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The Spring 2023 edition of the Journal of Mathematics Education at Teachers 
College presents three research-based articles that develop and support 
teachers’ mathematical pedagogy. These are then followed by two short 
reports of contrasting scale: one an implementation of a non-traditional 
classroom and the other a historical look at a particular mathematics 
education movement.

Wade et al. open this issue with an investigation into how the Four Com-
ponent Instructional Design (4C/ID) model can be fitted to support stu-
dents’ development of mathematical concepts. Specifically, using data 
from the FICSMath Project, the researchers developed a novel frame-
work for supporting the transition from secondary precalculus and cal-
culus to tertiary calculus based on Cognitive Load Theory and the 4C/
ID model.

Next, Saclarides takes a more hands-on approach and examines the ways 
experienced mathematics teacher coaches model instruction for mentee 
teachers. The researcher performed a case study of one teacher-coach 
pair, focusing particularly on the interactions between teacher and coach 
and the scaffolding that occurred during a coaching cycle. The findings 
noted that verbal asides, written asides in lesson plans, and scaffolding 
during modeled instruction were important tools for meaningful teach-
er-coach interactions.

To close this issue, An et al. report on a case study using Mondrian-style 
art as a vehicle for improving the mathematics pedagogy of pre-service 
elementary teachers. Pre-service elementary teachers were tasked with 
creating their own Mondrian-style art pieces and reflecting on the ped-
agogy used in the activity. Their findings reinforce the utility of visu-
al aids in supporting mathematics instruction while also presenting a 
unique method in which art and mathematics intersect to improve class-
room pedagogy surrounding fractions and ratios.
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Introduction

Why do we need a(nother) model for teaching precal-
culus and calculus? Because many in the field—high 
school teachers and professors alike—have been trying 
to improve student learning of mathematics to disap-
pointing ends. In the United States (US), for example, 
students in 12th grade have demonstrated unimproved 
mathematics scores on the National Assessment of Edu-
cational Progress (NAEP) from 2005-2019.  Without test-
able instructional models, we are left with claims about 
teaching mathematics that are difficult to affirm or reject. 
We therefore present an empirically based model that 
focuses on the secondary-tertiary transition in math-
ematics. Exactly when this transition begins and ends 
is obscure, yet educational research suggests a period 

ABSTRACT  Although the secondary-tertiary transition has been investigated in mathematics 
education research with different focuses and theoretical approaches, it remains a major issue 
for students in the transition. With success in a science, technology, engineering, or mathematics 
(STEM) major at stake, we investigated a novel approach to support the transition from secondary 
precalculus or calculus to tertiary calculus. Using the Four Component Instructional Design (4C/ID) 
model and empirical data from the United States (US) nationally representative FICSMath project, 
we mapped instructional experiences of students in the transition to theoretical components of the 
4C/ID model. From exploratory factor analysis (n=6,140), we found six factors that mapped to the 
4C/ID model components and created the new Secondary Precalculus Calculus (SPC) 4C/ID model. 
In this model, the Learning Task Component represents tasks to engage learners in meaningful 
problem solving; the Support Component grounds instruction in reasoning and understanding; 
the Procedure Component integrates group work and graphing calculators to connect concepts 
to procedures; and the Part-Task Component represents instruction to develop automaticity. The 
SPC 4C/ID model presents a unique support for precalculus and calculus teachers in the quest of 
teaching for learning and transfer of learning across the transition.

KEYWORDS  secondary mathematics, postsecondary mathematics, modeling instruction 

Presenting a New Model to Support the Secondary-Tertiary  
Transition to College Calculus: The Secondary Precalculus and  

Calculus Four Component Instructional Design (SPC 4C/ID) Model
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between two years before and after entering university 
(Gueudet, 2008). In the US, even if secondary students 
score a 3 or higher (grades range from 1 to 5) on the Col-
lege Board Advanced Placement (AP) Calculus exams, 
they may still struggle to perform and persist in college 
calculus (Atuahene & Russell, 2016). Bressoud (2009) 
hypothesized that the College Board AP Calculus curric-
ulum is so broad that students move through it learning 
procedures instead of concepts necessary for success in 
tertiary calculus. The most common transition support 
offered is that of bridge courses, e.g., high school-lev-
el courses, such as algebra and/or precalculus that are 
taken (or retaken) at the tertiary level. In the US, tertiary 
level enrollment in precalculus is well-populated with 
students who previously completed precalculus in high 
school. Perhaps surprisingly, retaking precalculus in 
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college does not predict earning higher grades in col-
lege calculus (Sonnert & Sadler, 2014). With questionable 
support from bridge courses and with known variabili-
ty of preparation quality, a look back to instruction and 
learning in secondary mathematics is a logical next step. 

Theoretical Perspectives

Several theories in the field of mathematics education 
have been used to investigate the secondary-tertiary 
transition. Clark and Lovric (2008; 2009) situated the 
transition in an anthropological framework of the rite of 
passage. Within their work, they discuss the vast array 
of changes across teaching styles, the types of mathe-
matics taught, the levels of conceptual understanding, 
and the advanced mathematical thinking required. 
Other researchers have investigated the actions, pro-
cess, objects, and schemata(APOS) theory (Dubinsky & 
McDonald, 2001; Gueudet, 2008; Selden & Selden, 2001). 
This theory views mathematical knowledge as being 
constructed through mental actions that are organized 
in schemata to make sense of problem-solving situa-
tions. Gueudet (2008) discussed the APOS theory rel-
ative to students in the transition as they are shifting 
to more advanced mathematical thinking. While these 
perspectives have added to our understanding of the 
transition, the theory foundational to our work is Cog-
nitive Load Theory (CLT). 

A major premise of CLT is that working memory load 
is decreased when domain specific schemata are activat-
ed from long term memory. The three sources of work-
ing memory load are described as: extraneous cognitive 
load coming from how material is organized and pre-
sented during instruction; intrinsic cognitive load com-
ing from element interactivity, or the interaction of the 
interconnected parts of the content; and germane cog-
nitive load, which encodes, sends, and connects newly 
processed information to existing long term memory 
schemata. A major instructional challenge is how to 
limit extraneous and intrinsic cognitive load enough so 
that working memory has the resources to successfully 
encode information for storage into long term memory. 
When schemata are built from this process, then learn-
ing can occur. CLT defines learning as a permanent change 
in long-term memory (Sweller et al., 1998), and we refer to 
learning the same way. We also believe that instruction 
focused on easier-to-present procedures compromises 
learning (Curry, 2017). This phenomenon is referred to 
as the transfer paradox because such instruction may have 
an effect on short-term retention for test performance 
but not on learning (van Merriënboer et al., 2006). This, 
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along with the Four Component Instructional Design 
(4C/ID) model, created from CLT to support instruction 
of a complex task (van Merriënboer et al., 2006), is what 
specifically attracts us to this theory. A complex task, in 
contrast to simple tasks, has many different solutions, 
real world applications, cannot be mastered in a sin-
gle session, and poses a very high load on the learners 
cognitive system (van Merriënboer et al., 2006). The 4C/
ID model was not created specifically for mathematics, 
however we are applying the model to mathematics 
because instruction and learning of mathematics is a 
complex task. For example, mathematics requires mul-
tiple solutions during problem-solving (e.g., numeric, 
algebraic, graphic, etc.), is replete with real world con-
nections, requires time to learn, and—for many—creates 
a very high working memory load. The 4C/ID model was 
confirmed for mathematics using data from the Factors 
Influencing College Success in Mathematics (FICSMath) 
(Wade et al., 2020). However, there has never been an 
investigation into how well the theoretical components 
of the model correspond to the actual instruction of sec-
ondary precalculus and calculus teachers. Thus, the pur-
pose of this paper is to explore the fit between the 4C/ID 
model and senior level high school students’ perceptions 
of how their precalculus and calculus instructional expe-
riences prepared them for college/university calculus. 

4C/ID Components
The 4C/ID model components include Learning Task, 
Support, Procedure and Part-Task Components. These 
components help understand how to reduce cogni-
tive load and support working memory during the 
learning of complex tasks. Table 1 presents the model 
components with their descriptions. Learning tasks 
ideally connect learners with constituent skills from the 
support and procedure components that make up the 
whole task (van Merriënboer et al., 2002). Working with 
the whole task is challenging yet required for making 
connections between prior knowledge and new learn-
ing. For example, when learning logarithms, the prereq-
uisite concepts of exponents and functions must be used 
to support learning. Most learners are not cognitively 
prepared to learn logarithms when there are no schema-
ta developed for exponents and exponential functions. 

Figure 1 presents the model as conceived by van 
Merriënboer et al. (2006). What is important to grasp 
from the representation of the model is that the Support 
Component (overarching concepts) is foundational to 
learning complex tasks. The Procedure Component and 
the Learning Task Components are established upon the 
concepts. As presented in Table 1, the partially shaded 



Figure 1

Van Merriënboer’s Theorized Components of the  
4C/ID Model. From Four-Component Instructional 
Design. 4cid.org.

circles represent diminished scaffolding over time of 
the constituent skills that make up the whole task (van 
Merriënboer et al., 2002). The Part Task Component rep-
resents practice for automaticity, and such practice is 
known to reduce the working memory load. 

theoretical components of the 4C/ID model? If there is a 
fit, how can the 4C/ID model be modified to better align 
with secondary precalculus and calculus instruction?
 

Data and Methods

The FICSMath Project
The FICSMath project, conducted at the Science Edu-
cation Department of the Center for Astrophysics | 
Harvard & Smithsonian remains the most recent US 
study of high school preparation for college calculus 
success. Three sources of data were gathered for the 
development of the FICSMath survey. One source was 
a broad literature review of current issues in second-
ary and tertiary mathematics education. Another was 
a qualitative online survey sent to precalculus and 
calculus teachers and professors across the nation. 
Teachers were asked what they were doing, and pro-
fessors were asked what teachers should be doing, to 
prepare students for tertiary calculus (for results, see 
Wade et al., 2016). Lastly, a focus group consisting of 
experts in secondary and post-secondary mathematics 
and mathematics education discussed the survey items. 
Together these provide evidence of content validity. To 
gauge test-retest reliability, we carried out a separate 
study in which 174 students from three different col-
leges took the survey twice, 2 weeks apart. Our analysis 
found that, for groups of 100, less than a 0.04% chance 
of reversal between the 50th and 75th percentiles exist-
ed (Thorndike, 1997). In the end, the FICSMath survey 
included 61 questions (many with multiple imbedded 
items) regarding demographics, course taking, perfor-
mance levels, and instructional experiences from par-
ticipants’ most recent high school mathematics course 
before entering single variable college calculus. The 
survey was administered at the beginning of the Fall 
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Research Questions

The FICSMath project has collected a wealth of empirical 
data about US students’ instruction and learning expe-
riences from their last high school mathematics class 
before entering tertiary calculus. For this paper, the data 
analyzed latent constructs to determine how well actu-
al instructional practices, as reported by students in the 
transition, align with components of the 4C/ID model. 
Our research questions are thus two-fold: What is the 
fit of students' perceptions of their instructional expe-
riences, as reported on the FICSMath survey, with the 

Table 1

Description of the Theoretical Components of the 4C/ID Model (modified from 4CID.org)

	 4C/ID Component	 Description and Goal of the of the Component

	 Learning Task Component	� Integrates non-routine and routine skills and knowledge with authentic whole task learning 
experiences, is organized from simple to complex, and provides diminishing scaffolding 
support (represented by the partially shaded circles).

	 Support Component	� Is foundational to learning tasks as it supports learning of non-routine aspects of learning 
tasks, explains how to approach problems using cognitive strategies, details how the domain 
is organized using conceptual models and is always available. 

	 Procedure Component	� Specifies how to perform aspects of the tasks through step-by-step instruction, is presented 	
just-in-time and fades as learners acquire more expertise.

	 Part-Task Practice Component	� Provides additional practice for routine aspects to reach a high level of automaticity, provides 
repetition, begins after routine aspects have been introduced in context of the whole task.



