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The Spring 2022 Issue of the Journal of Mathematics Education at Teach-
ers College features three articles that discuss a broad range of topics, 
from engaging students in peer feedback and supporting positive math-
ematical identities, to the impact of reform efforts on a chapter in a cal-
culus textbook. Additionally, we have two Notes from the Field articles 
that reflect on the practitioners’ implementation of Algebra activities 
and teaching strategies. In this edition, educators will find research and 
descriptions of specific tasks designed to meaningfully engage students 
in mathematics learning, as well as some of their challenges.

Husband and Nikfarjam begin with a report on the results of a study 
they conducted on the impacts of peer feedback in an elementary math-
ematics classroom. To expand on the research of peer feedback, Husband 
and Nikfarjam investigated the possible benefits for the providers of 
peer feedback. By collecting and examining student-to-student feedback 
on a number of mathematical tasks and activities, they found that when 
students are directed to “comment on the mathematics,” students who 
provide feedback have the opportunity to self-reflect, make connections, 
and engage in mathematical discourse. 

After providing an overview of the current state of research in the field 
of mathematical identity, Barba invites readers to consider a variety of 
research-based practices that mathematics educators can employ to pro-
mote students’ mathematical identities. Engaging students in such activ-
ities, Barba contends, may increase interest, as well as success in Science, 
Technology, Engineering, and Mathematics (STEM). Moreover, it may 
help students to see themselves as doers of mathematics and, therefore, 
contributing members of a mathematics community.

Lastly, Pogorelova investigated calculus textbook reform by evaluating 
the contents of a chapter in a reform-minded calculus textbook. By iden-
tifying and analyzing the type and characteristics of questions contained 
in the chapter, Pogorelova described how well the contents aligned to 
typical reform-based mathematics teaching and learning practices. The 
results showed that while a number of important reform-based strategies 
were employed, there was also a larger than expected amount of more 
traditional practices. Pogorelva also reflects on some of the challenges 
faced by reform textbook writers. 

Each of these articles highlight important aspects of mathematics teach-
ing and learning. The authors remind all educators to reflect on the strat-
egies and practices we use to engage our students, as well as the physical 
materials we often rely on. 
 

Ms. Alyssa MacMahon
Mr. Davidson Barr

Guest Editors
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Introduction

Peer feedback is a specialized form of feedback that is 
“provided by equal status learners” (Gielen et al., 2010, 
p. 305). In the classroom, this translates into students 
providing each other with feedback, rather than the 
teacher. Peer feedback is an important feature of peer 
learning (Falchikov, 2001; Topping, 2005, 2009) as well 
as formative assessment processes (Black & Wiliam, 
1998). Researchers suggest that peer feedback can be 
comparable to teacher feedback when the goals are clear 
and the criteria are set (Falchikov & Goldfinch, 2000; 
Hamer et al., 2015). As mathematics educators, we are 
interested in exploring peer feedback in an elementary 
mathematics classroom—what it looks like, sounds like, 
and feels like for teachers and students. Despite exten-
sive literature on feedback in general, research on peer 
feedback is still in its youth (Kollar & Fisher, 2010). Of 
the limited research that has investigated the topic of 
peer feedback, studies have examined how peer feed-
back relates to teacher feedback (Falchikov & Goldfinch, 
2000), effectiveness of peer feedback for learning (Giel-
en et al., 2010), and how peers perceive the feedback 
provided by their peers (Strijbos et al., 2010). Much of 

ABSTRACT  This study explores peer feedback in a combined fifth and sixth-grade classroom. 
Drawing on Hattie and Timperley’s (2007) model for feedback, we analyzed 334 peer feedback 
comments gathered during six mathematics lessons. Our analysis revealed evidence of peer  
feedback being beneficial to the students who provide it as well as those who receive it. Specifically, 
we share examples of how peer feedback can support opportunities for providers of feedback 
to 1) self-regulate by choosing mathematics strategies, 2) make connections between their own 
mathematical ideas and those of their peers, and 3) engage in ongoing back-and-forth conversations. 
Findings from our study point to recommendations for teachers to be more purposeful in their 
prompts to students about the types of feedback they might provide one another. 

KEYWORDS  feedback, peer feedback, classroom practices, elementary mathematics 

1

Peer Feedback in the Mathematics Classroom

the literature about feedback has focused on potential 
benefits to the receiver. In contrast, this paper analyzes 
feedback for traces of there being mutually reciprocal 
benefits to the provider of feedback. In this pursuit, 
we will share examples of peer feedback that unfold-
ed during mathematics lessons in a combined fifth and 
sixth-grade classroom. Our examples show how peer 
feedback can benefit the student who provides the feed-
back by 1) supporting their self-regulation in choosing 
mathematics strategies, 2) facilitating making connec-
tions between their own mathematical ideas and those 
of their peers, and 3) offering the opportunity to engage 
in ongoing back-and-forth conversations. Finally, we 
will discuss how teachers can be purposeful and more 
explicit when guiding students to provide peer feedback.  

Description of the Project

This study was part of a larger collaborative research 
project between researchers at a large urban university 
and an inservice teacher at an elementary school. Taking 
place over the course of four months, the larger study 
gathered data from six lessons, each lesson focusing on 

Marc Husband
St. Francis Xavier University 

Parinaz Nikfarjam
York University  
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one mathematics task. The tasks ranged across a variety 
of topics, including geometric growing patterns, propor-
tional reasoning, and tasks that involve using data to 
investigate mean, median, and mode. The study report-
ed here uses data from all six lessons. 

Within this study, we report on the feedback the stu-
dents in a combined fifth and sixth grade mathematics 
classroom provided to one another. The teacher struc-
tured the observed lessons so that first, students worked 
in pairs on a mathematics task to co-create posters that 
displayed their thought process. Then, following the 
completion of the posters, students were directed to 
review one to two other posters and provide written 
feedback on sticky notes (see Figure 1). 

Writing phrases such as “good work” or “I like your 
poster” was discouraged because the teacher wanted 
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her students to focus feedback on the mathematics. This 
was evidenced by the teacher’s prompt for her students 
to “comment on the mathematics.”

A Model for Peer Feedback

To analyze our data, we first needed a model or frame-
work that would help us categorize and describe dif-
ferent types of peer feedback provided by the students. 
A review of the literature revealed that there was not 
a well-developed and generally agreed-upon model 
for categorizing and describing peer feedback. In the 
absence of such a model, we decided to apply Hattie 
and Timperley’s (2007) model of feedback. The use of 
this model seemed appropriate as their definition of 
feedback acknowledges peers as potential generators of 
feedback. Furthermore, other researchers (e.g., Harris et 
al., 2014) have also used Hattie and Timperley’s (2007) 
model to study peer feedback. Hattie and Timperley’s 
(2007) model for feedback consists of four non-hierar-
chical levels, in which each level describes the focus of 
the feedback (see Table 1). 

Our coding process involved identifying statements 
and/or elements in each of the feedback comments that 
related to the descriptions for the four levels of feedback. 
This was an iterative process where the two researchers 
individually coded the data and then compared find-
ings with the purpose of seeking agreement. There 
were instances where we did not agree on the coding 
of a particular feedback comment. To resolve these dis-
crepancies we continually referred back to Hattie and 
Timperley’s (2007) model and examined the criteria and 
description for each level and discussed the comments 
in relation to the mathematics on the poster. 

Figure 1

Example of a Poster Given a Mathematics Task

Task: Dad makes small apple tarts using three-quarters of 
an apple for each small tart. He has 20 apples. How many 
small apple tarts can he make?

Feedback Level Description

Feedback on Task (FT)

Feedback on Process (FP)

Feedback on Self (FS)

Feedback on Self-regulation (FR)

Feedback about the learner’s presentation, organization, and correctness of the task.

Feedback about the learner’s thinking and strategies. 

Feedback that is about the learner and not the task.

Feedback that engages the learner in self-regulation. 

Table 1

Hattie and Timperley’s (2007) Levels of Feedback



Analysis and Findings

At the end of each lesson, we took photos of all the post-
ers that were created by the students. Each poster con-
tained between four and six sticky notes that were used 
to provide peer feedback (see Figure 1). Based on the 
descriptions for each level of feedback, we then coded 

the students’ peer feedback comments using the four 
levels of FT, FP, FR, FS. We found that out of 334 peer 
feedback comments, 282 (84%) were feedback on task 
(FT), 26 (8%) were feedback on process (FP), 26 (8%) 
were feedback on self (FS), and 0 (0%) were feedback on 
self-regulation (FR). Table 2 provides examples for each 
of the four levels of peer feedback. 

Feedback Level Example

Feedback on Task (FT)

Feedback on Process (FP)

Feedback on Self (FS)

Table 2

Examples of Peer Feedback Categories 

Feedback on Self-regulation (FR) We found no examples of feedback that engages the 
receiver in self-regulation. 
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Our initial analysis of the data revealed that some 
peer feedback comments had elements that could argu-
ably place them in more than one of the four levels 
described in Hattie and Timperley’s (2007) model. Being 
provided with more than one level of feedback is ben-
eficial to learners because it allows more opportunities 
for taking up feedback. Our analysis of the comments 
also revealed that the benefits of the feedback were not 
exclusive to the students receiving them. In fact, some of 
these comments had the potential to benefit the person 
providing the feedback.

Peer Feedback that Benefits the Provider

As a peer-to-peer form of communication, peer feed-
back has the potential to support both the providers and 
the receivers. Below, we share examples of comments 
that offered the feedback provider opportunities to 1) 
self-regulate, 2) make connections between mathemat-
ical ideas, and 3) elicit further conversations with peers.

Self-Regulation: “I’ll use your strategy next 
time!”
Self-regulation involves self-assessment, self-apprais-
al, and self-management (Hattie & Timperley, 2007). 
Self-regulation includes thoughts, feelings, and actions 
that support the attainment of personal goals (Zimmer-
man, 2000). For example, students engaged in self-reg-
ulation might consider accepting feedback provided 
to them or seek further information in order to better 
understand and apply the feedback. In this study, we 
did not find samples of peer feedback that would engage 
the student receiving the feedback in self-regulation. 
However, we noticed peer feedback comments that 
illustrated self-regulation on behalf of the student who 
provided the feedback, which we have coded as Feedback 
on Self-regulation on behalf of the Provider (FR-P). 

