one knows some geometry!” 

Our COSMOS course began by acquainting students 
with Book One of Euclid’s Elements, a work rather 
different from the Euclidean geometry they encounter in 
the standard school curriculum. Even though Euclid’s 
synthetic geometry is devoid of numerical measurement, it 
was crucial to the first few steps up the cosmic distance 
ladder. 

Dynamic geometry software provides an engaging 
way of conveying the spirit and nature of synthetic 
geometry. In the case of the freeware program GeoGebra, 
the user is offered a myriad of tools (Figure 2), only three 
of which are needed to bring Euclid’s five postulates to 
bear (Figure 3). With these tools one can emulate the 
beginnings of Book One by constructing an equilateral 
triangle with given base AB. But rather than regarding this 
construction a truth to be referred to in future deductions, 
GeoGebra allows us to save it as a new tool (Figure 4). 

                                                           
 
1 In his 10/10/2010 blog, Tao states “I am happy to have the text or 
layout of these [PowerPoint] slides used as the basis for other 
presentations, so long as the source is acknowledged.” 

In using GeoGebra in this way, students must exercise 
restraint lest they make use of the other tools that such 
technology offers up so conveniently2. They must also 
suppress the Algebra View option which offers to display 
the Cartesian coordinates that GeoGebra assigns to points, 
the lengths of line segments created, equations associated 
with the constructed circles, etc. (Figure 5). 

In this Euclidean framework, problems such as 
“construct a regular pentagon with given side AB” and 
“dissect a rectangle ABCD so that the pieces can be 
rearranged to form a square” convey both the spirit and the 
power of synthetic geometry. 

The Cosmic Distance Ladder 

Our account of “Eratosthenes measures the size of the 
earth,” began by recalling the existence of a well in Syene 
(now Aswan) with the property that at noon on midsummer 
day, the sun shines directly to the bottom of the well. In 
Alexandria, directly north of Syene, Eratosthenes found that 
the sun’s rays make an angle of 7.5° with the vertical. 
Proposition 29 of Book 1 (now paraphrased as alternate 
interior angles are equal) enabled him to conclude that 
angle AOS is also 7.5 degrees (Figure 6). This leads to the 

                                                           
 
2 Unfortunately, there does not seem to exist a form of dynamic 
geometry that provides the teacher with control over the features 
available to the student user. 
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proportion 360:7.5  ≈  Circumference:AS and the 
conclusion that the circumference of the earth is 48 times 
the length of the arc AS. Knowing that AS is 500 miles 
(5000 stadia), Eratosthenes arrived at the very credible 
estimate of 24,000 miles for the earth’s circumference. 

With such a measure in hand, Aristarchus was able to 
use lunar eclipses to estimate the distance from earth to the 
moon (Figure 7). Assuming the earth’s shadow to be 
cylindrical, noting that the duration of a lunar eclipse is at 
most 3 hours, and taking the lunar month to be 29.5 days 
(708 hours), one arrives at the proportion 2πr:2R = 708:3 
and the estimate r ≈ 75R. While this is the right order of 
magnitude, arriving at Tao’s better estimate of r ≈ 60R 
requires several refinements. One of these concerns is the 
duration of the lunar month, which earthlings find it 
natural to define as the duration between full moons. This 
synodic lunar month is represented by configurations A 
and C in Figure 8. 

However, a remote observer would assert that a 
complete lunar revolution about the earth occurs earlier! It 
is in configuration B, in Figure 8, that the line determined 
by the earth and moon is parallel to its position at A. This 
observation leads to a sidereal month of about 27.3 days 
and contributes to an improved estimate for r. 

From here one is (in theory) able to estimate the 
distance from earth to the sun by noting that a moon that is 
half full signals a right triangle configuration for the earth, 
moon and sun (Figure 9). 

Given r = 240,000 miles, an accurate measure for 
angle ESM would enable one to calculate ES. This step up 
the cosmic distance ladder leads to the analogous questions 
about the other planets. 

