
PREFACE

v Brandon Milonovich, Teachers College, Columbia University
Elizabeth Wentworth, Teachers College, Columbia University

ARTICLES

1 Pokémon Battles as a Context for Mathematical
Modeling 
William McGuffey, Teachers College, Columbia University

7 A Reconceptualized Framework for ‘Opportunity 
to Learn’ in School Mathematics
Temple A. Walkowiak, North Carolina State University; 
Holly H. Pinter, Western Carolina University; 
Robert Q. Berry, University of Virginia

19 Comparing the Major Definitions of Mathematics
Pedagogical Content Knowledge
Jeffrey Johnson, Arizona State University

29 About the Authors

30 Acknowledgement of Reviewers

TABLE OF CONTENTS

iii



A RECONCEPTUALIZED FRAMEWORK FOR ‘OPPORTUNITY TO LEARN’ IN SCHOOL MATHEMATICS | 7

A Reconceptualized Framework for 
‘Opportunity to Learn’ in School Mathematics

JOURNAL OF MATHE MATICS EDUCATION AT TEACHERS COLLEGE |  SPRING 2017  |  VOLUME 8, ISSUE 1

© Copyright 2017 by the Program in Mathe matics and Education 
TEACHERS COLLEGE | COLUMBIA UNIVERSITY

Educational researchers often use two lenses, achieve-
ment and opportunity to learn (OTL), to examine stu-
dent learning (Floden, 2007). The achievement lens
focuses on student performance on assessments; the
OTL lens explores the relationship between classroom
experiences and student learning. Floden (2007) posits,
“it seems as though, in the United States at least, the at-
tention to student opportunity to learn (OTL) is even
greater than the attention to achievement results…at
least in studies of mathematics and science learning” 
(p. 231). This focus is likely attributed to research indi-
cating that assessment results need to be interpreted
with caution; assessment results are not always a reflec-
tion of what is happening inside classrooms due to the
nature or format of the assessment, curricula, teacher
characteristics, and other contextual factors (Robitaille
& Garden, 1989; Scherrer, 2013). For almost fifty years,
OTL has been operationalized in a variety of ways (e.g.,
time, alignment between assessment and instruction);
therefore, there have been mixed findings about the re-

lationship between OTL and achievement (Floden, 2007).
Many researchers in mathematics education have thus
turned their attention to understanding what is happen-
ing inside classrooms, typically with an emphasis on
standards-based mathematics teaching (Walkowiak,
Berry, Meyer, Rimm-Kaufman, & Ottmar, 2014; Berry et
al., 2013; Ross, McDougall, Hogaboam-Gray, & LeSage,
2003). Standards-based mathematics teaching refers to
mathematics instruction (NCTM, 2014) where concep-
tual underpinnings of mathematical topics are devel-
oped and students have opportunities to engage in
processes and practices like problem solving and con-
structing viable arguments (NCTM, 2000; NGACBP &
CCSSO, 2010). 

While many researchers have invested time into un-
derstanding the whats and hows of standards-based
mathematics teaching (e.g., McGee, Wang, & Polly,
2013), others have investigated why certain teaching
practices are advantageous over others in terms of the
opportunities given to students (e.g., Webb et al., 2014).
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While the construct of OTL has been a long-investigated
idea (Carroll, 1963; Husen, 1967; Tate, 2005), here we
focus on students’ learning opportunities that result in
deep understandings of mathematics, what we will call
conceptual understanding (Hiebert, 1986; Skemp, 1976). 

A Brief Historical Overview of OTL

The construct of OTL has been conceptualized in several
ways and has evolved over time. Carroll (1963) intro-
duced and defined OTL as the amount of allocated time
for students to learn a specific concept. Husen (1967) op-
erationalized OTL as the overlap between what is taught
to students and what is assessed on achievement tests.
Wang (1998), borrowing from the work of Stevens (1993),
presented OTL as a four-dimensional construct: content
exposure, content coverage, content emphasis, and qual-
ity of instructional delivery. The first two dimensions in
Wang’s framework align with the work of Carroll (1963)
and Husen (1967), respectively. Tate (2005) collapsed
these first two dimensions in his OTL framework spe-
cific to mathematics, but retained content emphasis and
quality of instructional delivery as two distinct dimen-
sions. Content emphasis refers to the teacher’s choice of
what to teach; the teacher decides what content from the
curriculum to teach and determines which skills to high-
light. Quality of instructional delivery includes the
teacher’s pedagogical strategies and understanding of
the subject matter in order to meet the students’ needs. 