Example 1: “You [have a] unique way of doing this 
poster! Me and my partner never did that kind of work! 
Maybe I’ll use your strategy next time!”

The student begins by complimenting the unique-
ness of the poster (FS), goes on to self-assess by shar-
ing that they had never used that strategy (FR-P), and 
concludes by considering using that strategy next time. 
The comment, “I’ll use your strategy next time” demon-
strates how the student providing the feedback may be 
reconsidering their own problem solving strategies and, 

therefore, engaging in self-regulation. We think this is 
important because it exemplifies how peer feedback can 
serve the student who is providing it, not just the one 
receiving it.

Connection-Making Feedback: “Me and my 
partner did ...”
To grow mathematical understanding, the National 
Council of Teachers of Mathematics (NCTM) recom-
mends that teachers provide opportunities for students 
to analyze and compare one another’s mathematical 
approaches and arguments (2014). There is a person-
al quality to peer-to-peer feedback that helps students 
connect their ideas with those of their peers. While ana-
lyzing our data, we noticed that almost all of the peer 
feedback comments started with “I” statements such as 
“I like….”, “I understand…”, “I don’t see how…,” etc. In 
the following two examples of peer feedback comments, 
students made connections between their strategies and 
what they saw on the poster. We coded these comments 
as Feedback on Connection-Making (FCM).

Example 2: “I liked how you showed the bottom that 
one block + 1 block + 1 block = figure 2. I also like how 
you showed that on figure 2 there is 2 on the side and 
it keeps going, figure 3 has 3 on the side. Me and my 
partner did the same thing.”

Example 3: “I like how you did the odd and even pattern 
and how 1 and 3 are odd and 6 and 10 are even.  I also 
like how you did the old blocks and the new blocks.  Me 
and my partner did something like the odd and even 
except we used the figure number as the odd and even 
instead of the full figure.” 

In both examples, the students describe what they see 
on the poster and compare it to their own solution strat-
egy. In Example 2, the student providing the feedback 
appears to be making a connection (FCM) by noticing the 
same solution strategy: “me and my partner did the same 
thing.” In Example 3, the student providing the feedback 
also appears to be making a connection (FCM) to their 
work by noticing a similar, yet slightly different, way of 
seeing the pattern by noting that they “used the figure 
number as the odd and even instead of the full figure.”  

The examples outlined here demonstrate how peer 
feedback facilitates the students providing peer feed-
back to make connections and, potentially, deepen their 
understanding of the mathematical concept.  
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Elicit Further Conversation: “Talk to me after.” 
NCTM’ (2014) Principles to Action recommends that teach-
ers facilitate meaningful mathematical discourse. Such 
discourse supports students to a) clarify understandings, 
b) construct convincing arguments, c) develop language 
to communicate mathematical ideas, and d) learn to see 
things from different perspectives. In this study, of the 
334 comments, 47 were either in the form of asking ques-
tions or eliciting a conversation between peers. We coded 
these comments as Feedback as Conversation (FC). The fol-
lowing examples show how peer feedback can support 
the beginnings of a mathematical conversation:

Example 4: “Me and my partner noticed the same thing 
that the 3 apples makes 4 tarts. Is this what you mean  
26 ½ apples of  ½ tarts (talk to me after)”

Example 5: “... I don’t really understand the top left. Can 
you explain?”

In Example 4, the student shared a connection 
between their solution strategy and what their peers did 
(FCM). Then, they posed a question and invited their 
peers to talk afterward (FC). In Example 5, the student 
communicated their lack of understanding of a part of 
the strategy on the poster and asked for more explana-
tion (FC). The comments, “talk to me after,” and “can 
you explain” invite both students, the provider and the 
receiver of peer feedback, to have a future conversation, 
creating the conditions for further action. This is signifi-
cant because it highlights how peer feedback can evolve 
from one-directional communication to an exchange of 
ideas, thus supporting student achievement (Lau et al., 
2009).

Discussion

Our use of Hattie and Timperley’s (2007) model to ana-
lyze peer feedback comments revealed an uneven distri-
bution of data among the four levels. Specifically, 84% 
of the comments belonged to the FT level. We think one 
possible reason for the large number of FTs could be 
attributed to the teacher’s “focus on the mathematics” 
prompt at the launch of the feedback activity. Similar-
ly, the teacher’s decision to discourage students to use 
phrases such as “good work” or “I like your poster,” 
could explain the comparably fewer number of com-
ments that belong to the FS level. These results inspired 
us to consider how teachers can be more purposeful in 
instructing their students about the types of feedback 

they might provide one another. For instance, instead of 
simply telling students not to say, “I like your poster” or 
“good work,” teachers can prompt students by asking 
questions such as the following:

• What can you learn from your peers’ work? Are 
there ideas in the work that inspire you to do  
something different next time? 

• How is the mathematics communicated on the 
poster similar to or different from your work?  
Specifically, how do your peers’ strategies compare 
with the strategies you used?

• Is there something in the poster that you want to 
know more about or talk further about?

Prompting students with questions like these may elic-
it a range of feedback comments from students, thus pro-
moting a more even distribution among the four levels. 
This is important because each level of feedback focuses 
on a different aspect for growth. Having a more even dis-
tribution of feedback levels offers learners more opportu-
nities to use the feedback and improve their work.

Conclusion 

Hattie and Timperley’s (2007) model is designed for 
studying and categorizing feedback provided by teach-
ers. Consequently, when describing the levels of feed-
back, they only consider the benefits to the student who 
receives the feedback. However, as this study examines 
feedback provided by and for peers, it is only natural 
that both the provider and the receiver of feedback are 
impacted by the process. Our analysis of the examples 
indicate that peer feedback has the potential to bene-
fit the students who provide feedback and those who 
receive it. Specifically, peer feedback may support the 
provider’s ability to self-regulate, make connections, 
as well as present opportunities for mathematical dis-
course among peers. 

We recognize that our study was limited by its scope 
and duration—six lessons in one classroom. However, 
thinking deeply about what students are saying and 
doing while providing peer feedback has expanded 
our perceptions of the potential for using peer feedback 
routinely in mathematics lessons. We hope this study 
inspires further inquiries into peer feedback and the 
ways that teachers can support students to engage in 
reciprocal feedback processes. Specifically, future stud-
ies might investigate how teachers and students can 
co-create criteria for peer feedback.
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Mathematical Identity and Mathematical 
Learning

Lauded by Gee (2000) as an analytic lens for research in 
education, mathematical identity is a burgeoning topic 
of study that has become increasingly prominent over 
the past two decades. Since its emergence on the scene 
during what has been coined by Lerman (2000) as the 
“social turn in mathematics education,” an operation-
al definition for mathematical identity has evolved to 
a “narrative rendering” of participative experiences 
that equates storytelling with identity-building (Sfard 
& Prusak, 2005). As a result, researchers have come 
to define mathematical identity as a socio-motivation-
al construct that refers to the dispositions and deeply 
ingrained beliefs regarding one’s ability to participate 
and perform effectively in mathematical contexts as a 
learner and user of mathematics (Bohrnstedt et al., 2020; 
Dingman et al., 2019; Martin, 2009).

Since identity-making is a “communicational prac-
tice” over which humans are active agents (Sfard & 
Prusak, 2005), social interactions are critical to the for-
mation and perpetuation of mathematical identities. 

ABSTRACT Mathematical identity is a socio-motivational construct known to be a predictor of 
mathematical achievement. Students who identify positively with mathematics are more likely 
to pursue advanced courses and Science, Technology, Engineering, and Mathematics (STEM)-
related occupations. Although mathematical identity is shaped by a myriad of internal and 
external factors on both a small and large scale, educators play a significant role in the formation 
of their students’ mathematical identities. This paper presents an overview of research and theory 
regarding those pedagogical practices for teaching mathematics that can foster the formation of 
positive mathematical identities.   

KEYWORDS mathematical identity, mathematical learning, pedagogical practices
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Every occasion for communication is an opportunity 
to (re)construct and (re)negotiate self-images through 
the discursive positioning of self and others (Davies 
& Harré, 2001; Waring, 2018). Although moments for 
mathematical identity formation are ubiquitous to 
daily life, of particular importance are those experienc-
es that occur within the classroom setting (Anderson, 
2007). In fact, teachers’ roles in shaping their students’ 
mathematical identities can be dramatic (Martin, 2009) 
because teachers communicate to their students what 
mathematics is, what learning mathematics entails, 
and who is considered a doer of mathematics. Indeed, 
extant research in sociocultural learning theory empha-
sizes the significant impact, both short term and long 
term, that teachers have in shaping identity, suggesting 
that learning and identity development are intrinsical-
ly intertwined (Martin, 2009). The National Council of 
Teachers of Mathematics (NCTM) believes mathematics 
educators can leverage students’ identities to enhance 
mathematical learning (2014). As a result, in 2016 the 
NCTM renewed its focus on the ability and responsi-
bility of teachers to foster positive student mathemat-
ical identity by reframing their principle of access and 



equity to “capture the additional and critical constructs 
of students’ mathematical identities, students’ sense of 
agency, and the teaching of mathematics for social jus-
tice” (Larson, 2018, para. 2).

Anderson (2007) describes learning mathematics as a 
“complex endeavor” consisting of three dimensions: (1) 
the development and application of skills, algorithms, 
and procedures; (2) the construction and acquisition of 
mathematics knowledge; and (3) the participation in 
social interactions that influence thoughts, actions, and 
membership within communities. Identity formation is 
a critical component of the third dimension wherein stu-
dents “must participate within mathematical communi-
ties in such a way as to see themselves and be viewed 
by others as valuable members of those communities” 
(Anderson, 2007, p.8). Teachers are both architects and 
stewards of mathematical communities in the classroom, 
responsible for designing and supervising an environ-
ment that encourages students to view themselves and 
others as valued members and contributors.   