2009 semester to a stratified random sample of 276 small, 
medium, and large 2- and 4-year institutions (336 college 
and university calculus courses or sections). Students 
completed the surveys in college/university class, and, 
when the semester was over, the professors reported 
grades on the surveys before returning them to Harvard 
University. In the end, we obtained data from 10,437 
students from 134 institutions that returned the surveys 
(73.6% response rate from those who agreed to partici-
pate). For the purposes of this study, we included only 
respondents who had precalculus and/or calculus their 
senior year in high school and were the next semester 
in single variable college or university single variable 
calculus. This reduced the sample to 5,985 respondents. 
Though the individual percentages of missing values for 
the variables used were small, multiple imputation was 
applied to prevent a compound loss of data. Our sample 
thus included 6,140 cases, a 2.6% increase from the 5,985 
respondents under listwise deletion. 
 
Instructional Questions and Items
Table 2 shows the various instructional questions 
from the FICSMath survey. Instead of choosing which 
instructional questions should be mapped to com-
ponents of the 4C/ID model, we included all 70 items 
(from the 14 questions) in exploratory factor analysis 
(EFA). This allowed  instructional experiences to be 
mapped empirically instead of theoretically. 
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Exploratory Factor Analysis
Exploratory factor analysis (EFA) is a widely used and 
broadly applied statistical technique in the social sci-
ences (Costello & Osborne, 2005). We first investigated 
the Kaiser-Meyer-Olkin (KMO) statistic, which indicates 
the proportion of variance in the variables that may be 
caused by underlying factors. High values close to 1.0 
indicate that factor analysis can be usefully applied to 
the data. The KMO value was 0.848, suggesting that 
EFA is a reasonable method to investigate the under-
lying constructs. The large number of participants in 
the FICSMath study allowed us to meet many of EFA 
established best practices. For reliable results, the total 
number of variables in EFA should be at least three to 
five times larger than the number of expected common 
factors (Fabrigar et al., 1999). With 70 variables and seven 
factors, we comfortably met this standard. Additional-
ly, the recommended sample size should have a ratio of 
10:1 of observations to factors (Costello & Osborne, 2005) 
which we also met comfortably with a sample size of 
6,140 (after multiple imputation) and seven factors. Table 
2 shows that the scales of the variables were different, so 
we standardized the variables before running EFA. We 
also selected Maximum Likelihood as the factor analysis 
method and used eigenvalues greater than 1 (Gorsuch, 
1983) and the Scree test to determine the number of fac-
tors to keep (Cattell, 1966; Fabrigar et al., 1999). Because, 

Table 2

The Types of Instructional Questions (14) and Items (70) on the FICSMath Survey

	 Types of Instructional Questions on the FICSMath Survey	 Number of Items	 Scale

	 The amount of conceptual understanding and memorization of procedures required	 2	 0-5 
	 in the class.

	 The ways calculators were used in class.	 7	 0-1

	 Frequency of use of calculators and/or computers in class.	 3	 0-4

	 Emphasis on specific types of instruction in class.	 7	 0-5

	 Frequency of types of in-class, student-to-student and/or teacher-to-student questioning, 	 10	 0-5 and 
	 responses, and interactions.			   0-4

	 Types of problems investigated and solved in class.	 9	 0-7

	 How often calculations were checked for reasonable answer.	 1	 0-5

	 Types of in-class questions on tests or quizzes.	 9	 0-1

	 Use of specific teaching characteristics.	 6	 0-5

	 Ways mathematics was connected to real life in class.	 4	 0-4

	 Types of support for problem solving given in class.	 3	 0-4

	 Types of teaching manipulatives used in class.	 3	 0-4

	 Use of in-class assessments.		  6	 0-4



according to Yong and Pearce (2013), larger sample sizes 
allow smaller loadings, we decided that items with a fac-
tor loading of 0.30 or higher would remain in the factors. 
We also viewed instructional variables as being correlat-
ed and hence used the Promax oblique rotational meth-
od because of its expedience with larger datasets and the 

simple structure it can achieve (Gorsuch, 1983; Yong & 
Pearce, 2013). In the end, 34 out of the 70 variables held 
together in seven factors. The factors explain 51.9% of the 
variance within the data. As seen in Table 3, Cronbach’s 
alpha for the factors ranged from 0.618 to 0.873, indicat-
ing high internal consistency within each factor.
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Table 3

Factors, Constructs, Loadings, and the FICSMath Items (n=6,140; 51.9% of variance explained).

	 Factors	 Latent Constructs	 Factor	 FICSMath Items 
	 (Cronbach’s		  Loadings  
	 Alpha)

	 Factor 1	 Ways instruction connects 
	 (0.873)	 mathematics to the real world  
		  and other subject areas. 

	 Factor 2	 Instruction to support 
	 (0.837)	 problem solving. 
 

	 Factor 3	 Instruction to support  
	 (0.746) 	� mathematical literacy,  

reasoning, and conceptual  
understanding. 
 
 

	 Factor 4	 Ways calculators were used  
	 (0.747) 	� in the course to support  

problem solving. 
 
 
 

	 Factor 5	 Frequency of various types of  
	 (0.785) 	 problems solved in the course. 
 
 
 

	 Factor 6	 Student and teacher classroom  
	 (0.712) 	� interactions to support learning  

mathematics.  
 

	 Factor 7	 Instructional time spent on  
	 (0.618) 	� preparing for assessments and  

going over assignments.

 
 

	 0.936	 Connected math to real life applications.

	 0.850	 Connected math to everyday life.

	 0.705	 Examples from everyday world were used.

	 0.655	 Connected math to other subject areas.

	 0.928	 Teacher highlighted more than one way of solving a problem.

	 0.794	 Teacher explained ideas clearly.

	 0.686	 Teacher used graphs, tables, and other illustrations. 

	 0.599	 Teacher presented various methods for solving problems. 

	 0.831	 Emphasis on precise definitions. 

	 0.703	 Emphasis on vocabulary. 

	 0.503	 Emphasis on mathematical proofs.

	 0.421	 Emphasis on mathematical reasoning.

	 0.412	 Emphasis on functions. 

	 0.331	 Extent of conceptual understanding. 

	 0.626	 Allowed to use for trigonometric functions. 

	 0.614	 Allowed to use on exams.

	 0.590	 Allowed to use to plot graphs of functions. 

	 0.570	 Allowed to use for simple calculations.

	 0.566	 Allowed to use for homework. 

	 0.453	 Allowed to compute derivatives and integrals.

	 0.822	 Frequency of word problems. 

	 0.706	 Frequency of problems with multiple parts. 

	 0.566	 Frequency of problems with written explanations. 

	 0.507	 Frequency of problems with proofs. 

	 0.485	 Frequency of problems being graphed by hand.

	 0.941	 Classmates taught each other. 

	 0.775	 You taught your classmates. 

	 0.375	 Small group discussions were held. 

	 0.335	 Students spent time doing individual work in class. 

	 0.610	 Class time spent preparing for quizzes or tests.

	 0.580	 Time spent reviewing past lessons.

	 0.489	 Class time spent preparing for standardized tests.

	 0.451	 Tests or quizzes were given in class.



Lastly, the Pearson product-moment correlations 
were computed to determine if the factors held cohe-
sively together among one another. We used Onwueg-
buzie and Daniel’s (1999) guide of appropriate sample 
sizes of 800, 84, and 28 to detect small (r = 0.1), moderate 
(r = 0.3) and large correlation (r = 0.5) levels, respective-
ly. With a sample size of 6,140 we used 0.1 and 0.3 as the 
cut off for weak and moderate correlations, respective-
ly. As seen in Table 4, all factors were positively correlat-
ed with each another except factor 5.

Results

Being comfortable with the factors and how they held 
together, we determined if and how the factors mapped 
to the theoretical components of the 4C/ID model. Fac-
tors with at least a weak positive correlation (r > 0.1) 
and theoretical alignment with the components were 
mapped together. We now present how we perceive the 
4C/ID components as they relate to the teaching of high 
school precalculus and calculus. Table 5 presents the 
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Table 4

Pearson Correlations Among the Factors (n = 6,140)

	

* Weak correlation (0.00 ≤ r ≤ 0.30); **Moderate correlation (0.31 ≤r ≤ 0.50) 

		  Factor 1	 Factor 2	 Factor 3	 Factor 4	 Factor 5	 Factor 6

	 Factor 1						    

	 Factor 2	 0.375**					   

	 Factor 3	 0.321**	 0.454**				  

	 Factor 4	 0.231*	 0.215*	 0.299*			 

	 Factor 5	 – 0.031	 – 0.006	 – 0.071	 – 0.067		

	 Factor 6	 0.235*	 0.178*	 0.115*	 0.138*	 0.050	

	 Factor 7	 0.260*	 0.270*	 0.204*	 0.254**	 – 0.025	 0.255*

Table 5

Mapping of the Factors and Constructs to the Theoretical Components of the 4C/ID Model

	
	 Factor and Construct from 	 4C/ID	 Description of the Component 
	 FICSMath Data (correlation 	 Component 
	 value if more than one factor).

	�� Factor 1: Ways instruction connects 	 Learning Task	 Integrate new content with necessary prior knowledge 
mathematics to the real world and other	 Component	 and connect with applied problems. Scaffold instruction by 
subject areas.		  integrating the Support and Procedure Components and  
		  diminish scaffolding over time. 

	� Factor 2: Instruction to support problem	 Support	 Support instruction of new learning tasks by explaining 
solving.	 Component	 how to approach problem solving using cognitive 
Factor 3: Instruction to support mathematical		  strategies, concepts, reasoning, and mental models 
literacy, reasoning, and conceptual		  (graphs, charts, tables, patterns, etc.). 
understanding (r = 0.454).

	� Factor 4: Ways calculators were used in the	 Procedure	 Connect problem solving tasks through step-by-step 
course to support problem solving.	 Component	 instruction while integrating prior knowledge with 
Factor 6: Student and teacher classroom 		  new content. Connection to applied problems create the 
interactions to support learning mathematics 		  stage for just-in-time instruction that fades as learners 
(r = 0.138).		  acquire more expertise.

	� Factor 7: Instructional time spent on 	 Part-Task	 Provide additional practice through classwork, homework, 
preparing for assessments and going 	 Component	 group work, etc., for problem-solving tasks to reach a high 
over assignments.		  level of automaticity. Repetition begins after new content 
		  has been introduced in the context of the whole task.



how tertiary calculus has addressed transition issues 
see Vandenbussche et al., 2018; Norton et al., 2019; & 
Viera et al., 2019). The SPC 4C/ID model may be unique 
to a US context, but we hope that mathematics educa-
tors and teachers from other countries will consider this 
model and investigate if it can support students in the 
transition to tertiary mathematics in their specific insti-
tutional structures. Lastly, while the SPC 4C/ID model 
is derived empirically, it is not yet tested for predictive 
validity. That is a clear next step for our work. 

Discussion and Conclusion

The SPC 4C/ID model was generated by mapping the 
instructional experiences of students who proceeded to 
college or university calculus to theoretical components 
of the 4C/ID model. Initially Wade et al., (2020)  used 
confirmatory factor analysis (CFA) to confirm the 4C/ID 
model using FICSMath data. In that work, we selected 
instructional experiences that aligned theoretically with 
the 4C/ID model. By comparison, this article presents 

4C/ID components and addresses 
our first research question: What 
is the fit of students' perceptions 
of their instructional experiences, 
as reported on the FICSMath sur-
vey, with the theoretical compo-
nents of the 4C/ID model? Factor 
1 mapped to the Learning Task 
Component; Factors 2 and 3 being 
mapped to the Support Compo-
nent; Factors 4 and 6 mapped to 
the Procedure Component; and 
Factor 7 mapped to the Part-Task 
Component. Factor 5, a measure 
of the quantity and variety of 
problems posed in the course, 
was negatively correlated and was 
thus not included in the mapping 
of factors to model components. 

The Modified 4C/ID Model 
We now address Research Ques-
tion 2: How can the 4C/ID model 
be modified to better align with 
the actual instruction of second-
ary-tertiary mathematics? Table 
6 presents the descriptions of the 
components of the modified Sec-
ondary Precalculus Calculus Four 
Component Instructional Design 
(SPC 4C/ID) model. The modified components were 
generated using Table 3 (factors generated from EFA) 
and Table 5 (mapping of factors with mathematics edu-
cation language integrated into the 4C/ID components). 
The modified SPC 4C/ID model was designed for sec-
ondary precalculus and calculus instruction, with the 
ultimate goal of providing teachers with guidance on 
ways to better prepare students for tertiary calculus. 