Recent work exploring OTL in mathematics has fo-
cused on quality of instructional delivery by examining
how pedagogical and/or curricular features of instruc-
tion afford or constrain students’ OTL. Wijaya, van den
Heuvel-Panhuizen, and Doorman (2015) concluded that
a lack of context-based tasks in textbooks limits students’
OTL. Other researchers have looked at teachers’ imple-
mentation. In one study, researchers found links be-
tween the set-up of mathematical tasks at the beginning
of the lesson and the quality of the closing discussions;
students were more likely to be given opportunities to
learn significant mathematics when the task’s cognitive
demand was not reduced during set-up (Jackson, Garri-
son, Wilson, Gibbons, & Shahan, 2013). Furthermore,
Gresalfi, Barnes, & Cross (2012) noted how two teachers’
implementations of identical curricular materials re-
sulted in different types of learning opportunities for
students engaging in the same mathematical tasks. 

Similar to past researchers, we focus on students’ 
opportunities to develop or build on conceptual under-
standing, but we also present a framework of key in-
structional features to maximize OTL. The National

Council of Teachers of Mathematics (NCTM) (2014) de-
fines conceptual understanding as “the comprehension
and connection of concepts, operations, and relations”
(p. 7). In our work, we assume that developing concep-
tual understanding is foundational to the development
of procedural understanding and a fundamental com-
ponent of students’ OTL (e.g., NCTM, 2014; Baroody,
Feil, & Johnson, 2007). 

Reconceptualizing Opportunity to Learn

The existing conceptualizations of OTL (Carroll, 1963;
Husen, 1967; Stevens, 1993; Wang, 1998; Tate, 2005) have
provided frameworks to analyze students’ experiences
in formal schooling; however, the descriptions and 
examples do not address the finer-grain features of math-
ematics instruction (e.g., how tasks are implemented)
that have significant implications for students’ learning
opportunities. Therefore, we argue that a reconceptual-
ization is needed to define and describe these finer-grain
features and to potentially broaden the field’s under-
standing of OTL. 

The OTL framework presented herein is grounded in
two mixed-methods research studies (Walkowiak, 2010;
Pinter, 2013); the qualitative components informed the
framework development. The first study (Walkowiak,
2010) examined 27 lessons in 8 third-grade classrooms,
and the second study (Pinter, 2013) included 30 lessons
in 10 fourth-grade classrooms. The 18 teachers (17 female)
in the two studies came from 13 different elementary
schools in the same large, suburban school district in the
mid-Atlantic region of the United States. For both stud-
ies, three or four video-recorded mathematics lessons
per teacher were analyzed. Specifically, for each study,
the lead researcher watched the lessons, recorded de-
tailed notes throughout the viewing, and wrote a lesson
summary for each video. Cross-lesson summaries for
each teacher were written after watching the complete
set of a teacher’s lessons to note patterns in the teacher’s
instruction. Finally, when examining the data across
teachers, themes were identified as similarities and dif-
ferences among the lessons within each study. 

To develop the OTL framework, we combined the
similarities and differences from the two studies and
considered all 57 video-recorded lessons. When devel-
oping, extending, or utilizing conceptual understanding
was present within a lesson, we noted distinct features
in the mathematics teaching practices that consequently
seemed to impact students’ learning opportunities. We
present two composite teaching vignettes that we utilize
to describe the components of our framework by high-
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lighting the key differences in students’ OTL. Anchored
in the themes noted in the cross-study analysis, these
two composite vignettes represent the instructional prac-
tices of the teachers in our studies.

Vignette #1: Ms. Lawrence
Ms. Lawrence’s lesson began with a three-minute review
about the names of fraction pieces from circular area
models she had displayed. She asked students to name
the “one-half” and the “one-third” pieces. Then, Ms.
Lawrence said, “our lesson goal for today is to work
with these fractional pieces but with quantities that are
larger than one.” 

Next, she spent eight minutes reviewing the task they
investigated the previous day about Jack and Jill sharing
three brownies. Ms. Lawrence facilitated a brief discus-
sion about some of their strategies. One student gave one
brownie each to Jack and Jill and split the third brownie
in half such that Jack and Jill each received one whole
brownie and one-half of another brownie. Another 
student split each brownie in half so Jack and Jill each
received three halves. Ms. Lawrence acknowledged the
two strategies and said “Is one and one-half equal to
three-halves? How do you know?” She gave three stu-
dents the opportunity to explain why the quantities are
equal. 