Boaler (2002), likewise, views learning as a process 
composed of three components in which knowledge, 
classroom practice, and identity are interrelated in a 
disciplinary relationship. In her study with Advanced 
Placement Calculus students, Boaler (2002) found that 
classes with teacher-centered instruction positioned stu-
dents as “received knowers,” in which the role of the 
student was to passively receive mathematical knowl-
edge. The teacher and the textbook were described as 
the mathematical authority, meaning that they were 
relied on as the holders of all mathematical knowledge 
(Boaler, 2002). Students classified as received knowers 
were more likely to dislike and disengage from math-
ematics, often seeking out academic opportunities in 
other disciplines that offered more interpretation and 
freedom to express their ideas (Boaler, 2002). Ultimate-
ly, the lack of classroom discourse left students with few 
opportunities to develop a positive mathematical iden-
tity. In contrast, students in discussion-centered classes 
formed a relationship with mathematics that gave them 
agency and authority over the learning process (Boaler, 
2002). Rather than viewing mathematical learning as a 
mere reproduction of standard procedures, they under-
stood their active role in the process and made plans to 
continue studying mathematics; notably, mathematical 
authority was conferred to the students whose opin-
ions, ideas, and conjectures served as valuable contri-
butions to the learning of mathematics (Boaler, 2002). 
When faced with challenging problems, those students 
performed a “dance of agency” in which they moved 
freely between established methods and their own cre-

ative process (Boaler, 2002). As a result, they not only 
mastered the content but, more importantly, appropri-
ated the mathematical knowledge – a key component 
to the formation of positive mathematical identities. 
Fortunately, the positive results elicited by the discus-
sion-centered pedagogical practices of the educators in 
Boaler’s (2002) study can be replicated in any mathemat-
ics classroom through the adoption of similar practices.

Pedagogical Practices That Promote Positive 
Mathematical Identities

“Students do not just learn mathematics in school class-
rooms, they learn to be” (Boaler & Greeno, 2000, p.188). 
Teaching mathematics is more than just the dissemi-
nation of content and the development of mathemati-
cal skills. It is also about empowering students to see 
themselves as participants and doers of mathematics, 
facilitating motivation and interest through opportuni-
ties of engagement and discourse in the classroom, and 
helping students to understand the value and relevance 
of mathematics in their own lives (Miller & Wang, 2019; 
Wang, 2012). Since the role of the teacher is critical to the 
formation of mathematical identities, educators should 
regularly engage in practices that foster positive associ-
ations with mathematics. Several of these pedagogical 
practices are described below.

Fostering the Four Components of Identity
According to Anderson (2007), there are four compo-
nents of identity associated with mathematical learn-
ing that a teacher can enforce through intentionally 
designed mathematical tasks: engagement, imagina-
tion, alignment, and nature. He argues that students 
engage in mathematics when given the opportunity to 
explore and develop their own problem solving strat-
egies. Through this experience, they not only connect 
with their classroom community but are also recognized 
as members and contributors to the greater mathemati-
cal community. Anderson (2007) describes imagination 
as the way in which students envision those engaging 
mathematical activities as fitting into their daily lives, 
as well as their future educational pursuits and careers. 
Anderson (2007) believes that when students respond to 
the imagine component of identity, they align their pre-
conceived notions to conform with institutional expecta-
tions and behave in ways that align with a specific type 
of person (i.e., a “mathematics person”). Finally, Ander-
son (2007) describes the nature component of identity 
as being directly related to fixed mindset beliefs and the 
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existence of a mathematics gene. To aid in the develop-
ment of positive mathematical identities for all students, 
Anderson (2007) argues that teachers should discount 
the nature component, which can often lead to unfound-

ed explanations for student participation or success in 
the mathematical community. Several of Anderson’s 
(2007) recommendations for educators to foster positive 
mathematical identities are described in Table 1.

Anderson’s (2007)  
Recommendation Specific ExamplesGeneral Strategy

Use meaningful tasks

Establish classroom 
norms centered on 
discourse

Provide occasions for 
students to reflect upon 
their mathematical 
journey

Incorporate open-ended questions 
or projects that allow students to 
develop strategies, make use of 
mathematical tools, and focus on 
explanations over the brevity of 
responses.

Incorporate classroom expectations 
that encourage collaboration wherein 
the teacher comprises the role of 
facilitator.

Incorporate success criteria, journal 
prompts, or concept maps.

A swimming pool project in which students explore 
concepts of surface area and volume through the 
design of a swimming pool according to particular 
standards or constraints. 

An exercise in concept attainment that asks 
students to look at examples of polygons and non-
polygons to generalize a rule for what constitutes a 
polygon (Brahier, 2016).

Questions can be elicited from students by 
providing them with “Student Question Cards” that 
model various types of questioning techniques, 
such as “Why do you do that?” and “How does this 
compare to …?” (Brahier, 2016).

Teachers can demonstrate ways for students 
to listen with intention by creating a poster that 
describes specific actions students can take to  
(1) pay close attention, (2) show that they are 
listening, (3) provide feedback, and (4) respond 
appropriately (Hattie et al., 2016).

Teachers can encourage student contributions 
through the utilization of checklists that prompt 
students to consider ways that they can contribute 
to the learning process, such as “Have you 
considered looking for another way to solve the 
task?” (Hattie et al., 2016).

At the culmination of a lesson, teachers can ask 
students to respond to “I can…” statements, such 
as “I can explain why a zero exponent produces 
a value of one,” to make their learning, and the 
progress they’ve made, more visible (Hattie et al., 
2016).

At the end of an assessment, teachers can ask 
students to write in their journals in response to 
the prompt, “How do you think you performed on 
today’s test? What was the easiest part? What was 
the hardest part? Would you make any adjustments 
to how you prepared for the test? Why?”   
(Brahier, 2016).

In a Discrete Mathematics course, students can 
create a concept map for proof-writing strategies 
based on the logical form of the conclusion.

Table 1

Methods for Fostering Positive Mathematical Identities
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Fostering Identity Through Effective 
Mathematics Teaching Practices
According to Kebreab et al. (2021), a positive mathemat-
ical identity can be fostered in the classroom in accor-
dance with the NCTM’ Effective Mathematics Teaching 
Practices (MTPs) (2014). Kebreab et al. (2021) based their 
concept of identity on Gee’s (2000) four perspectives: 
natural, institutional, discursive, and affinity. Gee (2000), 
like Anderson (2007), describes the nature perspective of 
identity as a view developed from natural forces beyond 
one’s control, such as genetics. The institution perspec-
tive of identity is how one derives their identity from 
authorities within institutions, such as how students 
derive their identity as mathematicians from their teach-
ers. The discourse perspective is described as a social 
construct recognized through dialogue, such as through 
social interactions in the classroom that influence views 
regarding who is a learner and user of mathematics. 
Finally, the affinity perspective is derived from shared 
experiences with “affinity groups,” such as the members 
of a mathematics class or group (Kebreab et al., 2021).

Kebreab et al. (2021) argue that natural identities can 
be developed when teachers support students in pro-
ductive struggle (MTP 7). In particular, when educators 
afford opportunities for students to persevere in prob-

lem solving, it communicates confidence in students’ 
natural ability to overcome challenges and reaffirms 
their agency over mathematical learning. Kebreab et 
al. (2021) suggest students’ institutional identities can 
be developed through the implementation of tasks that 
promote reasoning and problem solving (MTP 2), as 
well as using and making connections between math-
ematical representations (MTP 3). For instance, educa-
tors can position students as capable knowers and doers 
of mathematics when using guiding questions such as 
“How would you describe this?” or “Where would be a 
good place to start?” Such questions should be used in 
conjunction with rich mathematical tasks, which include 
nonroutine problems that can be solved using a vari-
ety of methods (Brahier, 2016). This serves to shift the 
mathematical authority to the student which, therefore, 
encourages them to make their own connections and 
justify their thinking. Kebreab et al. (2021) posit that the 
discursive identity can be developed by posing purpose-
ful questions (MTP 5) and building procedural fluency 
from conceptual understanding (MTP 6). For example, 
when educators question or prompt students they are 
sending the message that student thinking is valued 
which may encourage them to further engage with 
their peers and teachers. Finally, when educators estab-

Anderson’s (2007)  
Recommendation Specific ExamplesGeneral Strategy

Keep students abreast 
of the role that 
mathematics plays 
in their success as 
a student and future 
employee

Make students aware 
of high expectations 

Consistently remind students that 
mathematics is integral to college 
matriculation and their careers.

Enforce the belief that all students 
can learn mathematics.

Create a reference sheet for, or display on a 
bulletin board, the progression of mathematics 
courses in their school with a particular emphasis 
on those courses that are required for entrance into 
college.

Invite professionals from outside the school to 
discuss ways in which they use mathematics in their 
professional lives (Anderson, 2007).

Include applications of mathematics that are 
relevant to the students or their prospective careers, 
such as using graph theory for the scheduling of 
final exams or modeling a mock election using 
different voting systems. 

Maintain expectations that all students will continue 
their study of mathematics in every year of high 
school and beyond (Anderson, 2007).

Consistently communicate growth mindset beliefs 
and practices that emphasize effort attributions, 
learning goals, and a mastery-oriented response to 
failure (Dweck, 2000).

Table 1 (Continued)

Methods for Fostering Positive Mathematical Identities
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lish clear mathematics goals to focus learning (MTP 1), 
Kebreab et al. (2021) postulate that students reestablish 
their roles and responsibilities as affinity members of the 
classroom mathematical community. Thus, the affinity 
perspective of identity can be fostered by the teacher 
via frequent redirection towards the learning goals and 
classroom expectations. 