Limitations and Future Work

The SPC 4C/ID model was generated from US students’ 
instructional experiences from their senior level precal-
culus or calculus course, as they reported them on the 
FICSMath Survey the following semester in single vari-
able college or university calculus. There is no voice, 
however, representing those who took precalculus 
and/or calculus in high school and did not proceed to 
college calculus the following semester. Likewise, this 
article is silent on instructional practices at the tertia-
ry level—which are also worthy of examination (to see 

	 PRESENTING A NEW MODEL TO SUPPORT THE SECONDARY-TERTIARY TRANSITION TO COLLEGE CALCULUS: 	 	 7 
	 THE SECONDARY PRECALCULUS AND CALCULUS FOUR COMPONENT INSTRUCTIONAL DESIGN (SPC 4C/ID) MODEL

Table 6

Description of the Components of SPC 4C/ID model

	
	 SPC 4C/ID	 Description of the SPC 4C/ID Components  
	 Component

�	 Learning Task	 •	Present learning tasks that integrate new concepts by 
	 Component 		  engaging learners in problem solving that integrates prior  
			   learning.  
		  •	Present applied problems with associated mathematical tasks  
			   organized from simple to complex.  
		  •	Scaffold instruction using the Support and Procedure  
			   Components. Decrease scaffolding over time.

	 Support	 •	Support learning by highlighting various ways of solving  
	 Component 		  problems.  
		  •	Use mental models to focus on mathematical concepts using  
			   graphs, tables, and other illustrations. 
		  •	Focus on mathematical literacy (definitions and vocabulary),  
			   proofs, reasoning, functions, and conceptual understanding to  
			   present how the mathematical content holds together.  
		  •	This component is paramount to building conceptual  
			   understanding that will be needed in university mathematics.

	 Procedure	 •	Use graphing calculators to connect concepts to procedures  
	 Component 		  while being mindful that students will most likely not have  
			   access to graphing calculators in college level calculus.  
		  •	Use small group discussions and group work where students  
			�   can explain problem solving and where teachers can provide  

just-in-time guidance.

	 Part-Task	 •	Provide additional practice to reach high levels of automaticity  
	 Practice 		  by reviewing past lessons, going over homework, and preparing  
	 Component 		  for quizzes or tests. 
		  •	Only use such review after concepts and procedures have been  
			�   presented to reduce the over reliability on rote mathematical 

procedures.
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of concepts (Support Component) first and foremost, 
then other components are built upon the concepts. This 
model can be used by mathematics teachers to examine 
and improve their own practices. For example, when 
teaching trigonometric ratios they may face pressure 
to make abstract ideas concrete to address the common 
question of “when will we ever use this?” As a result, 
they may seek to connect trigonometric ratios to real life 
applications. The SPC 4C/ID model shows that real life 
connections must be supported by an understanding 
of concepts that undergirds the learning of procedures. 
Rather than answering the “when will we ever use this?” 
question in isolation, the SPC 4C/ID model suggests that 
teachers instead seek answers to a more robust ques-
tion: How can I present students with meaningful prob-
lem-solving and real life tasks while providing support 
for learning overarching mathematical concepts with 
appropriate attention to procedures and the develop-
ment of automaticity?  It is not a small question, and 
the answers are not simple, but we hope the SPC 4C/ID 
model provides a framework that successfully addresses 
this question. 
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Introduction

Given coaching’s widespread theoretical and empirical 
support (Desimone & Pak, 2017; Gibbons & Cobb, 2017; 
Harbour & Saclarides, 2020), United States school dis-
tricts are increasingly hiring coaches to support teaching 
and learning. Here, I use the word “coach” to describe 
individuals who are tasked primarily with working 
with teachers on issues related to instructional improve-
ment (Baker et al., 2021). Coaches typically have part- 
or full-time release from teaching, are stationed at the 
district office or in schools, and do not evaluate teach-
ers (Campbell & Malkus, 2011). When coaches work 
with teachers, they may leverage one-on-one coaching 
activities such as modeling and co-teaching, and group 
coaching activities such as engaging in lesson study, 
examining student work, and analyzing classroom 
video to support teacher learning (Gibbons & Cobb, 
2017). Although these individual and group coaching 
activities are universal (e.g., modeling, co-teaching, 

ABSTRACT Although modeling instruction has been identified as a productive professional 
development activity that coaches can use with teachers in their classrooms, coaches are provided 
with little guidance regarding how to support teacher learning as they model mathematics 
instruction. While previous research points to the importance of providing teachers with examples 
of high-quality instruction through the coach’s model, teachers may need additional support as 
instruction unfolds to make sense of what they are observing. As part of the current study, I 
partnered with one mathematics coach and explored how she explicitly sought to augment teacher 
learning while modeling mathematics instruction. Findings indicate that the coach leveraged 
three approaches: engaging the teacher in verbal asides during modeled instruction, providing 
the teacher with written asides in the scripted lesson plan, and scaffolding the observing teacher’s 
responsibilities. Implications are provided for research and practice.
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lesson study, etc.), coaches select specific coaching 
activities and tailor their focus to meet their teachers’ 
unique and pressing needs. For example, if a teacher 
wants to better understand how to implement a teach-
ing through problem solving lesson (Lester & Charles, 
2003) with a high-cognitive demand mathematics task 
(Smith & Stein, 1998) during her mathematics block, the 
coach might decide to model lessons for the teacher to 
provide a vision of what this might look like.

This analysis focuses on coaching cycles involving 
modeling. During modeling coaching cycles, the coach 
and teacher typically co-plan before instruction; the 
coach then teaches the modeled lesson in a classroom 
with students as the teacher observes; and, finally, the 
coach and teacher jointly reflect about the modeled les-
son (Campbell & Griffin, 2017). When coaches model 
instruction, they provide teachers with opportunities 
for professional development. Given calls to situate 
teachers’ learning experiences in their own classrooms 
(Putnam & Borko, 2000) coupled with research stating 
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Hence, how coaches can support teacher learning amid 
modeled instruction beyond providing teachers with 
images of high-quality instruction is worthy of empiri-
cal investigation. The overarching research question is: 
how does one mathematics coach support teacher learn-
ing during coaching cycles involving modeling? 

Methods

Context, Participants, and Case Selection
This qualitative case study (Yin, 2018) took place in a 
public school district located in a southeastern met-
ropolitan area of the United States, pseudonymously 
named Southampton. At the time of the study, South-
ampton enrolled approximately 14,000 students across 
11 elementary schools, three middle schools, and three 
high schools. Southampton sought to provide teachers 
with high-quality professional development; therefore, 
the district employed content-focused coaches who 
engaged teachers in ongoing, job-embedded support in 
a single academic discipline (e.g., mathematics, English 
Language Arts, or technology). Southampton coaches 
did not evaluate teachers, had full-time release from 
teaching, and worked with teachers in one-on-one and 
group settings on instructional improvement issues 
throughout the duration of the school year. 

For the current study, I partnered with Beth, an ele-
mentary school mathematics coach, and Barbara, an 
elementary school teacher. All participant and loca-
tion names are pseudonyms. At the time of the study, 
Coach Beth was entering her fifth year as a Southamp-
ton mathematics coach. Before becoming a coach, Beth 
taught mathematics in fourth and fifth grades for six 
and two years, respectively. During interviews that 
were conducted with Coach Beth at the beginning of 
this research study to establish context, Coach Beth 
articulated a vision of ambitious and equitable math-
ematics instruction that aligns with research-based 
ideals from the National Council of Teachers of Math-
ematics (NCTM) (NCTM, 2014) regarding high-quality 
mathematics instruction. This vision included promot-
ing student-controlled discourse, engaging students 
in formative assessment strategies to gauge student 
sensemaking, incorporating high-cognitive demand 
math tasks into instruction, and promoting conceptual 
understanding alongside procedural fluency. Entering 
her first year as a fourth-grade teacher, Teacher Barbara 
taught mathematics and science only. Teacher Barbara 
had requested coaching support from Coach Beth in 
the form of modeled instruction. As is typical during 
a three-part coaching cycle (Bengo, 2016), Coach Beth 

that the modeler may not understand how to prompt 
learning for the observing teacher amid modeling 
(Lunenberg et al., 2007), research is needed that explores 
how coaches may intentionally support teacher learning 
as they model instruction in teachers’ classrooms.

Previous research has pointed to planning and 
reflection meetings as offering coaches and teachers 
rich learning opportunities (Campbell & Griffin, 2017; 
Russell et al., 2020, Saclarides, 2022a). During such 
meetings, the coach and teacher have the opportunity 
to engage in sustained discussions about, for example, 
student thinking, content, pedagogical dilemmas, and 
other relevant problems of practice. However, research 
has yet to delineate the strategies coaches may inten-
tionally leverage to support teacher learning as coach-
es model instruction for teachers. One line of thought 
is that, through modeling, coaches expose teachers to 
high-quality instruction and teachers learn by observ-
ing coaches as they enact high-quality instruction to 
students. In this vein, Lord et al. (2008) stated that the 
purpose of modeling instruction is to provide “visu-
al images of how standards-based instruction should 
look” (p. 61). Furthermore, in reference to preservice 
teachers, Feiman-Nemser (2001) noted that “Teacher 
candidates must […] form visions of what is possible 
and desirable in teaching to inspire and guide their pro-
fessional learning and practice” (p. 1017). Modeling can 
be viewed as one way to help teachers form this vision 
of high-quality instruction.

Teachers may need support with processing these 
representations of high-quality practice and drawing 
their attention to noteworthy aspects of instruction 
(Ghousseini & Sleep, 2011). Planning and reflection 
conversations can provide teachers and coaches with a 
structured time and place to discuss the modeled les-
son, student understanding, and next steps for instruc-
tion (Campbell & Griffin, 2017; Saclarides, 2022a). 
Formal reflection conversations typically take place 
well after the modeled lesson is over. By then, it may 
be difficult for the coach and teacher to remember some 
of the particulars from the modeled lesson. Although 
informal reflection conversations may take place soon 
after the lesson is over and while students are still pres-
ent in the classroom, research has shown that these con-
versations between the coach and teacher tend to lack 
depth, which may limit teachers’ learning opportuni-
ties (Saclarides & Lubienski, 2021). Furthermore, given 
structural constraints in schools, such as limited time 
for teachers and coaches to meet during the school day, 
reflection conversations as a whole are often rushed or 
do not take place at all (Saclarides & Lubienski, 2021). 
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scripted lesson plans when she modeled instruction. 
These plans contained three days of scripted lesson 
plans and all accompanying materials.

Data Analysis
The overarching purpose of this analysis was to better 
understand Coach Beth’s emic perspective (Creswell & 
Poth, 2018) regarding how she intentionally fostered 
learning opportunities for teachers during modeling 
coaching cycles. I began by reading through all inter-
view transcripts from Coach Beth to identify instanc-
es where she explicitly discussed how she supported 
teacher learning during modeling. This analytic reading 
led to the identification of three approaches: engaging 
the teacher in verbal asides during modeled instruction, 
providing the teacher with written asides in the script-
ed lesson plan, and scaffolding the observing teacher’s 
responsibilities. To triangulate these interview findings 
(Miles et al., 2020), I examined other data sources (e.g., 
modeled lesson transcripts, field notes, documents) to 
potentially uncover additional approaches Coach Beth 
may have leveraged to support teacher learning amid 
modeling. Ultimately, I only identified confirming evi-
dence in support of the three approaches she articulat-
ed through interviews and did not identify additional 
approaches.

Last, I used each of these three approaches separately 
as lenses to understand how Coach Beth leveraged these 
approaches in practice, as well as how these approaches 
supported Teacher Barbara’s learning. Descriptions of 
how this analysis was performed for each approach are 
presented below.

Engaging the Teacher in Verbal Asides
I began by isolating all coach-teacher interactions from 
the three transcripts of observed modeled instruction, 
which I define as subsequent turns of talk where the 
coach and teacher verbally interacted with one anoth-
er. When describing verbal asides during interviews, 
Coach Beth stressed that during these kinds of inter-
actions, she briefly paused instruction and made her 
thinking or reasoning available to the observing teacher, 
which research points to as being a marker of high-qual-
ity discourse to augment teacher learning (Lefstein et 
al., 2020). For example, this may have included instanc-
es in which Coach Beth justified her pedagogical deci-
sion making or provided evidence to support claims 
she made about student sensemaking to the observ-
ing teacher. Next, I separated these coach-teacher 

typically started her coaching cycle with teachers by 
engaging them in a planning meeting, followed by 
either co-teaching, modeling, or observation with feed-
back, and then closing with a reflection meeting.  