Simon: I’m starting with the three halves. Three
halves can be thought of as one-half plus one-half
plus one-half. Two of those halves are equal to 1,
and there is one half left over. 

Ms. Lawrence: Can someone show this symbolically? 

Laura: (writes on the board) ³⁄₂ = ½ + ½ + ½ so ³⁄₂ = 1 + ½

Ms. Lawrence: Laura, tell me more about why you
wrote ³⁄₂ equals 1 plus ½. 

Laura: I knew ½ plus ½ equals 1, just like Simon
said. And, then there’s the extra ½. 

Ms. Lawrence: Can someone else explain why 1½ is
equal to ³⁄₂?

Catherine: I broke up the one and one-half instead. I 
thought of the 1 as one-half and one-half plus there’s the
extra one-half, and I knew that was three-halves total. 

Ms. Lawrence: So, Simon decomposed the three-
halves, and Catherine decomposed the one and one-
half, but they both showed that 1½ is equal to ³⁄₂.
Now, we are going to use our understanding of unit
fractions and our fraction language to name models
of quantities greater than one. 
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Figure 1. Ms. Lawrence’s model of four rectangles
(divided into thirds) and four more parts of a rectangle.

Figure 2. Ms. Lawrence’s model after parts were
combined to make another whole rectangle (in gray).

Next, Ms. Lawrence spent 10 minutes asking students
to name models of mixed numbers. For example, one of
her models had four rectangles cut into thirds (Figure 1).
Ms. Lawrence asked how they would describe the quan-
tity if one of the rectangles broken into thirds repre-
sented one whole. A student suggested combining the
individual thirds to make another whole (Figure 2).
Then, Ms. Lawrence asked if students could represent
the quantity symbolically in more than one way. A stu-
dent wrote 5¹⁄₃ on the Smartboard and explained how
she saw five wholes and an extra one-third piece in the
drawing. Another student counted thirds to show 
16 thirds are in the model. Ms. Lawrence was explicit in
pointing out that ¹⁶⁄₃ and 5¹⁄₃ are the same quantity. Ms.
Lawrence completed two additional examples to round
out this 10-minute segment of class. 

During the remainder of class (40 minutes), Ms.
Lawrence spent five minutes explaining the task stu-
dents were about to complete. Then, students spent 28
minutes with a partner matching cards that had either:
a numerical form written as mixed number, numerical
form written as an improper fraction, word form, or pic-
ture representation. Each match included four cards. The
pictures included a variety of shapes (e.g., hearts, circles,
rectangles). Partners were required to take turns explain-
ing any matches they found. Finally, Ms. Lawrence fa-
cilitated a five-minute discussion. She asked, “how did
you figure out how to represent a picture in numerical
form?” and “tell me more about what you did to trans-
late from numerical form to the picture form.” Two stu-
dents responded to each question, and Ms. Lawrence



probed their thinking for further explanation (e.g., “Why
did you use that approach?”). Before recess, students
completed one problem individually, similar to the
problem in Figure 1, on a slip of paper (i.e., “exit pass”);
most students finished in two minutes or less. 

Vignette #2: Ms. Davis 
Ms. Davis’s lesson began with eight minutes of students
practicing addition of two-digit numbers using the tra-
ditional U.S. algorithm, an already learned procedure for
the third-graders. Some students finished quickly and
were instructed to read silently while they waited. After
reviewing the answers as a class, Ms. Davis read a book
to the students entitled, Full House: An Invitation to Frac-
tions (Dodds, 2007), for ten minutes. At the book’s con-
clusion, Ms. Davis said, “before we move on, boys and
girls, remember how we define fractions. Fractions are
formed when you take something like a pizza or cake
and divide it up into parts.” 

Ms. Davis then spent approximately three minutes re-
viewing the word “equivalent” and discussed “equiva-
lent fractions.” She sketched two rectangles on the
board, divided one rectangle into eight parts and the sec-
ond one into five parts. She emphasized that the rectan-
gles are equal and told her students to imagine they are
bread. She said, “if I eat two pieces of bread from that
one (shades in two of five pieces) and I eat three pieces
of bread from this one (shades in three of eight pieces),
are they still equal?” There was a mix of responses in the
room, both yes and no. Ms. Davis said, “They are still
equal, aren’t they? Because there is still this much left.”
She put her hands around the unshaded ³⁄₅ and ⁵⁄₈, and a
student says, “I thought you meant the pieces that are
gone.” Ms. Davis said, “No, but the fractions are still
equal, aren’t they?” A few children responded yes, and
Ms. Davis moved on. 