Fostering Positive Mathematical Identities 
Through Discussion-Centered Pedagogical 
Practices
According to Boaler and Selling (2017), “the idea that 
students develop different mathematical identities 
in mathematics classrooms that include beliefs about 
oneself, ideas about mathematics, and an eagerness to 
engage actively with mathematics draws from a situ-
ated perspective that attends to forms of engagement” 
(p. 83). Boaler and Selling (2017) delineate two forms 
of engagement: active and passive. Active engagement 
in the mathematics classroom occurs when students are 
engaged in problem solving, discourse, and the appli-
cation of mathematical methods. In contrast, passive 
engagement takes place when students are positioned as 
“received knowers” in which their role in problem solv-
ing is to listen to the authority of the teacher and repro-
duce the teacher’s methods (Boaler & Selling, 2017). 

Educators that employ discussion-centered pedagog-
ical styles can consistently offer opportunities for active 
engagement that encourage students to have agen-
cy over validating mathematics methods, generating 
questions, and developing ideas. For instance, consid-
er placing students in cooperative learning groups and 
presenting them with a challenging mathematical task 
situated in the real world. As the students work, encour-
age them to make conjectures, justify their reasoning, 
and critique the approaches and methods of their peers 
(Seeley, 2004). Additionally, when instructional strate-
gies are employed that shift the mathematical authority 
to the students, educators can enhance the autonomy 
of their students by welcoming questions, acknowledg-
ing frustrations, and encouraging independent investi-
gations (Skilling, 2014). This can be done through the 
establishment of classroom discussion norms that create 
a mathematical community which values inchoate ideas 
and making mistakes. Educators may also consider uti-
lizing flipped or blended classroom approaches to afford 
more opportunities for inquiry-based, constructivist 
learning. When the classroom structure is reversed, 
students can take advantage of classroom time to build 
conceptual understanding and engage in activities that 
lead them to discover that mathematics is a process and 

not a “universal truth handed down by some disembod-
ied, non-human force” (Becker, 1995, p.168). Ultimately, 
when educators adopt these practices they “share the 
process of mathematical problem solving with students 
… making mathematics more equitably accessible, and 
also encouraging larger numbers of students to explore 
mathematics as a career” (Boaler & Greeno, 2000, p.189). 
Unsurprisingly, positive mathematical identities flour-
ish in these types of learning environments because stu-
dents are given agency over the mathematical process, 
are encouraged to view themselves as mathematicians, 
and experience first-hand the value of mathematics in 
their lives (Boaler, 2002; Boaler & Greeno, 2000).

Conclusion

The significance of the relationship between mathemat-
ical identity and mathematical learning is underscored 
by its increasing prominence in research. Mathematical 
identity is considered an indicator of academic perfor-
mance, persistence, and success (Bohrnstedt et al., 2020; 
Cribbs et al., 2015; Marsh et al., 1988). Additionally, 
forming positive mathematical identities can empower 
students, especially those marginalized by race, gender, 
class, or ethnicity (Larson, 2016). Moreover, those stu-
dents that positively identify with mathematics are more 
likely to pursue future mathematics courses as well as 
STEM-related occupations (Cribbs et al., 2015; Watt et 
al., 2017). According to the National Science Foundation 
(NSF), perpetual innovations in STEM fields are critical 
for maintaining a competitive edge in the increasingly 
knowledge-based, technological, and global economy 
in which we live (2007). The NSF (2007) contends that 
increasing the STEM literacy of citizens is crucial to 
ensuring their full and active participation in sustaining 
a high quality of life.

This paper presented an overview of research and 
theory regarding pedagogical practices for teaching 
mathematics that can foster the formation of positive 
mathematical identities. To begin this work it is import-
ant that we, as educators, first self-assess and reflect 
upon our own beliefs that are both intentionally and 
unintentionally communicated to students. As stew-
ards of the classroom mathematical community, in what 
ways are we communicating ideations of who is a learn-
er and doer of mathematics? Likewise, it is important 
that we analyze our classroom norms and expectations 
in consideration of the message they send to students 
regarding the nature of mathematical learning. Are we 
presenting mathematics in such a way so as to foster 
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intuition, creativity, and connectedness (Burton, 1998, 
1999)? The 70 research mathematicians in Burton’s (1998, 
1999) study identified these three notions as consistent 
with the discipline of mathematics itself. Further, they 
described feelings of euphoria in mathematical explo-
ration and a distinct need for collaboration with others 
(Burton, 1998, 1999). As teachers evaluate their own ped-
agogical practices, they should be asking themselves: 
Are we eliciting positive feelings in the classroom? To 
present mathematics in any other way would be to dis-
enfranchise students from the joy of identifying with the 
subject and, therefore, developing a positive mathemat-
ical identity.
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Introduction

Considering that mathematics textbooks exert signifi-
cant influence on pedagogy as well as the topics teach-
ers present in class (Chang et al., 2016; Johansson, 2005), 
they may also help teachers implement educational goals 
promoted within a curriculum (Hwang et al., 2021). In 
recent decades, debate has centered on whether to adopt 
traditional mathematics curriculum and textbooks or 
reformed curriculum and textbooks grounded in Princi-
ples and Standards for Mathematics Education (NCTM, 2000). 
Traditional curriculum and textbooks emphasize sys-
tematic explanation of algorithms, practice of problems 
to demonstrate concepts, teacher-centered instruction, 
memorization, and procedural knowledge (Schoenfeld, 
2002; Sood & Jitendra, 2007; Waite, 2000). In contrast, 
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reform-based curriculum and textbooks emphasize con-
ceptual knowledge and critical thinking, engage students 
in real-world problem solving, focus on explanation, and 
encourage active learning (Sood & Jitendra, 2007; Waite, 
2000). Reform-based approaches may also encourage Sci-
ence, Technology, Engineering, and Mathematics (STEM) 
integration further to promote real-world problem solv-
ing (Bybee, 2013).

With regard to calculus, reform arose out of concern 
that students had a weak understanding of the sub-
ject and lacked interest in pursuing higher mathemat-
ics (Todd, 2012). Characteristics of traditional calculus 
include a highly rigorous and rigid curriculum, a pen-
and-paper approach to problem solving, a heavy empha-
sis on theorems and proofs, memorization, and a format 
in which the teacher is the primary source of knowledge 
(Garner & Garner, 2001; Windham, 2008). Situated as 
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the primary source of knowledge, the teacher explains 
concepts and provides examples during lectures, while 
students take notes, ask clarifying questions, and study 
from textbooks in a mostly individual experience (Garner 
& Garner, 2001; Windham, 2008). Defenders of reformed 
calculus contend that finding correct answers to pro-
cedural questions has little value if one cannot explain 
why algorithms work and therefore cannot develop con-
ceptual understanding. Accordingly, reformed calculus 
courses often place less emphasis on doing proofs and 
more on understanding what proofs mean, as well as on 
applications of calculus (Garner & Garner, 2001; Wind-
ham, 2008). These courses often employ group work to 
help  students construct their own meaning of concepts 
and performance-based assessments that push students 
to  reason and justify their ideas (Garner & Garner, 2001).

When decisions about adoption of reform-based 
textbooks are made with the idea of integrating reform-
based pedagogical principles in calculus courses, it is 
useful to know to what extent these textbooks actual-
ly reflect such principles. This paper begins exploring 
this issue by analyzing the mathematical content and 
pedagogical approach of Chapter 1, “Foundation for 
Calculus: Functions and Limits,” in Hughes-Hallett  
et al.’s (2018) reform-based college textbook Calculus: 
Single and Multivariable (CS&M). This textbook was cho-
sen because the lead author is a primary proponent of 
reformed calculus (e.g., Hughes-Hallett, 2006), and their 
textbook would likely reflect reform-based principles. 
Additionally, this textbook, in its various editions, has 
been one of the most popular reform-based calculus 
textbooks (Bressoud, 2011; Windham, 2008). Chapter 1 
was chosen because functions display the relationship 
between variables and are essential for learning algebra 
as well as calculus (Chang et al., 2016). The analysis of 
the mathematical content of the chapter focuses on big 
ideas, context, and STEM integration. The analysis of the 
pedagogical approach of the chapter focuses on mediated 
scaffolding and problem solving activities. The rationale 
for these choices will be provided later in this paper. Ulti-
mately, this paper seeks to answer the question: To what 
extent does Chapter 1 of CS&M reflect the principles of a 
reform-based curriculum?  
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Although many forces, including standards and assess-
ments, shape the curricula that classes adopt, textbooks 
play a central role (Stein et al., 2007). This is partly because 
they are concrete objects rather than abstract ideals that 
teachers and students can use in the classroom (Ball & 
Cohen, 1996). Given the influence mathematics textbooks 
have on curriculum and teaching (Chang et al., 2016; 
Johansson, 2005), a reform-based calculus textbook may 
be able to promote reform-based teaching and learning 
practices. To demonstrate further the influence of text-
books on the choices both teachers and students make, 
the following sections outline the relationships between 
mathematics textbooks and teachers, as well as between 
mathematics textbooks and students.

Relationships Between Mathematics Textbooks 
and Teachers
According to Ball and Cohen (1996), there is a close rela-
tionship between mathematics textbooks and teachers’ 
practice. While teachers rely on their professional expe-
riences and beliefs to interpret the content within a text-
book (Liakos et al., 2021), they still look to textbooks as a 
“dialogic partner” (Dietiker et al., 2018, p. 522) that con-
tains vital material to be used in the classroom. Liakos et 
al. (2021) conducted a qualitative study of the curriculum 
planning activities of a seasoned teacher who switched 
from teaching calculus with a traditional approach to 
teaching reform-based calculus. Observing the teacher 
using the textbook extensively in his planning and add-
ing his own related materials, they concluded that the 
textbook significantly influenced his teaching. In addi-
tion, research suggests that in more recent years, despite 
the increased use of digital resources, textbooks continue 
to play a vital role in influencing how and what teach-
ers teach (Glasnović Gracin & Jukić Matić, 2021; Polikoff, 
2015).