It is here that Johannes Kepler enters the picture with 
his study of the motion of earth and Mars. Central to this 
effort was Kepler’s use of the synodic year to calculate 
Mars’ sidereal year. As described by Albert Einstein on the 
300th anniversary of Kepler’s death, 

Johannes Kepler found a marvelous way…to 
ascertain the real shape of Earth’s orbit. Imagine a 
brightly shining lantern somewhere in the plane 
of the orbit. Assume we know that this lantern 
remains permanently in its place and thus forms 
a...fixed triangulation point for determining the 
Earth’s orbit, a point which the inhabitants of 
Earth can take a sight on at any time of year. Let 
this lantern be further away from the Sun than the 
Earth. With the help of such a lantern it is 
possible to determine the Earth’s orbit in the 
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following way. There comes a moment when the 
Earth (E) lies exactly on the line joining the Sun 
(S) and the Marvelous Lantern (M). If at this 
moment we look from the Earth (E) at the Lantern 
(M) our line of sight will coincide with the line 
Sun-Lantern (SM). Suppose the line to be marked 
in the heavens. Now imagine the Earth in a 
different position and at a different time. Since 
the Sun (S) and the Lantern (M) can both be seen 
from the Earth, the angle at E in the triangle SEM 
is known. We might do this at frequent intervals 
during the year, each time we should get on our 
piece of paper a position of the Earth with a date 
attached to it and a certain position in relation to 
the permanently fixed base SM. The Earth’s orbit 
could thereby be determined. 

Having described Kepler’s method of triangulation, 
Einstein went on: 

But, you will ask, where did Kepler get his 
lantern? His genius and nature gave it to him. 
There was the planet Mars, and the length of the 
Martian year was known. 
By way of classroom version, the observation that 

successive oppositions of Mars occur every 780 days (or 
about 2 1

7  years) enabled Kepler to conclude that Mars 
has 1 1

7  (or 8/7) rotations about the sun in the time that the 
earth has 2 1

7  (or 15/7). Therefore the angular velocity of 
Mars is 8/15 that of earth, so that the duration of the 
Martian year is about 15/8 earth years. It was a more 
precise version of this calculation that led Kepler to the 
value of 687 days for the duration of the Mars year. This 
enabled him to make use of a crucial fact: For data 
gathered 687 days apart, the sun and Mars define a fixed 
coordinate axis relative to which Kepler was able to locate 
and track a moving earth. It was these calculations that 
enabled him to conclude that the earth, and then Mars, 
move in elliptic orbits about the sun, rather than the 
circular orbits that Copernicus had posited. 

Global Change 

While Tao now continues his ascent of the cosmic 
distance ladder with distances to various stars and galaxies, 
we turn our attention back to earth and some very 
accessible forms of numeracy that are rarely noted. 
Recalling Eratosthenes’s estimate of 4000 miles for the 
radius of the earth and Archimedes’ formula S = 4πR2 for 
the area of a sphere , one is led to an estimate of 200 
million square miles for the surface area of the earth. Since 
almost ¾ of this is water and one square mile equals 640 
acres, there are about 32 billion acres of land on earth. This 
leads to the question, “How much of the earth’s land is 
arable?” 

Since the internet offers a wide range of answers, we 
can consult the CIA World Factbook (https://www.cia.gov/ 
library/publications/the-world-factbook). Here data on 
arable land is presented for every country on earth. When 
averaged over the entire world, it leads to an answer to two 
decimal places: 10.57%. Combined with our calculation of 
32 billion acres of land on earth, one concludes that there 
are about 3.4 billion acres of arable land, or slightly less 
than ½ acre per person on earth. 

Delayed Exponential Growth 

Since such calculations raise the specter of 
“Malthusian thinking,” it becomes important to help 
students move beyond the simplistic study of exponential 
growth, perhaps by recalling some issues raised over 800 
years ago by Fibonacci’s famous rabbit problem. Here we 
deal with a rather fecund breed of rabbits, each mating pair 
of which has a pair of babies each month. Starting with 
one such pair, Fibonacci asked for the number of pairs at 
the end of 12 months. 

At first glance, this may suggest a simple problem of 
exponential growth. Letting u(n) denote the number of 
pairs at the end of the n-th month, we have u(0) = 1. 
Letting R = 1 denoting a monthly growth rate of 100%, the 
compound interest rule u(n) = u(n-1) + Ru(n-1) leads to 
u(n) = (1+R)nu(0) and 

u(12) = 212 = 4096. 

But by way of making the problem more realistic, 
Fibonacci added the provisos that 

1. Only adult pairs have babies 
2. Babies take 1 month to mature. 

These conditions lead us to write u(n) = a(n) + b(n), where 
a(n) and b(n) denote the number of adult pairs and baby 
pairs, respectively, so that u(n) - u(n-1) = a(n-1). In the 
absence of mortality, adult pairs in any given month will 
consist of the prior month’s adults (all of which survived) 
and the prior month’s babies (all of which matured). That 
is, 

a(n-1) = a(n-2) + b(n-2) = u(n-2) 

leading to the delay difference equation 

(1)   u(n) - u(n-1) = u(n-2) 

By stipulating that the problem starts with one pair of 
babies, Fibonacci also imposed the initial conditions u(0) = 
u(1) = 1. This leads to the famous Fibonacci numbers 

{1, 1, 2, 3, 5, 8, 13, 21, 34, ... } 

whose properties are often presented as a form of 
mathematical recreation. In fact, however, Fibonacci was 
calling our attention to an important fact: Biological 
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Figure 10. 

systems tend to involve delays, a phenomenon 
that is often overlooked in calculus-based 
forms of modeling. 