The data for this analysis came from a larger study 
that explored how school-based coaches leverage 
the one-on-one coaching activities of modeling and 
co-teaching to support teaching and learning (Saclarides, 
2022b; Saclarides & Lubienski, 2021; Saclarides & Mun-
son, 2021). Coach Beth was purposively selected (Yin, 
2018) from the larger sample of coaches for the current 
analysis given that she was able to articulate how she 
supported teacher learning during modeling.

 
Data Collection
This analysis rests on three data sources: transcribed 
participant interviews, transcribed audio recordings 
of modeled lessons and accompanying field notes, and 
lesson plans. 

I completed a total of four one-on-one, semi-struc-
tured interviews with Coach Beth and Teacher Barbara, 
which were on average 23 minutes long. Coach Beth 
was interviewed once at the beginning of the study 
primarily to establish context and understand her emic 
(Creswell & Poth, 2018), or insider’s, perspective on 
supporting teacher learning during modeled instruc-
tion. Coach Beth was also interviewed before and after 
the modeling coaching cycle with Teacher Barbara to 
better understand her motivation for modeling instruc-
tion for Teacher Barbara and goals for teacher learning, 
as well as how she sought to support teacher learning 
while modeling. Teacher Barbara was interviewed after 
the modeling coaching cycle had ended1 to understand: 
what she learned from the modeling episodes, the roles 
she embodied while Coach Beth modeled instruction, 
and her interactions with Coach Beth amid modeled 
instruction. 

Additionally, I observed three modeled lessons, 
which were on average 65 minutes long. These mod-
eled lessons were embedded in one coaching cycle that 
took place over the course of three consecutive days 
during Teacher Barbara’s mathematics block. During 
each observation, I generated field notes that attended 
to verbal and nonverbal coach-teacher interactions. The 
audio-recordings from the interviews and modeled les-
sons were transcribed. 

Last, Coach Beth shared lesson plans that she had 
written from a previous coaching cycle with Teacher 
Barbara. Typically, Coach Beth provided teachers with 

1	� I had intended to interview Teacher Barbara at the beginning of the modeling coaching cycle as well, but this unfortunately did 
not happen given scheduling conflicts.
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Beth’s transcripts to identify the three specific teacher 
roles she mentioned: sit, observe and take notes; circu-
late with the coach; and share pedagogical responsibility 
for enacting instruction. I then used these roles as lenses 
to re-explore the modeling lesson data, in particular my 
field notes. By looking for evidence of whether and how 
Teacher Barbara embodied these roles during modeled 
instruction, I again sought to triangulate findings by 
method (Denzin, 2001). Last, I looked for evidence in 
Teacher Barbara’s interview data to understand better 
how taking on carefully scaffolded roles amid model-
ing benefitted her or supported her learning. Barbara 
discussed such benefits of the scaffolded teacher roles 
in response to the interview question, “Please reflect on 
some of the roles that you took on as Coach Beth mod-
eled instruction.” I also took this as an opportunity to 
uncover additional teacher roles amid modeling men-
tioned by Teacher Barbara that perhaps Coach Beth had 
not mentioned, but did not identify any new roles.

Findings

Engaging the Teacher in Verbal Asides During 
Modeling
Of the 26 identified coach-teacher modeling interac-
tions, seven (i.e., 27%) were coded as verbal asides as 
they were marked by reasoning and had the goal of 
promoting teacher learning. In general, these verbal 
asides either took place during whole group instruc-
tion as the coach paused briefly to engage with the 
teacher, or during group work time as the coach and 
teacher jointly circulated. Furthermore, these verbal 
asides tended to focus on: how the coach and teacher 
would sequence and select student work samples, the 
coach’s and/or teacher’s perceptions of student thinking 
and understanding, and students who appeared to be 
struggling. For a fuller description of the kinds of top-
ics that coaches and teachers discuss during modeled 
instruction utilizing a larger dataset, see Saclarides and 
Munson (2021).

The following exchange illustrates a verbal aside that 
took place in the first modeled lesson. Coach Beth and 
Teacher Barbara discussed the timing for completing 
their Contexts for Learning unit, which was a curricular 
resource provided by the school district, with students:

Coach Beth: So it’s like, they’re, again, the hard part is that 
we’re actually having to work backwards. So, in hindsight, we 
probably should have done this in January.

Teacher Barbara: Yes.

Coach Beth: When they didn’t have any-

interactions into two categories: those that contained 
reasoning or evidence to support claims that were made 
and those that lacked reasoning or evidence to support 
claims that were made. Interactions that were not cat-
egorized as verbal asides included instances in which 
the coach and teacher interacted about logistical items, 
such as technology functionality, materials, or student 
behavior, that were necessary to move the lesson for-
ward but did not seem to promote teacher learning.

After identifying the verbal asides from the observed 
modeled lesson transcripts, I returned to my field notes, 
toggling back and forth between my field notes and 
lesson transcripts, to match up each identified verbal 
aside from the lesson transcript with confirmatory evi-
dence from my field notes that, indeed, a verbal aside 
was taking place. My primary purpose in revisiting 
my field notes was to triangulate findings by method 
(Denzin, 2001). Last, I revisited Teacher Barbara’s inter-
view data to look for evidence of whether and how the 
verbal asides benefitted her or impacted her learning. 
Barbara discussed such benefits of the verbal asides in 
response to interview questions such as “What did you 
learn from the coaching cycle?” and “Please reflect upon 
the brief interactions you had with Coach Beth during 
modeled instruction.”

Providing the Teacher with Written Asides  
in the Scripted Lesson Plan
I started by reading through all lesson plans provided 
by Coach Beth to identify instances in which Coach 
Beth included written asides. When describing written 
asides during interviews, Coach Beth stated that writ-
ten asides contained reasoning as she sought to give 
teachers access to her thinking in the lesson plans or 
details about her anticipation of student sensemaking in 
the lesson plans. Similar to the verbal asides discussed 
above, prior research indicates that by making details 
about thinking or reasoning explicit, this can augment 
teachers’ learning opportunities (Lefstein et al., 2020). 
Using this definition, I identified eight written asides 
that Coach Beth embedded into lesson plans. Last, I 
revisited Teacher Barbara’s interview data to uncover 
whether and how these written asides may have bene-
fitted her or furthered her learning.

Scaffolding the Observing Teacher’s 
Responsibilities 
Last, Coach Beth pointed to the importance of carefully 
scaffolding the observing teacher’s responsibilities as 
the coach modeled instruction, gradually providing the 
teacher with increasing levels of responsibility through-
out the coaching process. Thus, I read through Coach 
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several of those conversations…that were just kinda 
like okay this group is done early, what do I do with 
them? And so it was a lot of just kind of checking in, 
seeing if we were on the same page, getting her, rack-
ing her brain for advice on different things to do with 
different students and how to keep them engaged no 
matter…what their academic ability level was.

In this quote, Teacher Barbara discussed how the ver-
bal asides enabled her to seek out Coach Beth’s advice 
as she modeled instruction. The asides provided oppor-
tunities for Teacher Barbara to understand better how 
to differentiate for students who were struggling, or 
finished early.

Providing the Teacher with Written Asides in 
the Scripted Lesson Plan
In addition to engaging Teacher Barbara in verbal asides 
while modeling instruction, Coach Beth further sought 
to augment Teacher Barbara’s learning opportunities by 
including written asides in the scripted lesson plans. At 
the beginning of her modeling coaching cycles, Coach 
Beth typically provided teachers with scripted lesson 
plans that detailed her instructional plans with stu-
dents. Similar to the verbal asides, the written asides 
were marked by reasoning as Coach Beth sought to give 
teachers access to her thinking and reasoning or insight 
about how she anticipated students might engage with 
the lesson’s content. 

Across the three days of lesson plans that were ana-
lyzed, there were eight instances in which Coach Beth 
either gave Teacher Barbara access through writing to 
her reasoning or provided a written narration of her 
anticipation of student thinking. Instead of being iso-
lated to specific sections of the lesson plan, for exam-
ple exclusively in the lesson plan closing, these eight 
verbal asides could be found throughout all sections 
of Coach Beth’s lesson plans. Furthermore, the written 
asides tended to focus on pedagogy, student thinking 
and understanding, and mathematics content.

To illustrate, Coach Beth wrote the following in her 
day one lesson plans: 

�I am anticipating making a teacher move here. I 
think this task is a little bit difficult for the students 
to complete at this point in the unit, but will pro-
vide motivation for getting through the other task 
of learning about factors and multiples. Therefore, 
I am anticipating making a teacher move of scaf-
folding the activity into thinking about multiples. 
I will give a 100 chart to every student. They will 
go through the steps of coloring the multiples to see 

Teacher Barbara: Prior division knowledge.

Coach Beth: Well, yeah, just-

Teacher Barbara: At least a strategy.

Coach Beth: That’s right. Like, no use with a strategy.

In this exchange, Coach Beth and Teacher Barbara 
discuss how the timing for this unit was not optimal. 
Importantly, they co-reasoned that because students 
had already been introduced to the standard algorithm 
for long division, it was difficult to try to encourage stu-
dents to use student-invented strategies while accessing 
the embedded tasks.

To provide a parallel example, during their sec-
ond modeled lesson, Coach Beth and Teacher Barbara 
engaged in the following aside in which they discussed 
their observations of student sensemaking and how to 
differentiate instruction for two students who appeared 
to be struggling with a mathematics task:

Coach Beth: I think that…if I were to do this again I would 
probably put the two of them [students] together and give 
them a smaller problem and give them cubes to be able to 
figure it out.

Teacher Barbara: Okay.

Coach Beth: Because he's having trouble staying engaged…
Josie’s keeping him engaged. But yeah I think that probably 
would be… Josie is…Josie's actually I think has more under-
standing in the problem and so I don't necessarily think that 
if I were doing that again I would move her. But, I think those 
two probably could have used smaller problems.

Teacher Barbara: Yeah.

In this exchange, Coach Beth made her thinking 
available to Teacher Barbara regarding how to provide 
further scaffolds and supports for two students who 
appeared to be struggling. Specifically, Coach Beth 
would provide the students with manipulatives so they 
could concretely model the task, and give them a sim-
pler version of the task with smaller numbers. 

During an interview, Teacher Barbara reflected on 
her verbal asides with Coach Beth during modeled 
instruction: 

�There were little conversations about what to do 
with some of my kids who were a little bit lower 
academically and just trying to figure out, how do 
I support them? How do I allow them to succeed in 
this task without changing it completely and taking 
it out of context? But, they’re still working on a prob-
lem using water bottles or using the teacher lounge 
or whatever the context was. And so, there were 
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�I sat with a notebook, and I wrote down everything 
she did and any questions I had or any questions 
she asked that I thought oh that would be helpful to 
ask kids moving forward. And so I really just was a 
learner and trying to soak up just as much informa-
tion as I could.

This was also substantiated by field notes that were 
generated during observations. 

As the coaching cycle progressed, Coach Beth 
allowed Teacher Barbara to take on additional respon-
sibilities. For example, she encouraged Teacher Barbara 
to circulate with her as she monitored students during 
group work time. During such circulation episodes, 
Teacher Barbara might interact with Coach Beth by 
asking her a question or conferring with her about a 
particular student:

�[A]s the students start working, she’ll…just kind 
of follow me and listen to me talk to the kids. She 
might ask me why did I ask that question or go, ‘I 
see what you were getting at.’ So, it helps me to have 
the opportunity to make my asides and say, ‘Okay, 
the reason I’m asking this question [is] I want them 
to see’ or ‘I want to push them away from this.’ 

This, too, was substantiated by field notes. For exam-
ple, during the last 10 minutes of the second observed 
modeled lesson, teacher Barbara stopped taking notes 
and instead circulated with Coach Beth given that stu-
dents were now working in small groups and whole 
group instruction had ended. The dyad focused their 
attention on a particular group of students who they 
perceived needed additional support accessing the task. 

After having the opportunity to primarily remain in 
the learner role by sitting, observing, taking notes, and 
circulating, Coach Beth started to give Teacher Barba-
ra more shared pedagogical responsibility for enacting 
instruction. As Coach Beth discussed, “[B]y Day 3 [of 
the coaching cycle], she’ll…take over part of the les-
son….Just kind of depending on how comfortable she’s 
feeling with the material and the release and the strat-
egies that kids will use.” Thus, as the coaching cycle 
progressed and Teacher Barbara’s confidence grew, she 
was able to move from observer to lead instructor for 
several parts of the lesson. 