Research suggests that, during periods of reform, 
mathematics textbooks are especially influential among 
teachers (Glasnović Gracin & Jukić Matić, 2021; Howson, 
2013). This may be due to the fact that mathematics text-
books often serve as an authority not only on reformed 
mathematical content, but also on new curriculum (Glas-
nović Gracin & Jukić Matić, 2021; Valverde et al., 2002). 
Moreover, often new textbooks are published during 
times of reform as a cost-effective way to implement new 
curriculum (Polikoff, 2015), as teachers often seek help 



in the implementation of a new curriculum in textbooks 
and corresponding teacher guides (Howson, 2013). New 
textbooks under a reformed curriculum may also encour-
age teachers to undergo professional development so that 
they can use the textbooks effectively (Glasnović Gracin 
& Jukić Matić, 2021). Thus, while textbooks may not 
directly determine teachers’ pedagogical approaches or 
strategies, they may influence the mathematical content 
taught in the course.

Relationships Between Mathematics Textbooks 
and Students
Research into traditional and reformed calculus is moti-
vated not just by the relationship between calculus text-
books and teachers, but also by the relationship between 
calculus textbooks and students (Bressoud et al., 2016). 
Research reveals that the interactions among mathemat-
ics textbooks, teachers, and students are complex (Sevi-
mli, 2016). Additional research suggests that most of the 
mathematical tasks students undertake and most of what 
they learn are influenced by the content of the textbook 
(Begle, 1973; Thompson et al., 2012). This may be because 
textbooks are written for students with tasks specifical-
ly addressed to them (Glasnović Gracin & Jukić Matić, 
2021; Valverde et al., 2002). Unfortunately, scant research 
explores mathematics textbooks from the perspective of 
students. Nonetheless, it is evident that textbooks may 
influence students as significantly as they do teachers. 

Research on Reformed Calculus Textbooks
Although reform in calculus has garnered much atten-
tion from researchers, particularly in relation to pedago-
gy and curriculum (Bressoud et al., 2016; Dunnigan & 
Halcrow, 2020; Garner & Garner, 2001; Keynes & Olson, 
2000), most of these researchers provide little analysis of 
textbooks. For example, Dunnigan and Halcrow (2020) 
describe a restructuring of the course Applied Calculus 
at their university, which focused on increasing students’ 
conceptual understanding and eliminating large lectures, 
but failed to address the role of textbooks. Similarly, 
Keynes and Olson (2000) describe changes in the content 

and pedagogy of the calculus sequence at the University 
of Minnesota, devoting their attention primarily to such 
innovations as the development of group work among 
students and the use of new technologies, but saying little 
about the use of textbooks.

What little research explores the impact that reform-
based calculus textbooks have on teaching and learning 
focuses on a few specific issues. For instance, Chang et 
al. (2016) investigate uses of coordinated multiple rep-
resentations in calculus textbooks for pedagogical and 
scaffolding purposes. Özgeldi and Aydin (2021) explore 
the levels of competency demand used by three calculus 
textbooks, including traditional and reformed. Neither 
Chang et al. (2016) nor Özgeldi and Aydin (2021) address 
other issues, such as STEM integration in calculus text-
books or the use of understanding, estimating, exploring, 
resolving, and explaining in the solving of mathematical 
problems. To address this gap in the literature, this paper 
provides a more comprehensive evaluation of a chapter 
in a reform-based calculus textbook that focuses not only 
on content, but also on pedagogical characteristics reflect-
ing the principles of the reformed calculus movement.

Specifically, this paper seeks to answer the questions:

1. To what extent do the big ideas in the CS&M chapter 
on functions reflect the principles of a reform-based 
mathematics curriculum?

2. To what extent does the context in the CS&M chapter 
on functions reflect the principles of a reform-based 
mathematics curriculum?

3. To what extent do the examples and problems in 
the CS&M chapter on functions integrate the STEM 
disciplines?

4. To what extent do the examples and problems 
in the CS&M chapter on functions use multiple 
representations?

5. To what extent do the examples and problems in 
the CS&M chapter on functions require different 
problem solving activities, such as understanding, 
estimating, exploring, resolving, and explaining?
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Methodology

Materials
CS&M is a product of the reform movement that has its 
roots in the 2000 publication of the NCTM’s Principles and 
Standards for Mathematics Education (Windham, 2008). The 
data source of this study consists of materials from the 
chapter on functions, including definitions of concepts, 
illustrations of these concepts, practice exercises, and 
end-of-chapter exercises.

Analytical Framework
Two frameworks are synthesized to evaluate the con-
tent and pedagogical approach of the CS&M chapter on 
functions, henceforth referred to as “Chapter 1.” These 
two frameworks are chosen because they allow for an 
analysis of the presence or absence of a wide array of 
features that are central to the 1989 reform movement. 
This synthesis of the two frameworks allows not only 
an analysis of the content of Chapter 1 for evidence of 
reform-based principles, but also expounds on how that 
chapter integrates reform-based pedagogical approaches. 
The first framework, developed by Hwang et al. (2021), 
is a commonly used framework to analyze mathematics 
textbooks by distinguishing two dimensions. The first is 
a horizontal dimension, which includes topic sequence 
and frequency. The second is a vertical dimension, 
which includes contextual features, cognitive demands, 
and problem solving activities. The second framework, 
developed by Sood and Jitendra (2007), is used to com-
pare number sense between traditional and reform-based 
mathematics textbooks. It is rooted in the principles of 
effective instruction for students at risk in mathematics 
and includes criteria such as the teaching of big ideas, 
conspicuous instruction, mediated scaffolding, and judi-
cious review (Sood & Jitendra, 2007).

The present study focuses on big ideas (Sood & Jiten-
dra, 2007) and context (Hwang et al., 2021) to evaluate 
the mathematical content of Chapter 1. Unlike Sood and 
Jitendra (2007), who, when analyzing teachers’ man-
uals and other instructional materials, assume a teach-
er’s perspective, the present study analyzes the student 
edition and thus assumes a student’s perspective. STEM 

integration, a feature of interest in the 1989 mathematics 
reform movement (Maass et al., 2019; Williams, 2011), is 
additionally included to analyze the content of Chapter 
1 for its use of examples and problems relating mathe-
matics with science, technology, or engineering. The 
use of mediated scaffolding (Sood & Jitendra, 2007) and 
problem solving activities (Hwang et al., 2021) are used 
to analyze the pedagogical approach within Chapter 1. 
The following is a summary of the analytical framework 
the present study adopts.

1. Mathematical content
 A.   Big ideas: Collections of related concepts that 

help students acquire a broad set of skills and 
knowledge (Sood & Jitendra, 2007)

 B.   Context: How a textbook illustrates math  
problems (Hwang et al., 2021)

 C.  Integration with STEM: The use of examples 
and problems relating mathematics with  
science, technology, or engineering

2. Pedagogical approaches
 A.  Mediated scaffolding: Support provided to 

students through teachers (e.g., instructional 
feedback), materials (e.g., visual prompts and 
representations), or tasks (e.g., the systematic 
introduction of more difficult materials)  
(Sood & Jitendra, 2007)

 B.  Problem solving activities: The use of 
understanding, estimating, exploring, resolving, 
and explaining in the solving of mathematical 
problems (Hwang et al., 2021)

Mathematical Content: Big Ideas, Context, and 
STEM Integration
Big ideas are what the authors of a textbook consider 
important (Sood & Jitendra, 2007). They are discernible 
through chapter headings, the amount of space in the 
chapter devoted to them, and the number of problems 
and examples that illustrate them (Sood & Jitendra, 2007). 
Figure 1 provides an example of a big idea that illustrates 
the use of different representations to understand, inter-
pret, and analyze functions.
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Figure 1 

Example of a Big Idea in Chapter 1

Big Idea: Understanding, interpreting, and analyzing functions using different representations

1.1 FUNCTIONS AND CHANGE

In mathematics, a function is used to represent the dependence of one quantity upon another.

Let’s look at an example. In 2015, Boston, Massachusetts, had the highest annual snowfall, 110.6 inches, since 
recording started in 1872. Table 1.1 shows one 14-day period in which the city broke another record with a total of  
64.4 inches.

Table 1.1

Daily snowfall in inches for Boston, January 27 to February 9, 2015

1 2 3 4 5 6 7 8 9 10 11 12 13 14

22.1 0.2 0 0.7 1.3 0 16.2 0 0 0.8 0 0.9 7.4 14.8

Day 

Snowfall 

You may not have thought of something so unpredictable as daily snowfall as being a function, but it is a function of day, 
because each day gives rise to one snowfall total. There is no formula for the daily snowfall (otherwise we would not need 
a weather bureau), but nevertheless the daily snowfall in Boston does satisfy the definition of a function: Each day, t, has a 
unique snowfall, S, associated with it.

We define a function as follows:

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number. The set of  
all input numbers is called the domain of the function and the set of resulting output numbers is called the range of 
the function.

Example 1

The function C = f(T) gives chirp rate as a function of temperature. We restrict this function to temperatures for which  
the predicted chirp rate is positive, and up to the highest temperature ever recorded at a weather station, 134°F.  
What is the domain of this function f ?

Solution

If we consider the equation
C = 4T – 160

simply as a mathematical relationship between two variables C and T, any T value is possible. However, if we think of it as  
a relationship between cricket chirps and temperature, then C cannot be less than 0. Since C = 0 leads to 0 = 4T – 160, 
and so T = 40°F, we see that T cannot be less than 40°F. (See Figure 1.2.) In addition, we are told that the function is not 
defined for temperatures above 134°F. Thus, for the function C = f (T ) we have

 Domain = All T values between 40°F and 134°F
  = All T values with 40 ≤ T ≤ 134
  = [40,134]

Example 2

Find the range of the function f, given the domain from Example 1. In other words, find all possible values of the chirp rate, 
C, in the equation C = f(T).

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018, pp. 2-3. Copyright 2018 by  
John Wiley & Sons, Inc.
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Context Example

Algebraic (A)

Verbal (V)

Geometric (G)

Numeric (N)

Table 1

Examples of Context in Chapter 1

Find the domain and range in Exercises 24–25.
24. y = x2 + 2

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018, p. 8. 
Copyright 2018 by John Wiley & Sons, Inc.