By way of relating this problem to 
exponential growth, recall that the formula 
u(n) = (1+R)u(n-1) enables one to recover the 
value of R from the sequence {u(0), u(1), 
u(2),...}. That is, for any n > 0 we simply 
calculate the ratio u(n)/u(n-1) to obtain 1+R. 
To calculate the growth rate of the Fibonacci 
numbers we use (1) to write 

( ) ( - 2)1
( -1) ( -1)
u n u n

u n u n
− =  

The assumption that u(n)/u(n-1) 
approaches x now leads to the quadratic 
equation 

1 1/x x− =     or    2 1 0x x− − =  

with positive solution 
1 5 1.618

2
+

≈  

Identifying x with 1+R, we see that a 1-month delay has 
reduced a 100% exponential growth rate to about 61.8%. 

This illustrates the fact that the introduction of delay 
in a system undergoing exponential growth leads to a 
system that tends toward exponential growth—but at a 
reduced rate. Such calculations are readily pursued via 
spreadsheet (Figure 10). For example, “Should I accept my 
bank’s offer to replace 10% annual interest by 12% based 
on my beginning balance of 2 years ago?” 

Much as introducing delay will slow exponential 
growth, so does eliminating delay increase the rate of 
exponential growth. In modern economic theory, 
facilitating debt has emerged as a powerful way of 
eliminating delays built into traditional economic systems, 
thereby stimulating economic growth. For those who see 
continued economic growth as a way of accommodating 
future increases in world population, the manipulation of 
debt continues to be an important tool. In some sense, such 
economic principles go back to Fibonacci! 

Matrix Methods 

Another important idea that emerges from Fibonacci 
is the importance of breaking populations down into 
cohorts—e.g., babies and adults. One way of implementing 
this is to represent Fibonacci’s rabbit problem in matrix 
notation. Letting b(n) and a(n) denote number of baby and 
adult pairs, respectively, the entire population can then be 
represented by a 

2 x 1 matrix u(n) = b(n)
a(n)
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

The conditions of Fibonacci’s problem 

( ) ( -1)b n a n=     and    ( ) ( 1) ( 1)a n b n a n= − + −  

can now be formulated in matrix form as 

u(n) = Tu(n-1) 

where T is the 2 x 2 matrix 0 1
1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and u(0) = 
1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

The fact that matrix multiplication is associative leads to 
the closed form solution 

u(n) = Tn u(0) 

By way of generalization, suppose that adult pairs 
have a 20% mortality rate, baby pairs have a 10% 
mortality rate, and only half the adult pairs have a pair of 
babies each month. This situation can now be represented 
as 

( ) 0 .5 ( 1)
( ) .9 .8 ( 1)

b n b n
a n a n

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

or 
( ) 0 .5 (0)
( ) .9 .8 (0)

nb n b
a n a
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

At this point it becomes desirable to bring computer 
technology to bear on modeling the (non-whole number) 
growth of u(0) (see Figure 11). 

Applying these ideas to a human population with 
perhaps 20 age-based cohorts leads to an important 
demographic tool known as the Leslie matrix. 

With such matrix tools at hand, it becomes important 
to develop population models that take economic well-
being into account. For if the Malthusian specter of 
“checks of vice and misery” were to be realized, they 
would be felt by the world’s poor long before long before 
reaching those near the top of the economic ladder. This 
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Figure 11. 

suggests dividing the world’s population into economic 
cohorts (e.g., seven cohorts of 1 billion each) and 
calculating their interaction as well as the population 
dynamics of each cohort. 

Migration 

An important mechanism for interaction between 
economic cohorts is human migration. People move from 
where it is worse to where it is better, much like energy 
flows from where it is hotter to where it is colder (to do 
otherwise would violate the second law of 
thermodynamics). In order to pursue such an analogy in 
mathematical terms, we will need a numerical “measure of 
poorness” that corresponds to temperature. 