Ultimately, Teacher Barbara appreciated that her 
participation in modeled instruction was carefully scaf-
folded. She liked having the opportunity first to be a 
learner and primarily sit, observe and take notes before 

what generalizations can be made about the multi-
ples of 2 and 3 and possibly 4 if we can get to it.

Coach Beth also wrote an aside to give Teacher Bar-
bara access to her reason for providing students with a 
particular entry point for solving a math task: 

�Tell the students the first place to start thinking might 
be to go back and re-read the problem. This allows 
students who do not have an entry point to the task 
to have something to be thinking about (a question I 
could ask about something I don’t understand) and 
allows students who are ready to share to have one 
thing they think is important to share.

During her interview, Teacher Barbara expressed her 
appreciation for having access to Coach Beth’s thinking 
in this way: 

�Getting to hear her predict and anticipate what ques-
tions the students were gonna have and how they 
were gonna respond to different things was really 
helpful. Because as a first-year teacher I can think of 
it on my own, and I can try, but at the end of the 
day I don't have that experience like she has. She's 
so knowledgeable about all of those things. And so, 
it was interesting and very, very helpful. 

As Teacher Barbara highlights, through teaching chil-
dren mathematics for eight years and coaching teachers 
in mathematics for five years, Coach Beth had built up 
a knowledge base that enabled her to predict how stu-
dents would engage with content and anticipate poten-
tial student misunderstandings. Hence, having access to 
Coach Beth’s thinking seemed to benefit Teacher Barba-
ra as she found this practice “very helpful.”

Scaffolding the Observing Teacher’s 
Responsibilities
Last, to support Teacher Barbara’s learning during mod-
eling, Coach Beth scaffolded the observing teacher’s 
responsibilities and gradually gave Teacher Barbara more 
responsibility as the coaching process unfolded. At the 
beginning of her modeling coaching cycles, Coach Beth 
expected teachers to sit, observe, and take notes primari-
ly. During an interview, Coach Beth revealed this expec-
tation for teachers during modeling coaching cycles: “She 
[Teacher Barbara] typically will just sort of observe and 
take notes. She’ll have…[a] checklist and opportunity to 
just take notes.” In reflecting on her early participation in 
the modeled lessons, Teacher Barbara agreed that she pri-
marily sat, observed instruction, and jotted down notes:
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found that providing reasoning or evidence for claims 
made can be generative for teacher learning (Lefstein 
et al., 2020), this is a practice coaches should consider 
weaving into their work with teachers to enrich teach-
ers’ learning opportunities. 

As part of Coach Beth’s third approach to support 
Teacher Barbara’s learning, she carefully scaffolded 
the various roles Teacher Barbara might embody amid 
modeling. While understandable that a teacher may 
find it difficult to relinquish control of their classroom, 
attending to tasks other than observing the coach’s 
teaching may unintentionally shift a teacher’s focus and 
thus limit their learning opportunities during modeled 
instruction. Hence, it is noteworthy that Coach Beth 
intentionally scaffolded Teacher Barbara’s roles as she 
modeled instruction, ensuring that the teacher primari-
ly observed and took notes before taking on more roles 
such as circulating with the coach and sharing pedagog-
ical responsibility for instruction. This aligns with both 
theoretical (Lave & Wenger, 1991) and empirical (Clarke 
et al., 2014; Collet, 2015) research which indicates that 
teacher learning may be augmented when they are pro-
vided with a series of carefully scaffolded experiences, 
or roles in this case, by a more experienced other, such 
as a coach.

This research has implications for school districts, 
as well as researchers. Regarding practice-based impli-
cations for school districts, coaches may often be told 
that they should model instruction for teachers. Still, 
they may not receive proper guidance on leveraging 
this coaching activity to maximize teacher learning. 
Hence, it may be beneficial if coaches are provided with 
high-quality professional development that is ongoing 
and coherent, involves active learning opportunities, 
and requires collective participation from coaches as 
part of a coaching community (Desimone, 2009) to help 
them understand how to support teacher learning most 
effectively amid modeling. Such professional develop-
ment may focus on discussing the three approaches 
illuminated in the current study, giving coaches time to 
plan for an upcoming coaching cycle involving model-
ing and allowing coaches to engage in role play scenar-
ios related to modeling instruction. 

Regarding research-based implications, given that 
the current analysis is based on data that was collect-
ed from only one coach-teacher dyad, future research 
should seek to study the approaches coaches leverage 
to prompt teacher learning from a larger, more diverse 
sample of coaches and teachers. Additionally, coaches 
may need professional development in order to learn 

taking on more pedagogical responsibility for enacting 
instruction. Teacher Barbara shared: 

�I…like…the way that the coaching was set up…she 
modeled a day, and then she modeled for the first half 
[of a day], and then I…followed for the second half, 
and then I did it by myself. And so, I think the way 
that that [the modeling coaching cycle] was set up… 
I'm like…I wanna see it. I wanna hear it. I wanna…
really be a part of it. Be able to learn it. So, the way 
it was set up in that way kind of allowed for me to 
think through some challenges that have taken place 
beforehand and kind of see how she handles those.

I now turn to the discussion where I situate this 
study’s findings in the research literature, and provide 
implications for practice and research.

Discussion and Implications

The overarching purpose of this investigation was to 
understand better how one mathematics coach sup-
ported teacher learning as she modeled mathematics 
instruction. Coach Beth used three distinct, yet mutu-
ally reinforcing approaches to enhance Teacher Barba-
ra’s learning opportunities during modeling: engaging 
the teacher in verbal asides, providing the teacher with 
written asides in the scripted lesson plan, and scaffold-
ing the observing teacher’s responsibilities. Previous 
research primarily points to the importance of provid-
ing teachers with an image of high-quality instruction 
amid modeling (Feiman-Nemser, 2001; Lord et al., 
2008). Hence, this study makes an important contri-
bution to the professional development literature by 
illuminating other approaches coaches can use to help 
teachers process these representations of practice and 
further augment their learning opportunities.

Although all three approaches are related, two of the 
approaches, engaging the teacher in verbal asides and 
providing the teacher with written asides in the script-
ed lesson plans, are more similar in their focus. That 
is, what unites these two approaches is their focus on 
making the coach’s reasoning available and transparent 
to the teacher so that the teacher can understand, for 
example, reasons undergirding the coach’s pedagogical 
decision-making and evidence to support claims about 
student thinking. Without such access to the coach’s 
reasoning, the teacher may make assumptions that may 
or may not align with what the coach intended, poten-
tially leading to a missed learning opportunity. Given 
that previous research on teacher professional discourse 
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teacher learning opportunities to identify 
potentially productive coaching activities. Journal 
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org/10.1177/0022487117702579
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coaches, specialists, and student achievement: 
Learning from the data. Phi Delta Kappan, 102(3), 
42-45. https://doi.org/10.1177/0031721720970701
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Lunenberg, M., Korthagen, F., & Swennen, A. (2007). 
The teacher educator as a role model. Teaching and 
Teacher Education, 23, 586-601.

Miles, M. B., Huberman, A. M., & Saldana, J. (2020). 
Qualitative data analysis: A methods sourcebook  
(4th ed.). Sage.

National Council of Teachers of Mathematics. (2014). 
Principles to actions: Ensuring mathematical success for 
all. Reston, VA: NCTM.
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how to enact the three approaches detailed in this study 
to support teacher learning amid modeled instruction. 
Thus, future research should explore how district-lev-
el administrators can most effectively support coaches 
through professional development as they learn how 
to enact these coaching practices. Furthermore, given 
that the current investigation only explored episodes 
of modeling between the Coach Beth and Teacher Bar-
bara, it is unknown the extent to which the teacher’s 
practice was impacted as a result of working with her 
coach. Hence, future investigations should consider 
exploring this important connection—the relationship 
between coaching and changes in teachers’ practice—to 
better understand the impact of coaching. Last, future 
research may further unpack the affordances and con-
straints for teacher learning of each approach discussed 
in this study.
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ABSTRACT This case study inspected mathematical learning opportunities that employed the 
results from the participating preservice teachers’ (n=75) original visual arts creation process. Data 
obtained during this study provided empirical evidence for the educational viability of employing 
original Mondrian-style rectangle sets as a context for generating authentic mathematics inquiry 
opportunities. The participating preservice teachers generally indicated that through the process 
of creating their Mondrian-style rectangle sets and exploring the mathematical patterns within 
their works, such as the presence of fractions and ratios, they were able to develop an improved 
understanding of the pedagogy for teaching these mathematics concepts. The findings from this 
study suggest that both mathematics teachers and mathematics teacher educators might better 
serve their students by including more visual supports when teaching mathematics concepts.

KEYWORDS mathematics education, teacher preparation, ratios and fractions, proportional reasoning, 
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Introduction

The integration of visual representations such as tables, 
charts, symbols, diagrams, and graphs, into mathe-
matics education has been a core pedagogical strate-
gies since ancient times—the Pythagoreans used many 
of these techniques in their own self-edification and 
when teaching each other mathematics (Stylianou & 
Silver, 2004). Visual images used in mathematics can 
be generally divided into two main categories: (1) illus-
trative tools for organizing and communicating data; 
and (2) pedagogical tools for illuminating abstract and 
theoretical ideas via more tangible representations 
(Rellensmann et al., 2017). To facilitate the cognition 
of mathematics, building concept maps using either 
physical or mental images may help learners to create 
multifaceted connections between their new and exist-
ing knowledge (Friel, Curcio, & Bright, 2001). Visually 

perceived approaches to mathematics have the poten-
tial to facilitate students’ mathematical comprehension, 
while also improving their spatial, proportional and 
operational execution (An, Cashman, & Tillman, 2021; 
An, Hachey, & Tillman, 2022). 

As a pedagogical approach, visual literacy for math-
ematical concepts, in other words what occurs when 
information is illustrated through diagrams and charts, 
has shown wide applicability throughout multiple 
mathematical domains, including those embedded 
within the K-12 curriculum (Ainsworth, 2006). Class-
room studies have verified that visual strategies for 
teaching mathematics generally outperform non-visual 
alternative strategies, particularly during problem solv-
ing tasks that require manipulation of both figures and 
quantities instead of just one or the other (Boaler et al., 
2016). Pedagogically, visual literacy provides an acces-
sible context for providing hands-on opportunities to 
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Nutov (2021) examined 127 preservice teachers on 
their learning experiences of learning the concepts of 
zero and infinity with the integration of visual art works 
in a mixed method study.  The empirical evidence from 
Nutov’s study suggests that mathematics education 
with visual supports positively correlates with preser-
vice teacher motivation and positive feelings towards 
mathematics, as well as increased achievement in math-
ematical problem-solving. Within this context, the goal 
of this current study was to investigate preservice teach-
ers’ conceptual and pedagogical understanding of the 
relationship between visual supports, such as Mondri-
an-inspired artwork, and mathematical learning. The 
specific research question addressed by this research 
study was: how did the participating preservice ele-
mentary teachers evaluate their own mathematics ped-
agogy that resulted from learning about fractions and 
ratios with the help of visual supports?

Methods

Participants and Setting 
The participants in this case study were recruited from 
a research university along the southwestern border of 
the United States. As one of the largest Hispanic serv-
ing universities in the U.S., the recruitment location pro-
vided a population that was more than three-quarters 
Hispanic. A total of 75 preservice teachers were recruit-
ed from four different sections of an elementary math-
ematics methods course, all of which were taught by 
the same instructor and occurred over the duration of 
two regular academic semesters. The participating pre-
service teachers were senior-level undergraduates pur-
suing either an elementary generalist or an elementary 
bilingual generalist certificate, and a majority of them 
were working as student teachers in the local school 
systems. Among the 75 participants, 68 were female and 
7 were male. Also, 71 of them self-identified as Hispanic 
and 4 of them self-identified as Caucasian. 

Target Task and Procedure 
During this study, the target task had three major com-
ponents: (1) create an original piece of artwork consist-
ing of a number of shaded shapes drawn in such a way 
to create a larger shape; (2) identify fractional values 
within the artwork for each shaded shape—each shaded 
area serving as a numerator and the whole area as the 
denominator; and (3) analyze the ratios of those frac-
tional values—the ratio between the length and width 

develop mathematical knowledge, while also expand-
ing the variety of contexts in which teachers can support 
the occurrence of such learning experiences (Honey et 
al., 2014; Guyotte et al., 2014). 