The lesson segued into a whole-group activity lasting
approximately 16 minutes. Students made a fraction
strip (fourths on one side, sixths on the other side) and
compared fractions. The students drew lines by approx-
imating to divide the strips into fourths and sixths. Ms.
Davis gave directions like “Divide your strip into six
parts. Five lines, but six parts. Spread the lines out
evenly.” As she gave the directions, she sketched her
own fraction strips as rectangles on the board. Then, she
asked a series of questions related to comparing the frac-
tions, referencing her own strips on the board. Ms. Davis
said to pretend that the strips of paper were “pizza
bread.” She first represented ¹⁄₃ on her drawing and then
asked students to draw a fraction equivalent to ¹⁄₃ using
their fraction strip that was cut into sixths. 

Ms. Davis: How many would you want to shade if
you want this fraction (the sixths) to be equivalent to
one-third? If we fill in three, would that be equal to
what’s shaded (points to the one part shaded on the
thirds)? 

Student #1: No. 

Ms. Davis: How many are equal to one-third? 

Student #2: Two pieces. 

Ms. Davis: Okay, everyone shade in two pieces on
your strip. What fraction did you just make? 

Student #3: Two-sixths. 

Ms. Davis: Give me a thumbs-up if you think one-
third is equal to two-sixths and a thumbs-down if
you think they are not equal. (Most students give
her a thumbs-up, and 5 students give her a thumbs-
down.) Yes, they are equal. Okay, let’s do one more.
Which one [of the three fractions ¹⁄₃, ²⁄₆, or ¼ ] , say 
if you had pizza bread, would you want to have 
[assuming you want the most pizza bread]? One-
third of the bread? Would you want to have two 
out of six pieces? Or, one-fourth of the bread?
Would you want to have any of them?

Student #4: Two out of six. 

Ms. Davis: Why? 

Student #4: Because two is more than one 

Ms. Davis: But it is the same loaf of bread, right?
Aren’t the fractions all the same size? 

Many students: No 

Ms. Davis: Yes they are, they are all the same size.

There was a two-minute transition before students
worked independently on two worksheets on equivalent
fractions for the remaining 18 minutes of class.

Comparing and Contrasting the Two Lessons

Ms. Lawrence and Ms. Davis offered different types of
learning opportunities during their lessons on fractions.
We first describe the differences between the two teach-
ers’ lessons. These differences are nested under four key
teaching dimensions: mathematical knowledge for teach-
ing (Ball, Thames, & Phelps, 2008), time utilization,
mathematical tasks, and mathematical talk. 

Mathematical Knowledge for Teaching. 
Decisions in the lesson indicated some differences in
each teacher’s mathematical knowledge for teaching
(MKT). MKT refers to the special type of knowledge that
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teachers need in order to engage in the mathematical
work of teaching such as analyzing students’ strategies,
probing student thinking, and utilizing appropriate and
accurate mathematical representations (Ball, Thames,
and Phelps, 2008). Ms. Lawrence was mathematically ac-
curate throughout her lesson. In contrast, Ms. Davis
made mathematical errors with her sketched fraction
strips on the board. When the students were approxi-
mating the subdivision of their own strips (also prob-
lematic), her own sketched strips were divided into
unequal parts. Consequently, it appeared one-fourth
and one-third were equivalent, hence the reason she said
¹⁄₃, ²⁄₆, and ¼ were the same amount of pizza bread.

Unlike Ms. Lawrence, Ms. Davis also promoted mis-
conceptions multiple times in her lesson. When she said
that “fractions are formed when you take something like
a pizza or a cake and divide it up into parts,” she is lim-
iting students’ conceptions of fractions to the part-whole
interpretation (Lamon, 2012). For example, her definition
does not consider that fractions are also formed by divi-
sion (e.g., 2 cookies shared evenly among 3 people).
More importantly, she disregarded that the whole can
be a set of discrete objects (part-of-set model), not just a
composite unit like a pizza.. Interestingly, the story book
included part-of-whole and part-of-set models within it,
but she did not bring attention to it in her limited “defi-
nition.” Additionally, when students made their own
fraction strips, Ms. Davis told them to make “five lines,
but six parts” which caused students to create unequal
parts, resulting in inaccurate representations and pro-
moting the misconception that unit fractions can be un-
equal in size relative to the whole (e.g., one half can be
bigger than the other half).