In an agrarian world, “number of people per acre of 
arable land” might be such a measure of poorness. But in a 
world where access to fossil fuels, fertilizer, and 
technology modifies the importance of arable land, 
“people per megawatt of available energy” (including solar 
energy) may provide a more appropriate measure. 

An instructive way to pursue this analogy is to model 
“heat flow in a rod.” Dividing a rod into seven segments 
and assigning an initial temperature to each, we could let 
u(t,n) denote the temperature of the n-th segment at times t 
= 1, 2, 3,…. Then, in keeping with Newton’s law of 
cooling, heat flow will be determined by the differences in 
temperature between each segment and its adjoining 
neighbors. That is, 

u(t+1, n) – u(t, n) = r[u(t, n) – u(t, n-1)] – r[u(t, n) – u(t, n+1)] 

where r (0 < r < .5) denotes the conductivity of the rod. 
Writing this equation as  

(2)   u(t+1, n) – u(t, n) = r[u(t, n-1) – 2u(t, n) + u(t, n+1)] 

we recognize (2) as the diffusion equation 
2

2

u ur
t x

∂ ∂
=

∂ ∂
 

in discrete form. It is readily modeled on a spreadsheet, 
using fictional elements in columns B and J to impose 
boundary conditions in Figure 12. 

In a Lineland world one can posit an analogous 
process, with people moving to adjoining countries in 
proportion to differences in well-being on the two sides of 
the border. But in our spherical world people are not 
restricted to migrating to a neighboring country. A first 
step toward accommodating this fact is to write the 
diffusion rule (2) in matrix form. 
 

( 1,1) 1 2 0 0 0 0 ( ,1)
( 1, 2) 1 2 0 0 0 0 ( ,2)
( 1,3) 0 1 2 0 0 0 ( ,3)
( 1, 4) 0 0 1 2 0 0 ( ,4)
( 1,5) 0 0 0 1 2 0 ( ,5
( 1,6) 0 0 0 0 1 2
( 1,7) 0 0 0 0 1 2

u t r r r u t
u t r r r u t
u t r r r u t
u t r r r u t
u t r r r u t
u t r r r
u t r r r

+ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ −
⎢ ⎥ ⎢ ⎥+ = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ −
⎢ ⎥ ⎢ ⎥

+ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦

)
( ,6)
( ,7)

u t
u t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
Here the diagonal element in the j-th row and j-th 

column represents fraction of the population in country j 
that remains in country j. The element in row j and column 
k represents the fraction of people in country k that 
migrate to country j. Such an interpretation lends itself to 
allowing non-negative numbers for all matrix entries. A 
nonnegative entry ajk in the j-th row and k-th column 
denotes the fraction of people in country k that migrates to 
country j. Neglecting births and deaths, “conservation of 
people” originating in country k requires that the elements 
in column k sum to 1. In this case, this model for migration 
is a Markov chain of the form u(t+1) = Tu(t) where T is a 
stochastic matrix. 
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Figure 12. 

Figure 13. 

Logistic Growth 

A homogeneous population that enjoys unlimited 
space and resources may be well modeled by the 
exponential growth difference equation 

u(n) - u(n-1) = Ru(n-1) 

However, this is not the case with a population whose 
environment has a finite carrying capacity, and here 
ecologists are likely to turn to a modification of (1) 
called logistic growth. As with exponential growth, 
logistic growth can be put into a financial context. 

Consider a bank (let’s call it Murky Savings 
Bank) that offers a generous annual interest rate R but 
also imposes “a small service fee” that is determined 
by a constant E (e.g., R = .1 and E = .005). As in (1), 
the interest payment at the end of the n-th year is to be 
proportional to the beginning balance u(n-1). 
However, the service fee is to be proportional to the 
square of u(n-1). At such a bank the growth of an 
initial deposit u(0) would be determined by the 
difference equation3 

(3)   u(n) - u(n-1) = Ru(n-1) - Eu(n-1)2 

Recalling that the exponential growth equation 
has a closed form solution u(n) = (1 + R)nu(0) it is 
natural to ask whether there is an analogous formula 
for solutions of (3). Unhappily no such closed form 
solution exists. Instead, solving (2) requires repeated 
application of the recursive rule 

(4)   u(n) = (1 + R)u(n-1) - Eu(n-1)2 

Turning to a spreadsheet to implement (4) for R = .1, 
E = .005, and u(0) = 5, we find that the values of the 
u(n) correspond to the sigmoid (s-shaped) graph given 
in Figure 13. 