Learning about mathematical ratios can provide 
a linkage among arithmetic, algebra and geometry—
thereby integrating some of the most challenging 
instructional components within the elementary math-
ematics curriculum (Kilpatrick et al., 2001; National 
Mathematics Advisory Panel, 2008). Unfortunately, due 
to wide-ranging confusion about the various functions 
of mathematical ratios, there is a widespread miscon-
ception that mathematical ratios are too complex for 
teaching to early elementary students (Lamon, 2007; 
2012). To address this misconception, and to facilitate 
elementary students’ comprehension of mathemat-
ical ratios, teachers should offer students abundant 
opportunities to think proportionally while identify-
ing, analyzing and representing fractional-proportion-
al relationships (Fielding-Wells, Dole, & Makar, 2014). 
Compared with more commonly-used contexts that are 
often abstract in nature, such as math problems about 
speed variations or coupon discounts, visually-percep-
tible contexts (e.g. chorographical designs and graph-
ic designs) have been used relatively infrequently for 
classroom illustration purposes (An et al., 2019; Weiland 
et al., 2021). Therefore, it seems worthwhile to examine 
potential approaches for developing visual supports 
into a teaching resource for exploring fractional rela-
tionships within elementary mathematics education. 

During the past three decades, educational research-
ers and curriculum theorists have provided scholarship 
investigating visual supports as a means for improving 
mathematics education (e.g., Burton et al., 2000; Dana-
Picard & Hershkovitz, 2019; Dietiker, 2015; Marshall, 
2014; Nutov; 2021; Smithrim & Upitis, 2005). In gener-
al, this line of study has confirmed that positive effects 
on students’ academic achievement can be achieved in 
situations where mathematics learning opportunities 
are visually supported. Within these studies, many 
aspects of the connections between the mathematics 
and visual supports have been articulated and assessed 
for pedagogical aptitude. However, a discovery from 
our literature review summarizing this field of study 
was that empirical research on the topic of mathematics 
education employing visual supports has as of yet not 
provided a replicable instructional model for assisting 
preservice teachers who are in the process of learning to 
use this pedagogical approach. 
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Figure 1

A painting titled “Composition A” (originally created 
in 1923, photo is public domain) by Piet Mondrian 
showing his highly geometrical style of art

Figure 2

Example of a Mondrian-style rectangle set with corresponding fraction and ratio information created by two 
preservice teachers 

within each shaded area. In the first component, all 
participants were taught about the painter Piet Mon-
drian (1872-1944) and the highly geometrical style 
employed in many pieces of his artworks (see Figure 
1), after which they were guided through the process 
for creating their own original Mondrian-style rectan-
gle sets on a sheet of letter-sized grid paper (see Figure 
2). The definition of a single unit (i.e. one whole in frac-
tion) was set as a 6×6 matrix with 36 tiny squares pre-
marked on the top-upper corner of each sheet of grid 
paper that was distributed to the participants. To ensure 
sufficient complexity within the resulting artwork cre-
ated by the participants so that they would have suf-
ficient mathematical relationships to explore, the task 
directions required each participant to make at least 
five horizontal and five vertical lines in their artwork, 
thereby generating at least 25 rectangles. Next, partic-
ipants were asked to determine the fractional value of 
each rectangle within their artwork by comparing each 
rectangle with the size of one whole unit as defined in the 
directions. Lastly, participants were asked to identify all 



mathematical thinking. Specifically, first an online 
forum was created for participants to exhibit their 
original creations as well as share their corresponding 
mathematical analyses. Then, another online forum was 
provided three days later after the debriefing where 
each participant made additional comments regarding 
their own and each other’s artwork and the researcher 
highlighted the two typical error patterns from existing 
art explorations (1) treating ratios as fractional values, 
and (2) employing ratios as if they were additive. In the 
first type of error pattern, some participants mistakenly 
treated the fractional values of each individual rectan-
gle’s area as interchangeable with the width to length 
ratios of similar rectangles. In the second type of error 
pattern, some participants have misconceptions that a 
rectangle with a width to length ratio of 2:3 has an iden-
tical ratio to a rectangle with a width to length ratio of 
3:4 because the case is increased by 1 unit which is a 
“smooth” proportional change. This second forum was 
used by participants to share post-task reflection essays 
describing their thoughts on this pedagogical approach 
for teaching mathematics to elementary students. 

The collected data were analyzed utilizing a ground-
ed theory approach (Corbin & Strauss, 2008). Specifi-
cally, the collected pictorial data and corresponding 
written data were paired up and analyzed together as a 
means for investigating any potential linkages between 
the participants’ original artwork designs, mathemat-
ical problem-solving strategies, and the contents of 
their pedagogical reflections. A content analysis was 
undertaken with the primary goal of pinpointing and 
describing the distinguishing methods, strategies, and 
judgments performed across the entire set of data from 
the 75 participants. During the first round of coding, 
individual emergent themes from the collected data 
were clarified with the aim of generating a broad-spec-
trum understanding of the participant’s general reason-
ing processes along with identifying any misconceptions 
about fractions and ratios. This task was accomplished 
through constant comparisons until the initial entry cat-
egories were qualitatively saturated. During the second 
phase, the data were refined by escalating quotations 
worthy of being reported, including those pertaining to 
interesting problem-solving strategies and noteworthy 
pedagogical reflections; this phase also included sharp-
ening the refinement of the selected representational 
cases while also eliminating repeated entries with simi-
lar content. To minimize any unconscious coding biases, 
two separate coders worked independently throughout 

of the geometrically similar rectangles, meaning those 
with equivalent ratios, that were present within their 
artwork. 

Next, participants were tasked with identifying the 
correct fractional values of the rectangles within their 
original Mondrian-style designs. The predefined 6×6 
square provided on the grid paper was used as a key 
reference by the participants as they computed each 
rectangle’s fraction. The most commonly employed 
strategy was to construct a fraction by using the total 
number of grid squares as the numerator and 36 as 
the denominator. By using this method, rectangles 
that looked different but had the same areas nonethe-
less produced equivalent fractions. The emergence of 
mixed and improper fractions within the original Mon-
drian-style rectangle sets was an anticipated result from 
the first target task, because of the limited size of the 
provided grid paper. The emergence of equivalent ratios 
(based on part-to-part relationships between length and 
width) among each pair of geometrically similar rect-
angles from  students’ own artwork was an anticipat-
ed result from the second target task. The researchers 
observed that whenever the participants developed a 
rectangle that was larger than 36 grid squares, a fraction 
with a value larger than one whole would be formed. 
It should also be noted that while the participants each 
created their own original artworks based on the spec-
ified criteria provided in the task directions, they were 
also following a documentation process describing their 
experience and results. To demonstrate an understand-
ing of fractions, the participants were directed to write 
down the fractional values presented within each rect-
angle on their artwork. To demonstrate understanding 
of ratios, the participants were asked to identify the 
ratio between width and length for each rectangle, and 
then write down all similar rectangles with equivalent 
length-to-width ratios on a separate piece of paper.

 
Data Collection and Analysis 
Data collected in this case study included written 
essays, pictorial data in the form of original artwork, 
and hand-written documents for showing fraction and 
ratio attached to their artworks. To assist the data col-
lection process, two online discussion forums were set 
up for participants so that they could upload their doc-
uments, as well as review each other’s creations. The 
time span for the data collection was four days, which 
allowed each participant enough time to review the 
other’s participants’ artworks and their documented 
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topics (e.g., taught fractions with connections to ratios); 
and (4) participant generated a positive learning envi-
ronment (e.g., improved engagement in mathematical 
investigations). To illustrate the pedagogical reflec-
tions in detail, seven participants’ testimonies—Eve-
lyn, Joanna, Sabrina, Paula, and Yasmin (the names of 
the selected participants have been changed to pseud-
onyms)—were selected to emphasize their distinctive 
perspectives.

By manipulating a set of rectangles with different 
length and width characteristics, the participants were 
provided an opportunity to constructively identify 
the patterns displayed between the emergent fractions 
and corresponding ratios. This process appears to have 
enhanced the participants’ self-reported knowledge for 
teaching mathematics. As an illustration, Evelyn shared 
personal insights into her own challenges understanding 
the conceptual differences between fractions and ratios:  

�After completing this activity, I realized out of all my 
educational years, even now that I am all ready to 
finish my degree in university, I never really worked 
with ratios with a hands-on activity before and was 
never taught the difference between a ratio and a 
fraction. I found that this interactive visual activity 
helped me reason and be able to picture each rect-
angle and the relation it had to the whole. Although 

the data analysis process and the results were collec-
tively compared to determine confirmation, or the lack 
thereof, for the results that emerged. The inter-rater 
agreement rate was about 93% and the 7% emergent 
inconsistencies in the coding results were then resolved 
through open discussion conducted among the research 
team members until a consensus was achieved.  

Results

The participating preservice teachers collectively indi-
cated that by creating their own Mondrian-style rect-
angular shape sets, they were guided to explore the 
mathematical patterns such as fraction and ratio with-
in their produced works. They were able to develop 
an improved understanding of fractions and ratios, as 
well as the pedagogy appropriate for teaching these two 
mathematics concepts. A total of 14 themes emerged 
(see Table 1) after analyzing the collected data and these 
themes were classified into four major categories, which 
included: (1) participant identified math content knowl-
edge challenges (e.g., clarified the differences between 
fraction and ratio); (2) participant developed deepened 
conceptual understanding of specific math topics (e.g., 
illustrated parts-to-whole relationship); (3) participant 
identified the pedagogical connections among math 

Table 1

Themes from Participants’ Reflections on Creating Mondrian-Style Rectangle Sets

	 Major Theme	 Specific Theme	 Count / Rate 
			   (n=75)

	� Identified the math content  
knowledge challenges 
 

	 Deepened conceptual  
	 understanding of specific 
	 math topics 
 

	 Identified the pedagogical  
	 connections among 
	 math topics 
	  

	 Created positive learning  
	 environments 

	 Identify flawed understanding of proportions 	 42	 56.0%

	 Clarify the differences between fractions and ratios	 31	 41.3%

	 Differentiate additive and multiplicative relationships 	 7	 9.3%

	 Conceptualize parts-to-whole relationship	 39	 52.0%

	 Conceptualize equivalent fractions concept	 31	 41.3%

	 Conceptualize parts-to-parts relationship	 25	 33.3%

	 Conceptualize improper fractions concept	 14	 18.7%

	 Teach fractions with connections to ratios	 70	 93.3%

	 Teach ratios with connections to geometry/measurement	 29	 38.7%

	 Teach fractions with connections to geometry/measurement	 23	 30.7%

	 Teach ratios with connections to algebras 	 4	 5.3%

	 Improve engagement in mathematical investigations	 34	 45.3%

	 Embed math knowledge within fun tasks	 28	 37.3%

	 Flexibly adjust difficulty for different grade-levels	 11	 14.7%
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�When the concepts are presented separately, frac-
tions are commonly associated only with numeri-
cal equations. Now when using Mondrian designs, 
teaching fractions can be transformed with connec-
tion to geometric and proportional reasoning. I think 
that manually manipulating rectangles in the Mon-
drian designs helps students have a better under-
standing and more practice while thinking about all 
the possible sizes, number of squares and portions 
they get. If my future student finds the concept of 
fractions confusing, I can guide them do the basic 
counting of squares to obtain an answer. Now, in 
reference to the prompt visual representations, my 
students will have the freedom to explore and make 
connections with equivalent fractions as well as how 
and why to simplify fractions. 

In comparison with the traditional hands-on activi-
ties that generally feature combining parts into a whole 
and then decomposing that whole back into parts, par-
ticipants described how the Mondrian-style rectangle 
sets enabled them to move beyond individual examples 
of fractions and toward an understanding of the larg-
er abstract concept of fractions. The learning featured 
activities representing and comparing many fractions 
simultaneously, and this was one of the distinctive 
elements that facilitated students to explore fractional 
relationships. Moreover, the creative process of making 
Mondrian-style original artworks created an engag-
ing learning environment that may improve students 
interest in mathematics. One of the participants, Paula 
described her insights about the mathematics teaching 
method examined:

�Many hands-on activities like cutting and pasting as 
well as manipulatives for representing fractions do 
not give the students a whole representation. Mon-
drian designs were systematic, it was easy to follow 
and complete. I would like to say that this is the first 
time I do something like this, with my own hands. It 
enabled me to acknowledge the advanced ways that 
multiple fractions can be represented at the same 
time and how each fraction is related to the other 
fractions. It would be much easier for students to 
first activate their artistic motivation by setting up an 
enjoyable learning environment, and then to devel-
op their math and logical thinking by connecting 
art and math. This is where I can see how to guide 
my students to build their foundational knowledge 

both fraction and ratio have the concept of part and 
whole, but ratio is not restricted to the part-to-whole 
relationship all the time, it may display a part-to-part 
relationship (e.g., length vs width) as we explored in 
similar rectangles.