Problems 39–42 ask you to plot graphs based on the following story: “As I drove down the highway 
this morning, at first traffic was fast and uncongested, then it crept nearly bumper-to-bumper until we 
passed an accident, after which traffic flow went back to normal until I exited.”

39. Driving speed against time on the highway

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018, p. 9. 
Copyright 2018 by John Wiley & Sons, Inc.

For Exercises 20–23, give the approximate  
domain and range of each function. 
Assume the entire graph is shown.

Note. Adapted from Calculus: Single and multivariable,  
by D. Hughes-Hallett et al., 2018, p. 8. Copyright 2018  
by John Wiley & Sons, Inc.

16. Find a linear function that generates the values in Table 1.3.

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018, p. 8. 
Copyright 2018 by John Wiley & Sons, Inc.

Table 1.3

5.2 5.3 5.4 5.5 5.6

27.8 29.2 30.6 32.0 33.4

x 

y

Context refers to how a textbook illustrates math prob-
lems (Hwang et al., 2021). CS&M explicitly states that it 
uses the “Rule of Four,” illustrating concepts geometrically 
(G), numerically (N), algebraically (A), and verbally (N) 

(Hughes-Hallett et al., 2018). See Table 1 for examples.
Figure 2 provides an example of a STEM integration 

problem that connects the use of functions with the disci-
pline of physics.

Table 1.7

Table 1.8

0 1 2 3 4

0 32 64 96 128

Time (sec)
Velocity (ft/sec)

Figure 2

Example of STEM Integration in Chapter 1

75. When Galileo was formulating the laws of motion, 
he considered the motion of a body starting from rest 
and falling under gravity. He originally thought that the 
velocity of such a falling body was proportional to the 
distance it had fallen.

What do the experimental data in Table 1.7 tell  
you about Galileo’s hypothesis? What alternative 
hypothesis is suggested by the two sets of data in  
Table 1.7 and Table 1.8?

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018, p. 14. Copyright 2018 by  
John Wiley & Sons, Inc.

0 1 2 3 4

0 8 11.3 13.9 16

Distance (ft)
Velocity (ft/sec)



Pedagogical Approach: Mediated Scaffolding and 
Problem Solving Activities
Mediated scaffolding provides students with support 
through teachers, materials, or tasks (Sood & Jitendra, 
2007). Chapter 1 contains materials, such as multiple rep-
resentations and it contains tasks, such as the systematic 
introduction of more difficult problems. Providing mul-
tiple representations of mathematical concepts counts as 
a form of scaffolding (Ngin, 2018), as it can support stu-
dents’ understanding of new or difficult concepts (Sood 
& Jitendra, 2007), particularly when students are direct-
ed to reason how different representations relate to each 
other (Chang et al., 2016). See Figure 3 for an example of 
a problem that uses mediated scaffolding by employing 
both algebraic and geometric representations.

Hwang et al. (2021) adapted Pólya’s (1945) model 
for problem solving, maintaining that problem solving 
activities include understanding, estimating, explor-
ing, resolving, and explaining. Understanding involves 
making sense of a problem, estimating involves approx-
imating an answer or problem solving strategy, explor-
ing involves investigating an answer, resolving involves 
finding an answer, and explaining involves providing the 
rationale behind an answer or problem solving strategy 
(Hwang et al., 2021). The present study adopts Hwang 
et al.’s (2021) classification to reveal the types of prob-
lem solving activities used in Chapter 1. See Table 2 for 
examples.

Figure 3 

Example of Mediated Scaffolding Using Multiple Representations in Chapter 1

Match the graphs in Figure 1.9 with the following equations. (Note that x and y scales may be unequal.)

a. y = x – 5

b. –3x + 4 = y

c. 5 = y

d. y = – 4x – 5

e. y = x + 6

f. y = x/2

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018, p. 14. Copyright 2018 by  
John Wiley & Sons, Inc.
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Procedure
Using the above analytical framework, the author and a 
colleague independently examined Chapter 1 with the 
following aims:

1. to identify the big ideas;
2. to count the number of examples and problems 

illustrated algebraically, the number illustrated 
verbally, the number illustrated geometrically, and 
the number illustrated numerically;

3. to count the number of examples and problems that 
relate functions to either science, technology, or 
engineering;

4. to count the number of examples and problems that 
use multiple representations, noting which multiple 
representations are used;

5. to count the number of examples and problems that 
focus on understanding, the number that focus on 
estimating, the number that focus on exploring, the 
number that focus on resolving, and the number that 
focus on explaining.

After completing their independent examinations, the 
author and colleague compared their preliminary results, 
checking for any instances of disagreement. Two such 
instances were found. The author and colleague then 
consulted with experts, and, after discussion, reached 
unanimous agreement.
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Problem Solving Activity Example

Understanding

Estimating

Resolving

Exploring

Explaining

Table 2

Examples of Problem Solving Activities in Chapter 1

None in Chapter 1

44. A certain region has a population of 10,000,000 and an annual growth rate of 2%. 
Estimate the doubling time by guessing and checking.

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018,  
p. 23. Copyright 2018 by John Wiley & Sons, Inc.

Investigate lim   and lim 

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018,  
p. 73. Copyright 2018 by John Wiley & Sons, Inc.

The functions in Exercises 5–8 represent exponential growth or decay. What is the initial 
quantity? What is the growth rate? State if the growth rate is continuous.

5. P = 5(1.07)t

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018,  
p. 20. Copyright 2018 by John Wiley & Sons, Inc.

In Problems 83–88, is the statement true or false? Give an explanation for your answer.

83. For any two points in the plane, there is a linear function whose graph passes  
through them.

Note. Adapted from Calculus: Single and multivariable, by D. Hughes-Hallett et al., 2018,  
p. 14. Copyright 2018 by John Wiley & Sons, Inc.

1
x

1
x



Results

Mathematical Content: Big Ideas
In Chapter 1, the big ideas include: (1) understanding, 
interpreting, and analyzing functions using different 
representations, (2) building functions, (3) constructing 
and comparing linear, logarithmic, trigonometric, power, 
polynomial, and rational functions, and (4) understand-
ing limits and continuity using different representations 
(Hughes-Hallett et al., 2018). Chapter 1 includes no proofs, 
and it often introduces concepts with applications, sug-
gesting that applications are the reason for, as well as the 
result of, doing calculus (Garner & Garner, 2001). 

Mathematical Content: Context
As Table 3 indicates, the problems in Chapter 1 are pre-
dominantly illustrated algebraically (A), followed by  
verbally (V), geometrically (G), and numerically (N).

Representation Type Percent of the 854  
Total Examples/Problems

71.2%

24.2%

17.1%

4.6%

Table 3

Results for Context

Algebraically (A)

Verbally (V)

Geometrically (G)

Numerically (N)

Representation Types
Percent of the 854  
Total Examples/ 

Problems

8.0%

2.1%

1.4%

1.4%

0.4%

0.2%

0.2%

0.1%

Table 5

Results for Mediated Scaffolding

Geometric and Algebraic (GA)

Algebraic and Verbal (AV)

Geometric and Verbal (GV)

Numeric and Verbal (NV)

Numeric and Algebraic (NA)

Geometric and Numeric (GN)

Geometric, Algebraic, and 
Verbal (GAV)

Geometric, Numeric, and
Algebraic (GNA)

braic representations in Chapter 1 may be the authors’ 
attempt to develop students’ competency in mathemati-
cal language and tools.

Mathematical Content: STEM Integration
Although Chapter 1 contains some problems and 
examples relating to science, technology, and engineer-
ing, these represent only a small percentage of all the 
problems and examples (see Table 4). These results run 
contrary to reform-based principles, which emphasize 
STEM integration.

These results are noteworthy considering that tradi-
tional calculus textbooks use mostly algebraic represen-
tations (Todd, 2012), while reform-based textbooks, with 
their emphasis on multiple representations, would be 
expected to have a more even distribution of representa-
tions. Todd (2012) similarly found that the Hughes-Hal-
lett (2009) text they analyzed, included few problems 
with numerical representations and, therefore, an uneven 
distribution of representations. The heavy emphasis on 
algebraic representations in Chapter 1 may result from 
the fact that asking and answering questions by mathe-
matical means is among the chief purposes of mathemat-
ical activity (Niss & Højgaard, 2019). According to Niss 
and Højgaard (2019), such questions are about mathe-
matical thinking, mathematical problem solving, mathe-
matical modeling, or mathematical reasoning. Moreover, 
mathematical activity, by its nature, involves the ability 
to handle algebraic representations, which are connect-
ed with “mathematical language and tools” (Özgeldi & 
Aydin, 2021, p. 186). Thus, the widespread use of alge-

Pedagogical Approach: Mediated Scaffolding
Some problems in Chapter 1 contain more than one of 
the four types of representations: geometric (G), numer-
ic (N), algebraic (A), and verbal (V). Considering that the 
use of multiple representations can be a form of medi-
ated scaffolding (Ngin, 2018), problems were evaluat-
ed for the type and number of distinct representations 
used. Therefore, if a problem used both a geometric and 
algebraic representation, it was coded as GA. As Table 5 
shows, of problems containing multiple representations, 
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Percent of the 854  
Total Examples/Problems

6.0%

1.0%

0.2%

Table 4

Results for STEM Integration

Science

Technology

Engineering

Discipline



the most frequent contain geometric and algebraic (GA) 
representations, followed by algebraic and verbal (AV) 
representations.