An important insight into this solution of (3) follows 
from the question, “Can the fee ever overtake the 
interest?” From the inequality 

Eu2 > Ru 

we see that if u > R/E then the fee exceeds the interest. If 0 
< u(0) < R/E, then the solution of (4) will approach, but 
never reach R/E. Exceptions to this typical behavior arise 
in “chaos theory.” 

In light of the central role played by R/E, it be comes 
useful to define a “target” T = R/E and to reformulate the 
difference equation (3) accordingly. Writing (3) as 

u(n) - u(n-1) = E[R/E - u(n-1)]u(n-1) 

                                                           
 
3 In an ecological setting, the expression - Eu(n-1)2 can be thought of 
as a form of "environmental damping" that is being imposed on 
growth that would otherwise be exponential. 

we arrive at 

(2’)   u(n) - u(n-1) = E[T - u(n-1)]u(n-1) 

as an equivalent rule for logistic growth. As the u(n) 
approach T, the term in brackets approaches zero, as do the 
changes u(n) - u(n-1) (Figure 14). 

As with exponential growth, it is of interest to inquire 
into the effect of delays on solutions of (2). Here we have 
seen that solutions of the delay exponential equation 

(5)   u(n) - u(n-1) = Ru(n-1-d) 

approach exponential growth, but with a growth rate 
smaller than R. So what would be the effect of injecting a 
delay into the logistic difference equation (3) whose 
solutions exhibit sigmoid behavior? 

Because there are two terms on the right side of (4), 
there are several ways of injecting delay. For example, we 
can inject delays into the first term, leading to 

(6)   u(n) - u(n-1) = Ru(n-1-d) - Eu(n-1)2 
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Figure 14. Figure 15. 

As with (5), such delays can be expected to slow the 
growth of the u(n). 

But what about injecting delay into the damping term, 
as in 

(7)   u(n) - u(n-1) = Ru(n-1) - Eu(n-1-d)2 ? 

In ecological terms, there is a provocative context 
for (7). While (3) may be a realistic model for the growth 
of yeast in a closed jar, humans are much cleverer than 
yeast. Even though we are constrained by a finite earth, 
our industrial civilization has been able to inject delays 
into the environmental damping term that imposes the 
limit R/E on lesser species. 

Using a spreadsheet (Figure 15) to model (7) we find 
that d > 0 does indeed enable us to exceed the carrying 
capacity R/E—but with a price to be paid down the line. 

While models such as (3) and (7) should be taken with 
a grain of salt, they can help us enlarge the vocabulary that 
we use in discussing global change. Malthus and (1) gave 
us exponential growth while Verhulst and (3) gave us 
logistic growth (with a “soft landing” at R/E). What (7) 
injects into the discussion are the phenomena overshoot 
and oscillation toward equilibrium and overshoot followed 
by crash. 

A Copernican Metaphor 

Having shifted the discussion from celestial change to 
terrestrial change, it seems appropriate to raise the question 
of connections between the two. To be sure, numeracy and 
“the mathematics of change” are common to both. But are 
there other connections of a more human nature? 

In pursuit of this question we viewed Episode 6 from 
the BBC series on “The Ascent of Man.” Here, under the 
heading “The Starry Messenger,” Jacob Bronowski 
recounts events that led to abandonment of the geocentric 

framework and how Galileo’s efforts to promulgate the 
Copernican system led to his trial before the inquisition. 
While filled with social turmoil, these events also set the 
stage for scientific and industrial revolutions that have 
shaped our world. Might there be comparable resistance to 
accepting the implications of terrestrial numeracy? 

One way of pursuing this question is to consider “a 
Copernican metaphor” in which students are confronted 
with the following framework. 

Category Celestial World Terrestrial World 

synodic view geocentrism ______________ 
sidereal view heliocentrism ______________ 
great book De Revolutionibus… ______________ 
technology telescope computers 
orthodoxy religion ______________ 
martyrs Giordano Bruno ______________ 
heroes _____________ ______________ 
__________ _____________ ______________ 
__________ _____________ ______________ 
__________ _____________ ______________ 

As candidates for a synodic view of the terrestrial 
world we considered both plutocentrism (viewing the 
world from an island of great wealh) and anthropocentrism 
(building on the biblical idea that man shall have dominion 
“over all the earth and over every creeping thing that 
creeps on the earth”). This led to questions about the 
orthodoxies and great books that support such views. 

But in trying to stimulate such discussion, it is also 
important to focus on ways in which the metaphor breaks 
down. Here we noted that Kepler’s laws deal with a 
deterministic system while terrestrial change is believed to 
involve free will. Indeed, it is the belief that there are 
important decisions to be made that justify our efforts to 
develop the mathematics of global change. 
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