Likewise, another participant named Joanna shared 
her insights about the pedagogical potential from cre-
ating original Mondrian-style artwork as a method for 
learning about differences between fractions and ratios. 
Joanna stated that drawing multiple rectangles simul-
taneously within her original Mondrian-style artwork 
allowed her to see the ratios emerging among the dif-
ferent rectangles from an empirical perspective. For 
her, the most challenging part of the ratios-identifica-
tion task was the rule against making any conclusions 
based merely on appearance, as she found the require-
ment of providing mathematical evidence to be quite an 
unfamiliar approach compared to her traditional, visual 
method for addressing these types of problems. Joanna 
explained this peculiar scenario in her own words: 

�Even though I consider myself to be pretty good 
with fractions, I was stunned by observing so many 
assorted rectangles in this artwork. I was able to see 
dozens of fractional relationships across all rectan-
gles because they came directly from a whole picture 
that I could constantly compare and that engaged me 
with a clear perspective of what I was working. In a 
ratio sense, I think it is difficult because our eyes can 
be very deceiving. Especially for the rectangles that 
are slightly longer or shorter in their length/width, it 
was hard to tell whether their ratios are equivalent 
or not because our eyes can’t catch these nuances. I 
need to mathematically analyze the rectangles using 
the [grid] squares inside and relate them to each 
other by determining an even scale at which the rect-
angle either proportionally increases or decreases. 

Many participants stated that Mondrian-style rect-
angle sets offered opportunities to pedagogically con-
nect mathematics topics, especially between number 
and geometry.  Sabrina described her reflections about 
the pedagogical value of the visual supports employed, 
and how during her experience the Mondrian-style 
rectangle sets empowered her to uncover methods for 
explaining the mechanics of how fraction works, while 
also linking concepts about fractions with concepts per-
taining to geometry and proportion. Sabrina remarked:  
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proportional task were provided, many of the partici-
pants were able to improve their mathematics content 
knowledge by transforming previously disconnected 
concepts into interrelated topics. 

Connections between ratios and the fractional values 
among the rectangles the participants created in their 
Mondrian-style rectangle sets enabled instructional 
insights.  Specifically, during the first task a part-to-
whole relationship was the primary focus during an 
area comparison contrasting each of the individual rect-
angles and the pre-defined reference rectangle encom-
passing six grid squares. However, in the second task, 
a part-to-part relationship was the major focus during a 
comparison of the lengths and widths within each indi-
vidual rectangle. Results from this study showed that 
most of the participants employed visual-spatial strate-
gies, such as comparing a predetermined “one whole” 
rectangle that was provided to help them formulate and 
check their fractional reasoning as they created Mon-
drian-style rectangles. Consistent with several previous 
studies (Buforn & Fernández, 2014; Hilton & Hilton, 
2018; Livy & Vale, 2011), the results also demonstrated 
that a substantial percentage of the participating pre-
service teachers were aware of the limitations to their 
own mathematics knowledge in regard to understand-
ing fractions and ratios. Post-activity reflections from 
many of the preservice teachers indicated that the visual 
supports during the instruction helped them to identify 
their own mathematical misunderstandings. Thus, in 
line with Nutov (2021), our findings also indicate that 
mathematics instruction, especially when introducing 
concepts with dissimilar symbolic representation but 
equivalent mathematical values (i.e. improper fractions 
and mixed fractions), can be effectively supplemented 
by the appropriate use of visual supports as the bridge 
to consolidate the knowledge connections. 

During data analysis, the researchers noted that 
the participants’ pedagogical knowledge for teaching 
fractions was often overly reliant on the use of math-
ematical procedures. This finding was not surprising, 
since procedural fluency is often a main focus of K-12 
math instruction, but this almost exclusive focus on pro-
cedure appears to have resulted in the impairment of 
other, deeper and more impactful approaches to engag-
ing with math topics (Ostler, 2011). As our study’s find-
ings illustrated, some of the participants learned how 
to make connections between their visual perceptions 
and the abstract mathematical concepts they will be 

of fraction, a concept which I myself had a negative 
disposition before but now became more interesting 
and engaging. 

As did Paula, a number of participants reported that 
their experiences completing the Mondrian-style task 
improved their awareness of limitations to tradition-
al fraction-teaching approaches, especially from their 
own past learning experiences. For example, instead of 
replicating how she was taught as an elementary stu-
dent, Yasmin said that she is going to change her ped-
agogy for instructing fractions to her future students. 
Yasmin noted: 

�Many teachers use one and only one representa-
tion (i.e., pizza) to teach fraction and [it] can cause 
future comprehensive conflicts when other teach-
ing approaches are used. I remember fraction being 
taught straight to the point with just one process 
to follow to get to the answer. My teachers used to 
teach us how to conduct fraction operations so we 
used to memorize the routine process but we never 
understood the why or the reason behind that. I 
never had the opportunity to develop critical think-
ing by exploring through hands-on activities like the 
Mondrian Arts activity. The Mondrian Arts activity 
helped me to realize that the same fraction can have 
different representations, yet their space occupied 
will always be the same. 

Discussion

This research study empirically examined innovative 
pedagogy that emphasized participants creating and 
using original visual artworks to support the learning 
of mathematics. The investigated mathematical tasks 
were selected to allow the researchers an opportunity 
to better understand the instructional potential for visu-
ally-based fractional and proportional representations 
during mathematics teaching. Our findings were con-
sistent with previous studies (Buforn & Fernández 2014; 
Hilton & Hilton 2018; Livy & Vale 2011) that showed 
preservice teachers were commonly underprepared for 
instructing their students on the topics of fractions and 
ratios; likewise, most of the participants in this study 
self-identified the presence of personal knowledge 
challenges when analyzing their own understanding of 
fractions and ratios. Results from this study revealed 
that when a judiciously combined fractional task and 
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The Spring 2023 issue features two Notes from the Field with differing 
temporal placements. Reiser and Trusnovec first report on an adaptation 
of the Building Thinking Classrooms (BTC) framework and its benefits 
when used in a college calculus classroom. Following this, Darrow details 
the historical trajectory of the standards-based mathematics and assess-
ment movement in the United States.
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Next, we designed the lessons. A thinking task is one 
that promotes students to think rather than mimic the 
teacher. In a K-12 classroom it is suggested to use the 
beginning days to do non-curricular tasks so that stu-
dents can experience a thinking classroom. Since our 
class met only twice a week, we used the first day for 
non-curricular tasks and introduced the culture of the 
classroom. After the first class meeting, we moved on to 
learning the curriculum. We primarily used thin slicing, 
giving a list of problems that get progressively more dif-
ficult. To launch these, we followed Liljedahl’s sugges-
tion of connecting the new topic to previous knowledge. 
Here is an example dialogue to launch the derivative of 
log functions, using previous knowledge of derivatives 
of exponential functions, implicit differentiation, and 
inverse functions.

 
Teacher: If y = ex what is    ?

Student: ex.

Teacher: How are logarithms and exponentials related?

Student: They are inverses.

Teacher: How can we re-write y = ln (x) as an exponen-
tial? [if needed remind students that ln is the same as 
loge ].

Student: ey = x.

Teacher: We ultimately want to find    , the derivative 
of ln (x)  . Since we already know the derivative of an 
exponential function, what technique can we use here?

Student: Implicit differentiation.

Then, students worked in visibly random groups 
on vertical whiteboards. The non-permanence of the 

The Thinking Classroom in a College Setting: A Case Study

Introduction

Peter Liljedahl describes a Building Thinking Class-
rooms (BTC) framework that shows teachers how to set 
up a classroom that promotes thinking. BTC is divid-
ed into 4 toolkits. The first toolkit consists of thinking 
tasks, vertical non-permanent surfaces, and visibly 
random groups. The second pertains to defronting the 
classroom, giving thinking tasks verbally and early 
while standing, voluntary homework, and mobilizing 
knowledge. The third consists of using hints and exten-
sions to maintain flow, consolidating, and students 
writing meaningful notes. The fourth toolkit involves 
assessment.

Though Liljedahl’s research pertains to K-12 class-
rooms, the framework sounded promising for higher 
education as well. We decided to try it in a college-level 
calculus I course, taught at a small liberal arts college in 
the spring semester. There were 15 math and computer 
science students enrolled. The class met twice a week 
for 2 hours each day over a 13-week semester. There 
was one professor and two teaching assistants. We 
applied most of the aspects of the toolkits to see if the 
framework was upheld in a higher education setting. 

Course Design and Implementation

To plan the course, we listed learning goals divided into 
limits, differentiation, applications of differentiation, 
and integration (https://tinyurl.com/calculusLearning 
Objectives). Next, we produced assessment questions 
for each learning outcome, including an advanced and 
beginner category. 
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Student Interest & Engagement

We gauged students’ interest in mathematics before, 
during, and after the semester. On the first day we used 
non-curricular BTC tasks. Students expressed they 
were unfamiliar with BTC tasks and described aspects 
of mimicking behaviors in previous math classes. One 
student stated, “Most of my math classes were strict-
ly based on memorization rather than learning math 
itself.” We discussed BTC through an interactive syl-
labus that outlined the framework and expectations 
alongside reflective questions. We shared the frame-
work with students to justify why we were running the 
course this way. Subsequently, students felt that sharing 
their ideas would be the most difficult part because they 
get nervous or are not good at communication. 

A few weeks into the semester, seven out of 15 stu-
dents volunteered for an 8-10 minute semi-structured 
interview to discuss the course so far. Four students 
seemed to prefer a student-centered classroom, two 
liked a mix, and one preferred lecture because “that is 
what I am used to.” They all had positive things to say 
about the class environment and learning techniques. 
Many preferred groupwork over lectures. 

Students appreciated that they could learn from their 
mistakes. One student said, “In my other math classes, 
there’s a really big difference. With this one, if you make 
a mistake and realize after, you can go back and fix it.” 

While students felt nervous about sharing their ideas 
at the start of the semester, many expressed feeling more 
comfortable doing so several weeks into the course. One 
student said, “Everyone respects everyone's opinions 
here and helps each other out.”

In the end of semester portfolio, all students made 
positive comments about working in groups. “Having 
the ability to work in groups really strengthened my 
experience with this course. I enjoyed how I was also 
able to connect with the other students in the class in a 
positive way.” 

We monitored and measured student engagement 
during 13 consecutive classes in the second half of the 
semester by observing how often students passed the 
marker, provided input in their group, and sought 
assistance through intergroup collaboration. Passing the 
marker showed more than one student was engaged in 
the problem. Input in their group showed that students 
were engaging in discussions rather than independent-
ly solving problems. Seeking assistance through inter-
group collaboration led to students being more reliant 

boards gives students permission to make mistakes. 
Since the boards are vertical and placed around the 
classroom, students stand as they work, keeping them 
more engaged by discouraging anonymity and keeping 
them physically active. We gave one marker per group 
to discourage students from working individually. 

After students completed the problems, we consoli-
dated their learning by holding a class discussion on the 
problems and making connections to the learning goal. 
This was followed by individual time where students 
practiced and wrote notes. 

For assessment, we utilized check (2 points), check 
minus (1 point), and X (0 points) symbols on their learn-
ing goal sheet correlating to a points system. To receive 
full credit on a learning goal, students must achieve a 
check in the basic column and 2 checks in the advanced 
column for that topic. Our main source of assessment 
was weekly quizzes. Students could retake each quiz at 
their own discretion. Oftentimes, learning goals were 
repeated on later quizzes, giving students multiple 
opportunities to show understanding. The main benefit 
is that students can achieve every learning goal at any 
point in the semester. 

We also assessed through a portfolio. We set up a 
portfolio template in Google Slides (https://tinyurl.com/
calculusPortfolio). Each week we gave time in class for 
students to write a reflection in their portfolio. At the 
end of each unit there was a reflection with questions 
pertaining to critical thinking, communication, collabo-
ration, and creativity. The final part of the portfolio was 
for students to show how they achieved each learning 
goal. 