One possible explanation for these results is that 
Chapter 1 may be attempting to target areas that students 
find more difficult when studying calculus. For example, 
research suggests that students often have difficulty with 
coordinating multiple representations, particularly those 
that include graphical representations (Chang et al., 2016). 
Perhaps the prevalence of GA representations is intended 
to help students overcome this difficulty. The prevalence 
of AV representations may indicate the authors’ attempt 
to help students review previously learned concepts and 
introduce more difficult or unfamiliar concepts (Chang 
et al., 2016). The prevalence of both GA and AV represen-
tations may also indicate coordination of the process and 
object perspectives of functions. A process perspective 
focuses on a function’s procedural characteristics, with 
each x value linked to a y value, whereas an object per-
spective views functions as entities (Chang et al., 2016; 
Moschkovich et al., 1993). Therefore, students may tend 
to think of algebraic representations from a process per-
spective, but verbal or geometric representations from the 
object perspective (Chang et al., 2016; Moschkovich et al., 
1993).

Pedagogical Approach: Problem Solving Activities
Results reveal that most problems in Chapter 1 focus 
on resolving, followed by explaining, estimating, and 
exploring, and no problems focus on understanding 
(see Table 6).
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These results imply a structure in the lessons that is 
geared toward problem solving activities, which is con-
sistent with the reformed curriculum approach (Sood & 
Jitendra, 2007). Moreover, the frequency of explaining in 
Chapter 1 is aligned with a reform-based pedagogical 
approach to teaching. Explaining is often associated with 
group activities and thus represents a more student-cen-
tered approach to teaching calculus (Sood & Jitendra, 
2007). The absence of problems on understanding stands 
contrary to the goal of reformed-based mathematics text-
books to help students understand concepts (Sood & 
Jitendra; Waite, 2000). The unequal distribution of prob-
lem solving activities also stands contrary to the goal of 
reform-based mathematics textbooks to provide students 
with the opportunity to engage in multiple problem solv-
ing activities (Sood & Jitendra, 2007; Waite, 2000).

Discussion

The above analysis reveals that significant steps seem 
to have been taken to adapt Chapter 1 to the principles 
of reformed calculus. This is evident, for example, from 
Chapter 1’s emphasis on problem solving skills and mul-
tiple representations to help students visualize concepts. 
At the same time, however, Chapter 1 exhibits some 
similarities with traditional calculus. These similarities 
include a heavy emphasis on symbolic and algebraic rep-
resentations, and less emphasis on STEM integration. The 
similarities between the traditional and reformed calculus 
approaches in Chapter 1 may stem from the fact that the 
subject of functions requires students to acquire compe-
tency in mathematical language that serves as a foun-
dation for future topics (Niss & Højgaard, 2019). On the 
other hand, a variety of representations to illustrate func-
tion concepts may appeal to students who prefer more 
numerical or geometric representations. As Bressoud et 
al. (2016) acknowledge, calculus reform has led to “the 
recognition in almost all textbooks and most universities 
of the importance of graphical and numerical in addition 
to algebraic representations of derivatives and integrals” 
(pp. 17 – 18).

The publishers of CS&M may have had reasons not to 
incorporate more reform-based principles in Chapter 1. 

Representation Type Percent of the 854  
Total Examples/Problems

82.1%

15.3%

2.2%

0.4%

0.0%

Table 6

Results for Problem Solving Activities

Resolving

Explaining

Estimating

Exploring

Understanding



For one thing, textbooks are commercial and political 
enterprises with various stakeholders, including govern-
ment officials, influencing the selection of their content 
(Polikoff, 2018; Shapiro, 2012). For example, to reach a 
broader audience and larger market, textbooks must 
deliver the curriculum content that adoption states spec-
ify (Batista Oliveira, 1995). Thus, state regulations may 
influence design criteria, topics, objectives, and other 
important components of calculus textbooks (Batista 
Oliveira, 1995). Beyond the adoption criteria of states, 
publishers must also appeal to teachers (Batista Oliveira, 
1995). Some of those teachers may be pedagogically con-
servative, and prefer textbooks with a more traditional 
approach (Batista Oliveira, 1995). The persistence of tradi-
tional calculus methods in a reform-based textbook may 
be an indication of the influence of multiple stakeholders 
who prefer traditional methods of calculus instruction.

 Three limitations of the present study are worth 
noting. First, the present study analyzes just one chapter 
of one reform-based textbook. One might question how 
representative this chapter and this textbook are. Thus, 
an investigation of other chapters and other reform-based 
textbooks is recommended. Second, while the analytical 
framework the present study adopts is useful for analyz-
ing functions, it may require expansion when analyzing 
derivatives, integrals, or other complex concepts in single 
variable calculus. Third, the present study focuses only 
on a reform-based calculus textbook and does not com-
pare and contrast it with a traditional calculus textbook. 
Although Todd (2012) makes such a comparison between 
one reform-based and one traditional calculus textbook, 
a comparison and contrast of a larger sample of reform-
based and traditional single variable calculus textbooks 
might shed further light on how much reform reform-
based textbooks actually incorporate. 
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The Spring 2022 issue features two Notes from the Field centered around 
teaching Algebra. Both authors report on their experiences implement-
ing activities designed to engage students. First, Remijan begins with a 
description of a hands-on activity involving push toys, technology, and 
systems of linear equations from her eighth and ninth grade Algebra class-
rooms. Next, Longhitano reflects on a model for a high school Algebra Lab 
that includes focused sessions which help to develop essential mathemat-
ics skills, engage students in authentic mathematical tasks, and foster their 
social-emotional competencies. 
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To begin, students 
were told that two push 
toys, Turtle and Mickey 
(Figure 1), would be 
modeling a crash where 
they would travel in 
front of a motion detector 
before crashing into each 
other.

Additionally, I
explained and showed students that the CBR was con-
nected to a graphing calculator and would collect and 
graph distance and time data automatically. Lastly, stu-
dents were informed that Turtle can travel 5 feet in 3 
seconds while Mickey can travel 7 feet in 3 seconds.

Students were then given the following scenario:

Scenario 1
Turtle is placed 2 feet from the motion detector and 
travels away from the motion detector.

 
a)  Write an equation to model the path of Turtle in 

terms of distance versus time.

 Expected Answer: y =    x + 2 where the slope is pos-
itive since Turtle is moving away from the motion 
detector and increasing its distance from the motion 
detector.
     

b)  Graph the line representing the path that Turtle takes 
in terms of distance versus time.

Expected Answer: A linear graph found in Figure 2. 

Kelly W. Remijan
Illinois Mathematics and Science Academy 

Center for Teaching and Learning

Playing with Push Toys and Technology:  
Solving a System of Linear Equations

Mathematical Action Technologies 

When students are given the opportunity to utilize 
technology and engage in hands-on activities within a 
mathematics class, they can experience mathematics in 
action. Mathematical action technologies “offer students 
opportunities to interact…in ways that are not possi-
ble (alone) with paper and pencil” (McCullough et. al, 
2021, p. 739). One such mathematical action technology, 
for instance, involves a calculator-based ranger (CBR) 
which collects and displays motion data in real-time. As 
CBR activities impact students’ abilities to interpret and 
model “physical phenomena” which enhances graph-
ical understanding (Kwon, 2010), I have incorporated 
various CBR activities that involve students walking in 
front of a motion detector to create or replicate a partic-
ular given graph (Remijan, 2019). After engaging stu-
dents with CBR activities within my classroom, as well 
as outdoor activities involving crash reconstruction and 
the Illinois State Police (Remijan, 2017), I developed an 
additional activity to model a “crash” within the class-
room using push toys and a CBR.

As such, the following is an example of a technolo-
gy-based activity involving push toys which I have per-
sonally conducted with eighth grade students in Honors 
Algebra and ninth grade students in Algebra 1A, a first-
year course of a two-year Algebra I sequence. I have also 
performed this activity with students as a mathematics 
teacher in O’Fallon, Illinois and as a Curriculum Spe-
cialist with the Illinois Mathematics and Science Acad-
emy conducting statewide outreach. The lesson activity 
presented seeks to reinforce students’ understanding of 
linear equations, graphing linear equations, and solving 
a system of equations by graphing.  
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Next, students were given a second scenario:

Scenario 2
Mickey is placed 8 feet from the motion detector and 
travels towards the motion detector.

a)  Write an equation to model the path of Mickey in 
terms of distance versus time. 

  Expected Answer: y =    x + 8 where the slope is neg-
ative since Mickey is moving towards the motion 
detector and decreasing its distance from the motion 
detector.

b)  Graph the line representing the path that Mickey 
takes in terms of distance versus time. 

   Expected Answer:  
A linear graph found 
in Figure 4.

c)  Model the situation 
involving Mickey 
using the CBR and a 
graphing calculator.

 Expected Result:  
A video of my 
former 9th grade 
Algebra 1A students modeling this situation can be 
found at https://youtu.be/ZHNUxfq-7RQ.

After conducting the 
hands-on experiment 
involving Mickey, and 
reviewing the result 
acquired from the graph-
ing calculator (see Figure 
5), I asked my students 
again “Why is the calcu-
lator showing something 
different than what you 
graphed?” 

After a brief time of reflection, students explained 
that Mickey stopped right before the motion detector, 
making his speed zero, and showing a constant func-
tion. Similarly to Scenario 1, by guiding students to 
make these connections between the experiment and 
the algebraic and graphical representations, this activity 
may help to reinforce the concepts of speed, a decreas-
ing function, and a constant function. 

c)  Model the situation 
involving Turtle using 
a CBR and a graphing 
calculator.

 Expected Result: A 
video of my former 
9th grade Algebra 1A 
students modeling 
this situation can be 
found at https://you 
tu.be/sTMtWfvhlbc.
 
After conducting the 

hands-on experiment 
involving Turtle, and 
reviewing the result 
acquired from the graph-
ing calculator (see Figure 
3), I asked my students 
“Why is the calculator 
showing something 
different than what you 
graphed?”  