Time Utilization. 
Ms. Lawrence and Ms. Davis utilized their time differ-
ently, partly because their goals varied in specificity and
narrowness. Ms. Lawrence explicitly told students the
learning goal after a brief three-minute review on nam-
ing fraction parts relative to whole. The remaining 58
minutes were used to focus on representing quantities
larger than one with mixed numbers, improper frac-
tions, and concrete models. In contrast, while 47 of 57
minutes of Ms. Davis’s lesson were focused on fractions,
the lesson goal within the topic of fractions was not clear.
They read a book that used stories to represent fractions,
but there was no discussion about the book. Addition-
ally, the fraction strip activities seemed to be focused on
equivalency and comparing, but the worksheets only 
focused on equivalency. The lesson lacked a clear math-
ematical goal and perhaps had multiple goals. 

Unlike Ms. Davis, Ms. Lawrence utilized lesson com-
ponents that built on each other through the closure
when students synthesized their learning. In Ms.
Lawrence’s lesson, there was a clear progression in the
activities: she built on background knowledge from pre-
vious lessons, chose simple tasks to build foundational
knowledge, facilitated whole-group discussion and
practice, provided collaborative application practice
with peers, and concluded with a discussion to synthe-
size learning. Ms. Davis’s lesson moved through activi-
ties, but it was difficult to see a thread because the goal
was unclear.

Mathematical Tasks. 
The tasks in both lessons could be considered more proce -
dural in nature, especially if taught in a teacher-centered
manner. Ms. Lawrence structured her task implementa-
tion by focusing on student-constructed knowledge. The
initial task in the lesson was to think about sharing three
brownies fairly between two people. Ms. Lawrence in-
tentionally asked students probing questions, giving them
space to explore the task, and structuring discussion so
that students were building their conjectures rather than
being told a specific procedure to follow. In contrast,
when Ms. Davis posed questions about fraction equiva-
lencies and comparisons, she directed every step and an-
swered each question herself. Students were not given
the opportunity to explore the task in a way that allowed
their own knowledge construction. 

During the tasks of the lessons, the teachers utilized
mathematical representations differently. Ms. Lawrence
used concrete and symbolic models in her lesson for
mixed numbers and improper fractions; students trans-
lated among the representations when they matched
cards and discussed the brownie problem (e.g., Laura
wrote equations on board to represent Simon’s think-
ing). Although Ms. Davis attempted to use multiple 
representations as part of her implemented tasks, the 
inaccuracies in her representations prevented students
from using them for understanding and from translating
among them. 

Mathematical Talk. 
Ms. Lawrence and Ms. Davis also utilized talk in con-
trasting ways in their lessons. In Ms. Lawrence’s lesson,
there were frequent opportunities for students to explain
their thinking to the teacher or each other (e.g., Ms.
Lawrence’s facilitation of discussion about the brownie
problem and students’ explanation of card matches to
partners). Ms. Davis utilized an IRE (initiate, respond,
evaluate) discourse pattern with her students (Mehan,



Our OTL Framework

After considering the key differences between lessons
like those of Ms. Lawrence and Ms. Davis, we built our
re-conceptualized framework for OTL. Our conceptual-
ization builds on the aforementioned OTL frameworks
and includes both quantity (i.e., time) and quality. Figure
3 displays a graphic organizer of the framework. We see
the teacher’s mathematical knowledge for teaching (Ball,
Thames, & Phelps, 2008) as a critical variable (Hill et al.,
2008; Walkowiak, 2010) that is related to how a teacher
utilizes time (Wenglinsky, 2004), selects and implements
tasks (Stein, Smith, Henningsen, & Silver, 2009), and fa-
cilitates mathematical talk (Hill et al., 2008). Further-
more, the connecting arcs represent interactions between
the dimensions because as a teacher makes decisions
about time, tasks, and talk, his or her MKT could be af-

fected. For example, a teacher can poten-
tially deepen his/her own understanding
of mathematical concepts through task
selection and implementation (Wilhelm,
2014). Each of the dimensions in the re -
conceptualized OTL framework includes
finer-grain features (Table 1) that are
worded to represent the optimal enact-
ment of the given feature. While not 
exhaustive, we argue that these are the
essential features of mathematics instruc-
tion and represent starting points for ana-
lyzing instruction. 

1979) as seen in the fraction strips task. She asked direct
questions that typically required one-word answers
from her students. 