With various students sharing their thoughts, stu-
dents eventually came to a consensus that the graph 
on the calculator shows that Turtle eventually stopped 
while the original, hand-drawn graph suggests that Tur-
tle never stopped. Students were guided to recognize 
that the oblique line on the calculator respresents Turtle 
moving away from the motion dector at the constant 
speed of 5 feet per 3 seconds, and that the horizontal 
line represents Turtle stopping. Additionally, the stu-
dents determined that the slope of Turtle’s path repre-
sented Turtle’s speed. Thus, the slope of the horizontal 
line formed by Turtle’s lack of movement is consistent 
with Turtler’s speed being that of zero. This activity 
reinforces the concepts of speed comparing change in 
distance to change in time, as well as what it means for 
a linear function to be increasing or constant. Further-
more, the activity may help students build connections 
between objects in motion in relation to time, as well 
as the graphical representation and analysis of such a 
situation.  
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Figure 2 

Graph of the Line 
Representing Turtle’s 
Movement

Figure 3 

CBR Model of Turtle’s Path 
on Graphing Calculator
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Figure 4 

Graph of the Line 
Representing Mickey’s 
Movement

Figure 5 

CBR Model of Mickey’s 
Path on Graphing 
Calculator



Lastly, students were presented with a third scenario:

Scenario 3
If both Turtle and Mickey leave at the same time, when 
and where will they “crash?”

a)  Graph the two lines representing the paths of both 
Turtle and Mickey on the same coordinate plane.

  Expected Answer: 
Two intersecting  
linear graphs as 
shown in Figure 6.

b)  Model the situation 
involving Mickey 
and Turtle using the 
CBR and a graphing 
calculator.

 Expected Result: A 
video of my former 
9th grade Algebra 1A students modeling this  
situation with the CBR can be seen here at  
https://youtu.be/QMFeBmIgm2g.

After analyzing the 
graph, students deter-
mined that Turtle and 
Mickey will “crash” 1.5 
seconds after they both 
leave and at a point 
which is 4.5 feet away 
from the motion detec-
tor. Additionally, after 
conducting the hands-on 
experiment, students analyzed the data captured from 
the motion detector (see Figure 7). 

With the calculator’s graph again displaying a dif-
ferent result than the hand-drawn graph, I followed 
up with the question “Why is the decreasing function 
not visible?” In response, some students were able to 
use critical thinking skills to determine that the motion 
detector was only able to see Turtle because the motion 
detector could not “pick up” Mickey due to Turtle 
blocking the “laser beam.” Lastly, students determined 
that the point shown on the calculator where the 
increasing and constant functions meet is the precise 
point in which the crash occurred. This point indicates 
the time and distance from the motion detector at which 
Turtle and Mickey crash into each other. Throughout this 
process of critical thinking, analysis, and discussion,

Figure 6 

Graph of the Two Lines 
Representing Turtle and 
Mickey’s Movements

Figure 7 

Intersection of Turtle and 
Mickey’s Paths

students were able to acquire conceptual understanding 
and greater meaning behind the functions forming the 
graphs as well as the solution to the system of linear 
equations.  

Conclusion

With the help of CBR technology and push toys, stu-
dents were able to model a situation involving the inter-
section of two objects in motion and collect real-time 
data. With such an activity, students were encouraged 
to connect graphing and solving a system of linear 
equations to a real-world situation. Hands-on activities, 
like this one, can make mathematical concepts come to 
life for students. Consequently, these activities may be 
able to promote students’ ability to make connections 
between real-world actions and mathematical concepts 
that, potentially, build their conceptual understanding 
of the underlying mathematics. Moreover, as graphing 
and solving systems of linear equations appear as early 
as middle school mathematics curriculum all the way to 
post-secondary mathematics, mathematics teachers at 
all levels are encouraged to consider integrating activ-
ities that utilize CBR’s and toys. Naturally, all teachers 
are recommended to use their professional discretion 
on the amount of guidance that is provided to help 
students gain conceptual understanding of the topic 
during the activity. 
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cuss its structure and my experiences in this model from 
the perspective of a researcher and practitioner.

A weekly schedule, shown in Table 1, is embedded 
in the SSATSEL model.

Michelle E. Longhitano
Teachers College, Columbia University

Evaluating the SSATSEL Algebra I Lab Model:  
Objectives and Challenges

At the socio-economically diverse suburban high school 
where I teach outside of New York City, there had been 
a significant overrepresentation of students of color 
placed in the remedial level of a Common Core Alge-
bra I course. This led to an unintended “in-school seg-
regation” (Oakes, 1995). For the 2020-2021 school year, 
courses were restructured so that all Algebra I students 
were enrolled in a detracked, 41-minute class, while 
those needing additional support were also placed in a 
daily 41-minute Algebra Lab class taught by their Alge-
bra I teacher. The new structure served to address the 
unintended in-school segregation taking place, as well 
as to promote more equitable access to mathematics 
education. 

It should be noted that Algebra Lab students are 
evenly distributed throughout all sections of Algebra I. 
Each teacher is in charge of two sections of Algebra I, 
and one section of Algebra Lab that consists of students 
from their Algebra I courses. This structure is critical 
as it allows Algebra Lab students to receive the addi-
tional support needed from the same teacher who has 
detailed knowledge of their progress in Algebra I. The 
Algebra Lab course, which I am currently teaching, con-
sists of skills support (SS), authentic tasks (ATs), and 
social-emotional learning (SEL), hence I refer to this as 
the “SSATSEL” model (Longhitano, 2021).

When the SSATSEL model was first implemented at 
the start of the 2020-2021 school year, a hybrid learn-
ing model was in use due to the COVID-19 pandemic. 
Many students were fully remote for the duration of the 
school year and students were exempted from the Com-
mon Core Algebra I Regents exam in New York. Hence, 
I cannot fully assess the efficacy of the SSATSEL model 
based on the 2020-2021 school year. However, I will dis-
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Monday Vocabulary Development

Tuesday Basic Skills Support (SS)

Wednesday Mathematics-Related Games

Thursday Regents Preparation

Friday Authentic Task (AT)

Table 1

Weekly Schedule for SSATSEL 

Day of the Week Targeted Activity 

The SS component includes, but is not limited to, mini 
lessons on middle school mathematics content (such as 
combining signed numbers, operations with fractions, 
etc.), organization and study skills, and pre-teaching 
of topics in the Algebra I course. In our Algebra Labs, 
teachers often employ the use of Delta Math, an online 
platform that contains a bank of problems teachers can 
use to create and monitor assessments. In Delta Math, 
the teacher can select a variety of mathematics topics 
and skills for students to practice and, using a built-in 
algorithm, require that students are prompted with new 
problems until they answer a specified number correct-
ly. When students submit an answer the full solution 
is revealed so they can learn from their mistakes and 
immediately try a new problem. In my Algebra Lab 
classroom, while students work on Delta Math, I cir-
culate the room, answer questions, provide additional 
feedback, and monitor their progress. I believe this has 



helped my students tackle skill gaps and obtain greater 
fluency with the course content.

ATs require that students apply their knowledge and 
skills to a real-world problem with a real audience. For 
example, my Algebra Lab students applied their knowl-
edge of writing and graphing linear equations and 
inequalities to develop a mathematical model for fund-
raising. The model prompted students to determine the 
number of donations they would need to reach a fund-
raising goal for a GoFundMe® page they had designed. 
The project required students to conduct research to 
determine the average donation amount, the cost of 
transaction fees, and how much money they would 
need to raise to support their cause. The task showed 
students the relevance of what they were learning and 
how they can leverage their mathematical knowledge 
to help others. ATs, like this one, are meant to spark stu-
dents’ interest in mathematics and inspire students to 
persist in their mathematics education.

Students participate in daily social-emotional learn-
ing (SEL) activities to promote their emotional health 
and growth. SEL has been shown to promote student 
achievement (Herrenkohl, 2020), which was the impe-
tus of its inclusion in this model. Activities include 
analyzing a “quote of the week” on Mondays, giving 
themselves a “shout-out” on Tuesdays, participating in 
a guided “mindfulness meditation” on Wednesdays, 
choosing a word to describe their mood in a “mood 
meter” on Thursdays, and sharing their weekend plans 
on Fridays. These activities have served to build com-
munity in my Algebra Lab class and have helped me 
connect and build rapport with my students.

In my recent research (Longhitano, 2021), I focused 
on facilitating and studying teacher collaboration in the 
curriculum development process to create AT projects 
for the Algebra Lab course that align with the scope and 
sequence of Algebra I. The findings suggested that an 
overemphasis on the implementation of ATs in Algebra 
Lab may have negatively impacted student achievement 
and participation in the Algebra I class (Longhitano, 
2021). This may have been due to the fact that the ATs 
did not directly attend to students’ need to develop pro-
cedural fluency and conceptual understanding. While 
the teachers who participated in the study felt that the 
ATs were a valuable pillar of the course, they agreed 
that SS and SEL activities seemed to be most vital to the 
success of their students and, thus, should take priority. 
It was also noted that the COVID-19 pandemic made 
it difficult to reach students attending classes remotely. 

Teachers in the study commented that they believed the 
SSATSEL model would have been much more effective 
if all students were physically present. In addition, due 
to the number of fully remote students, recruitment of 
students to participate in my study was difficult, which 
limited my ability to investigate students’ perceptions of 
the SSATSEL model.

Currently, in the 2021-2022 school year, I have 
observed an enormous gap in my Algebra I students’ 
mathematical skills. I believe that this is primarily due 
to a loss of learning when we were in remote and hybrid 
classrooms during the COVID-19 pandemic. The efficacy  
of the SSATSEL model has been difficult to discern 
because it is confounded by the disruption of students’ 
mathematics education during their formative middle 
school years. Recently, my Algebra I colleagues and  
I decided to replace vocabulary development on Mon-
days with more intensive SS, pre-teaching, and addi-
tional use of Delta Math and other platforms to address 
the skills gaps. The students still participate in vocabu-
lary development activities in the Algebra I class, thus 
they are able to develop their mathematical vocabulary. 
I believe a few years of in-person learning will need to 
take place before I can again assess the efficacy of the 
SSATSEL model and its three components. 
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Items
 7
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Total Variance Accounted For
Eigenvalue

Items
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 1
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Total Variance Accounted For
Eigenvalue
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Factor 2 (Field)
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Table 2

Final Factor Loadings on the ATS Japanese translation: 
List of All Retained Items for ATS-Course and ATS-Field 
among Japanese sample
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