The presence of probing questions appears to be a
distinguishing feature in lessons with optimal learning
opportunities. Ms. Davis missed opportunities to use
probing questions. When she asked students to indicate
(using their hands) whether or not they thought one-
third and two-sixths were equivalent, students gave con-
flicting responses. Rather than following up with
probing questions or asking students to share their
thinking, Ms. Davis simply stated they were equal and
moved forward. Ms. Lawrence, however, probes Laura
about her symbolic representation of Simon’s thinking,
and she probes students about why they used their se-
lected strategies for matching cards after they explained
how they matched picture and symbolic forms. 
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Figure 3. A reconceptualized OTL framework.

Opportunity-to-Learn Dimension       Dimension’s Features

Teacher’s MKT                                      1.    The lesson content is mathematically accurate.

                                                            2.    The lesson promotes accurate conceptions among students.

Time                                                     1.    The majority of time in the lesson is used to reach the mathematical goal.

                                                            2.    The time is structured so that the lesson components build on each other with
explicit attention to the mathematical goal.

Tasks                                                    1.    The implementation of tasks is student-focused, allowing students to make
sense of the mathematics.

                                                            2.    Tasks involve the use of and translation among two or more representations.

Talk                                                      1.    Students have opportunities to explain their mathematical thinking. 

                                                            2.    Talk is utilized to move students toward a deeper understanding of the 
mathematical goal.

                                                           

Table 1
Reconceptualized OTL Framework: Dimensions and Their Respective Features

Teacher’s Mathematical 
Knowledge for Teaching 

(MKT)
Time Utilization Mathematical Tasks Mathematical Talk

Students’ Opportunities 
to Develop or Build on

Conceptual Understanding



Teacher’s Mathematical Knowledge for Teaching
The first dimension in our OTL framework is the teacher’s
mathematical knowledge for teaching (Ball, Thames, &
Phelps, 2008). When a teacher has a deep understanding
of mathematics, they are more likely to be accurate in
their mathematical language, explanations, and use of
representations (Hill, Rowan, & Ball, 2005). Further, they
are less likely to promote misconceptions (e.g., “multi-
plication makes numbers bigger”) because they are
aware of mathematical “rules” that are not always true
(Faulkner, 2013; Karp, Bush, & Dougherty, 2014). This
dimension has two features. 

The lesson content is mathematically accurate. 
Mathematical accuracy has implications for students’
understandings (Ma, 1999). In contrast to Ms. Lawrence’s
lesson, Ms. Davis’s lesson included mathematical errors.
These mathematical errors impact students’ OTL be-
cause it is likely that many students walked away from
the lesson with unclear or inaccurate notions about frac-
tions and their relative size. 

The lesson promotes accurate student
conceptions. 
Beyond mathematical accuracy, teachers have opportu-
nities to promote accurate conceptions or misconcep-
tions. When a teacher promotes misconceptions, students’
OTL is negatively affected; sometimes, misconceptions
become roadblocks in future learning experiences, par-
ticularly when those misconceptions are not given atten-
tion (Lee & Ginsburg, 2009). Ms. Davis promoted
misconceptions throughout her lesson. One example
was the generation of fraction strips by the students
when Ms. Davis ignored attention to precision. 

Time
Consistent with Carroll’s (1963) initial conceptualization
of OTL, researchers have found a positive correlation be-
tween the number of minutes of content exposure and
students’ outcomes on assessments (Ottmar, Decker,
Cameron, Curby, & Rimm-Kaufman, 2014), but time uti-
lization varies highly among classrooms (Smith, 2000; El-
more, 2006). Beyond the number of minutes allocated to
mathematics instruction, there are two important fea-
tures relative to time that can maximize, or diminish,
students’ OTL. 

The majority of time in the lesson is used to
reach the mathematical goal. 
In order to maximize the time in a lesson, it is important
to first identify a narrow, well-defined learning goal
(NCTM, 2014). Once the goal is set, a majority of the time

should be spent working toward that goal. Ms. Lawrence
utilized the majority of time in her lesson on the mathe-
matical goal. In contrast, the breadth of topics in Ms.
Davis’s lesson creates a surface-level treatment of the
mathematics, rather than an in-depth focus on one goal.
In our own observational research (Walkowiak, 2010;
Pinter, 2013), lessons sometimes moved through activi-
ties with no mathematical relation (e.g., multiplication
to geometric shapes); in these cases, multiple goals do
not allow for sufficient time for conceptual development.  

The time is structured so that the lesson
components build on each other with explicit
attention to the mathematical goal. 
Making learning goals explicit to students has been
deemed a critical part of lesson implementation (Hiebert,
Morris, Berk, & Jansen, 2007). The components of Ms.
Lawrence’s lesson built on each other, but Ms. Davis’s
lesson lacked coherence across the lesson. The connec-
tions from the story to the fraction strips to the individ-
ual practice were absent; therefore, students were unlikely
to assimilate the lesson components into a working
schema that would move them forward in their concep-
tual understanding of, in this case, fractions. 

Tasks 
The planned and implemented tasks in a mathematics
lesson matter. Research has shown that higher level
thinking during a mathematics lesson increases students’
engagement with mathematical ideas (Boaler & Staples,
2008; Stein & Lane, 1996; Tarr et al., 2008). This higher
level thinking occurs through the use of cognitively 
demanding tasks. High-demand tasks involve connect-
ing procedures to their underlying concepts or complet-
ing complex, non-algorithmic tasks; low-demand tasks
involve memorization or completing procedures with-
out connecting to the underlying concept (Stein, Smith,
Henningsen, & Silver, 2009). OTL is optimal when two
task features are present. 

The implementation of tasks is student-focused,
allowing students to make sense of the
mathematics.
When students have time to make sense of the mathe-
matical concepts, rather than simply being told what to
do, their learning opportunities are increased. Ms.
Lawrence gave opportunities for students to develop
their conceptual understanding of mixed numbers and
improper fractions. On the other hand, Ms. Davis tended
to answer her own questions and limit her students’ 
opportunities to make sense of fractions. 

A RECONCEPTUALIZED FRAMEWORK FOR ‘OPPORTUNITY TO LEARN’ IN SCHOOL MATHEMATICS | 13



14 | TEMPLE A. WALKOWIAK, HOLLY H. PINTER, ROBERT Q. BERRY

Tasks involve the use of and translation among
two or more representations. 
Opportunities to utilize more than one representation
(Lesh, Cramer, Doerr, Post, & Zawojewski, 2003) and to
translate among representations (Duval, 2006) have been
deemed important task components in building stu-
dents’ conceptual understanding (NCTM, 2000). We
argue that even in lessons where the goal is to increase
utility with one representation, students’ experiences
and utility with that representation will likely be im-
proved if they translate to oral or written language, at
the very minimum. In her lesson, Ms. Lawrence and her
students used multiple representations to develop the
mathematical concepts. While Ms. Davis also attempted
to use concrete representations, the errors in the repre-
sentations did not allow for their effective use. 

Mathematical Talk 
A growing body of literature in the field of mathematics
education underscores not only the importance, but also
the complexities, of mathematical talk, the fourth dimen-
sion in our framework (Ryve, 2011; Schleppenbach,
Perry, Miller, Sims, & Fang, 2007). While mathematical
talk falls under the broader construct of discourse
(NCTM, 2000) that includes talking, listening, and writ-
ing, we focus on talk as a key first step in a more com-
plicated process of fostering mathematical discourse
where the responsibility rests upon the teacher to maxi-
mize its use. The presence of talk alone in mathematics
lessons is certainly not enough to promote understand-
ing (Franke, Kazemi, & Battey, 2007; Lampert & Cobb,
2003), but its presence has been proven to positively im-
pact student learning (Walshaw & Anthony, 2008). Re-
searchers have suggested moves that teachers can make
to promote student talk (e.g., turn and talk, revoice,
press for reasoning) (Chapin, O’Connor, & Anderson,
2009; Smith & Stein, 2011), but leveraging that talk to
push students along in their mathematical understand-
ing is perhaps a more critical part of orchestrating dis-
course (Hufferd-Ackles, Fuson, & Sherin, 2004). Overall,
optimal instruction has two talk features. 

Students have opportunities to explain their
mathematical thinking. 
Opportunities to talk should include asking students to
explain their mathematical strategies and thinking (Pic-
colo, Harbaugh, Carter, Capraro, & Capraro, 2008). We
know that explanations can vary, from a simple expla-
nation of a procedure to a more elaborate explanation to
reveal understanding (or not) of a concept. However,
giving students opportunities to explain their thinking

is the first essential discourse feature. In our own obser-
vational research, some teachers’ lessons tended to look
like Ms. Lawrence’s lesson where students had many op-
portunities to explain thinking. Other lessons looked like
Ms. Davis’s lesson where students’ explanations of math-
ematical ideas were few. If students had been given the
opportunity to share their thinking in Ms. Davis’s lesson,
the dialogue may have uncovered their misconceptions
as well as errors in the fraction strip representations. 

Talk is utilized to move students toward a
deeper understanding of the mathematical goal. 
This second feature extends the first one: it is important
for teachers to utilize student talk to probe students’
thinking for further justification (Franke, Webb, Chan,
Ing, Freund, Battey, 2009) with prompts like “why did
you do that?” or “tell me more about….” The lessons of
Ms. Lawrence and Ms. Davis demonstrate contrasting
examples. Ms. Lawrence asked probing questions like
“how do you know?” and “why did you use that ap-
proach?” to push students in their own mathematical
understandings. Probing questions were not present in
Ms. Davis’s lesson. 

Discussion

We have presented a reconceptualized OTL framework
for mathematics that includes four dimensions: the
teacher’s mathematical knowledge for teaching, time,
tasks, and mathematical talk. The framework provides
a lens through which teachers, teacher educators, and
scholars can use in discussion, planning, implementa-
tion, and analysis of mathematics lessons. Based upon
both existing research and our own observational re-
search, we posit the framework’s dimensions and their
defining features are central, and we argue essential, to
students’ opportunities to engage in processes that
would deepen their understanding of mathematics. Im-
pact becomes exponentially larger, particularly if in-
struction across a school year tends to look more like Ms.
Lawrence versus Ms. Davis. 

While we believe this framework has potential as a
practical tool for teachers and teacher educators and as
a theoretical tool for researchers, we acknowledge that
the framework has shortcomings. First, while the frame-
work provides essential features for maximizing stu-
dents’ opportunities to learn, the features may not
capture all nuances of instruction. Based upon existing
research in instructional dimensions such as discourse
or representations, there may be other features to con-



sider. For example, we acknowledge that researchers
have found other features of talk (Hufferd-Ackles,
Fuson, & Sherin, 2004) (e.g., scaffolding of students’
thinking) that potentially impact students’ understand-
ing. However, our goal was to draw from our observa-
tional research to develop a framework of dimensions
and features that appear to be essential in mathematics
lessons. 

Second, the framework does not include connections
between mathematics lessons and students’ lives be-
cause these connections did not emerge as essential in
differentiating lessons where OTL was maximized. We
recognize that research has indicated the importance of
culturally relevant pedagogy and lessons that capitalize
on what students bring to the classroom (e.g., Ladson-
Billings, 1995; Tate, 1995; Morrison, Robbins, & Rose,
2008). Further, making connections to their lives outside
of school and giving them opportunities to apply math-
ematical ideas to real-world scenarios is important.
When students perceive mathematics to be relevant and
valuable, they are likely to be more engaged and to de-
velop more positive attitudes toward the discipline.
While our data did not indicate this feature as essential
to OTL perhaps due to the sampling protocol (3-4 les-
sons per teacher), we recommend attention to students’
backgrounds within units of instruction. 

Third, the socioemotional climate of the classroom is
not included as a component of the framework. We rec-
ognize the importance of providing a classroom culture
with positive reinforcement and emotional support
when the aim is to have productive discourse occurring
(Reyes, Brackett, Rivers, White, & Salovey, 2012). Re-
searchers have pointed to the importance of setting so-
ciomathematical norms that create an environment for
mathematical sense making, problem solving, and rea-
soning within the classroom (Cobb, Stephan, McClain,
& Gravemeijer, 2001). In our own data analyses, we were
focused on the mathematical features of instruction and
were limited to video recorded observations, likely lim-
iting our ability to be attentive to socioemotional aspects
of the classroom. 

Finally, the framework does not give explicit atten-
tion to assessment. While assessment is implicit within
the nested features (e.g., utilizing students’ responses to
questions to move students toward a deeper under-
standing), there is not explicit acknowledgement of the
role of assessment in students’ opportunities to learn. 

Despite the fact that the framework is not exhaustive,
it does provide a lens for defining “opportunity to learn”
in the teaching and learning of mathematics, conceptu-

alized to include both the quantity (Carroll, 1963) and
quality (Wang, 1998; Tate, 2005) of learning opportuni-
ties for students. Much of the conversation in the math-
ematics education community about the impact of
mathematics instruction focuses on what is happening
during mathematics lessons, the very focus of this frame-
work. This framework has practical implications for
teacher educators and professional development facili-
tators who are designing and implementing professional
learning experiences with prospective and/or practicing
teachers. We currently use the components of this frame-
work with these audiences, coupled with rubrics on an
observational measure (Berry et al., 2013), to develop un-
derstanding of standards-based mathematics teaching
practices. Furthermore, this OTL framework seeks to
provide a theoretical framework for the research of
mathematics teaching practices. Although our work was
situated in upper elementary classrooms, we propose
that this OTL framework can be applied to mathematics
instruction in grades K-16. 
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