Framework Modifications

One part of the framework we were not able to utilize 
was defronting the classroom because we had to share 
our classroom, making it infeasible to change its con-
figuration. One aspect we changed was giving tasks 
while standing. While students stood most of the class, 
we realized that with a two-hour class they did need 
some seated time. We sometimes launched tasks ver-
bally and sometimes used a set of slides, especially if a 
visual was needed. The framework suggests homework 
should not be graded or checked. We modified this by 
using a courseware system to assign homework. The 
homework did count towards their grade, but students 
could make as many attempts as they wanted, getting 
feedback after each attempt. 
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on their peers, thus being more engaged. Based on the 
high participation in these three categories, it was evi-
dent that students were engaged through these actions. 

Homework

Each homework assignment had a due date, but stu-
dents were allowed to continue working on them 
throughout the semester. Thus, providing homework 
grades as proof of achievement would not be useful, but 
it is worth noting the homework completion percent-
ages. In this course, homework completion rates were 
high. Only one student completed less than 93% of the 
assignments because they stopped all class activities in 
the last month of the semester.

Achievement

Figure 1 depicts the grade distribution for learning goal 
achievement in each unit. 

The numeric-to-letter grade distribution is as follows: 
A = 90-100, B = 80-89, C = 70-79, D = 60-69, F = 0-59. That 
is, students who scored an A in each unit achieved a 
minimum of 90% of the learning goals, and so on. Many 
students earned an A for every unit, making us believe 

that learning truly was present throughout the course. 
The last unit on differentiation had the fewest A’s, as 

students did not have as many opportunities to demon-
strate their learning on this topic. That also provides 
evidence that students were taking advantage of the 
opportunity to get more checks in earlier topics when 
they had more time. This differs from a traditional class-
room, where most students are given one opportunity 
(typically a unit exam), to demonstrate learning prior to 
moving on to the next unit.

Lessons Learned

There are some areas of BTC that we would like to 
work on, the first being homework. It would be help-
ful to clearly state what learning objectives are associ-
ated with each homework question and have students 
keep a log of which learning goals they were able to 
achieve. Therefore, students take ownership over their 
learning and become more familiar with the learning  
goals, making it easier for them to understand our 
assessment practices.

For the portfolio, we thought the reflections were 
meaningful. However, it felt as though students were 
simply complying with this requirement and not think-
ing of it as a learning tool. 

Figure 1

Grade Distributions
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We would like to try BTC in additional semesters to 
get a better understanding of how different students 
pursuing various majors respond to BTC. We would 
also like to try this again after the COVID-19 pandemic 
has subsided. 

What Went Well

Instructing a college course with BTC strategies brought 
forth many positives, including a strong sense of class 
community, high levels of participation and thinking, 
and assessment practices that students liked. The class-
room community was evidenced by friendships that 
formed as well as observing interactions between stu-
dents and comments from the portfolio such as, “every-
one respects everyone’s opinions here and helps each 
other out.” Additionally, in contrast with other courses 
offered at our college, students consistently participated 
in class. This was made apparent through observations 
and discussions with students as we circulated between 
the groups. Finally, weekly quizzes were well received 
in this course, with students citing the opportunity to 
retake quizzes as particularly helpful.

Conclusion

Utilizing BTC in a college setting made student interest 
in the course content high, led to a high rate of home-
work completion, brought forth student engagement, 
made student learning evident, and developed a strong 
sense of classroom community. Although some stu-
dents still preferred direct instruction, many students 
expressed their enjoyment of a student-centered class-
room. Therefore, based on our experiences, we believe 
that the BTC framework can be successfully implement-
ed in a college mathematics setting with appropriate 
modifications.  
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Briefly Recalling Some Antecedents of Standards-Based Reform 
and Standardized Assessment in American Mathematics Education 

Early Roots of Standardization in Mathematics 
Education

By the turn of the twentieth century, mathematics 
education in the United States had been the subject of 
educational concern for more than a century. Substan-
tial developments in pedagogy and curriculum were 
sparked by a reevaluation of the teaching and learning 
of the Colonial Period, which was dominated by the 
“rules” or “rule method” of teaching which valued core 
tenets of mental discipline theory (Cohen, 2016; Klieb-
ard, 2004). In the early 1800’s, groundbreaking advance-
ments in pedagogy driven by innovative textbook 
authors challenged the pedagogy of procedural drill 
and memorization by advocating for a focus on devel-
oping conceptual understanding through hands-on, 
exploratory learning (Bidwell & Clason, 1970; Bjarna-
dóttir, 2014; Cohen, 2016). This continued well into the 
Progressive Era of education in the early 1900’s, which 
centered on the holistic development of the individu-
al child to become a fulfilled, productive member of 
society (Dewey, 1915; Rodgers, 2002). For mathematics 
education, this translated into a desire to implement a 
pedagogy that placed value on conceptual understand-
ing and meaningful application by “letting children 
learn by doing” (Kilpatrick, 2014, p. 329).

Despite significant enthusiasm for such progressive 
ideals, they were ultimately “rapidly overshadowed by 
the increasing demand for technological and practical 
mathematical skills” after the First World War (Permuth 
& Dalzell, 201, p. 238). As a result, Schoenfeld (2016) 
notes that by the early 1920’s, the focus of mathemat-
ics education had once again shifted away from a focus 
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on deep conceptual learning of abstract topics to “the 
concrete—the arithmetic of home and store” and to 
“practically oriented applications” (p. 499). According 
to Schoenfeld, this began a period of “‘uniformizing’ of 
curriculum and assessments” which “fed naturally into 
the measurement regime that typified the first half of 
the century” (p. 499).

This is recognized as one of the earliest moments in 
mathematics education where the value of standard-
ization can be clearly seen (Kilpatrick, 2014; Madaus 
et al., 2003; Schoenfeld, 2016). Schoenfeld (2016) notes 
that this marked the beginning of “the emergence of 
scientism” where “‘objective’ measurement and ‘rigor-
ous’ methods” began to capture widespread interest (p. 
500). Such scientific terms are some of the first historical 
precursors to modern synonymic terms of assessment 
and accountability, which are central to the modern 
standards movement. In modern education, data collec-
tion through standardized assessment to evaluate edu-
cational outcomes is commonplace. However, during 
this time period in the 1900’s, the stable marriage of 
scientism and mathematics education was just being 
formed.

It seems that just as mathematics education was par-
ticularly vulnerable to the application of mental disci-
pline theory in the 1800’s, so too was it vulnerable to 
the methods associated with standardized assessment 
of procedural mathematical knowledge (Cohen, 2016; 
Kliebard, 2004; Madaus et al., 2003; Schoenfeld, 2014, 
2016). Assessments of procedural knowledge that con-
sider only right or wrong answers—not the mathemat-
ical processes or cognitive effort required to complete 
them—are easy to develop, replicate, and standard-
ize. Moreover, many such assessments often do not 
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assess higher cognitive processes associated with true 
mathematics learning and doing (NCTM, 2000; NRC, 
2001; Madaus et al., 2003; Schoenfeld, 1985, 2013; Stein 
et al., 2000). Thus, the ease with which procedural 
assessments of mathematics knowledge can be creat-
ed, administered, and interpreted, coupled with their 
perceived association with educational outcomes, has 
created a lasting place for them in the field. As Kilpat-
rick (1992) notes, such a movement of assessing student 
performance through standardized tests in mathemat-
ics “had begun around 1910 and was in full bloom by 
the 1920’s and 1930s” (p. 138). The significance of this 
bloom has been widely recognized and is poignantly 
characterized by Schoenfeld (2016) as a movement that 
would “plague education research and practice through 
the entire 20th century and beyond” (Schoenfeld, 2016, 
p. 500). 

World War II, New Math, and Back to Basics

To fully appreciate the formation of the Standards Era, 
one must first consider the historical backdrop to its 
formation. As Schoenfeld (2016) has famously written, 
“Wars—whether hot, cold, or economic—focus atten-
tion on the mathematical and scientific preparedness 
of American’s citizenry” (p. 503). World War I, for 
example, drastically shifted progressive ideals with-
in mathematics education to those valuing uniformity 
and practicality (Schoenfeld, 2014, 2016). In citing Gar-
rett and Davis (2003), Kilpatrick (2014) notes that World 
War II “proved to be a pivotal event that revived interest 
in school mathematics as an area of curricular concern 
following decades of decline” (p. 330). Many scholars 
agree that the previous calls for reform in school math-
ematics were in fact “legitimized by the war” (NCTM, 
1947, as cited in Permuth and Dalzell, 2013, p. 238). 

The “New Math” era, as it became to be known, was 
seen as the answer to these calls. The curriculum of New 
Math centered on the introduction of new applied and 
abstract mathematical topics; an attempt to establish a 
greater cohesion and uniformity within the progression 
of school mathematics topics; a renewed emphasis on 
the logical foundations of mathematics and the preci-
sion of mathematical argument; a focus on support-
ing instruction that promoted discovery on the part of 
the students; and a focus on providing students with 
a greater foundation for the growing scientific nature 
of the nation’s workforce (Fey & Graeber, 2003; Garrett 
& Davis, 2003; Kilpatrick, 1992, 2014; Schoenfeld, 2014, 
2016). Shortly after this time, the success of the Sovi-
et Union in launching Sputnik I in 1957 left Americans 

with a feeling that the country had lost the international 
“Space Race”, and federal funding through the National 
Defense Education Act (NDEA) of 1958 was passed in 
response to improve higher education and the develop-
ment of students in the scientific disciplines.

Despite the generation of “a great deal of enthusias-
tic activity throughout the school mathematics commu-
nity” of the time (Fey & Graeber, 2003, p. 531), the New 
Math movement was later criticized nationally and is 
rarely seen as a successful school reform initiative by 
both historical and modern critics (Fey & Graeber, 2003; 
Kilpatrick, 2014; Schoenfeld, 2016). Modest successes in 
the improvement of curriculum and instruction were 
not enough to quell public criticism (Fey & Graeber, 
2003; Kilpatrick, 1992, 2014). As a result, another short-
lived, and largely unsuccessful, reactionary movement 
in mathematics education known as “Back to Basics” 
was sparked, which partly focused on skills that were 
aimed at improving college admissions scores (Fey 
& Graeber, 2003; Kilpatrick, 2014). As Fey & Graeber 
(2003) note, this movement was stimulated by the pub-
lic consensus that the movements following the launch 
of Sputnik, including New Math, were a failure. The 
Back to Basics movement also saw a reemergence of 
more traditional pedagogical practices, replacing the 
forward-thinking discovery-based approach popular 
of the New Math era, as well as a renewed emphasis 
on assessment and accountability to evaluate schools 
and teachers, leading to a “process-product paradigm” 
where national standardized tests served as evaluative 
measures, a theme that would continue well into the 
Standards Era (Fey & Graeber, 2003, p. 541). 

A Nation at Risk and the Birth of the  
Standards Era

After decades of perceived decline in mathematics 
schooling; failure and abandonment of several reform 
initiatives; failure to win the “Space Race”; low scores 
on international assessments of school subjects; and the 
evolving social conditions influencing schooling in the 
United States, stakeholders in education had reached 
a boiling point of dissatisfaction and angst nearing the 
1980’s (Permuth & Dalzell, 2013). Such a feeling was 
epitomized and catalyzed by the famous—and infa-
mous—1983 report of the United States National Com-
mission on Excellence in Education (NCEE), A Nation at 
Risk: The Imperative for Educational Reform (NCEE, 1983). 
Historians and mathematics educators characterize the 
document as one of the most influential documents in 
mathematics curricular change for the nearly forty years 
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following its publication (Beck et al., 2002; Ferrini-Mun-
dy, 2000; Kilpatrick, 2014; Schoenfeld, 2014, 2016). 
Permuth and Dalzell (2013) write that “the extremely 
influential document created barely controlled panic” 
(p. 242) through its strong and condemning language 
and blistering critique of public education.

Almost immediately, calls for improvement and 
accountability in schools were again sparked across 
the nation. Discussions of widespread standardization 
and assessment that had been happening in the back-
ground for the past forty years were reappearing at the 
forefront during this time (Kilpatrick, 2014). The most 
influential group in mathematics education in the coun-
try, the National Council of Teachers of Mathematics 
(NCTM), ultimately satisfied national demand for a 
standards-based initiative that would fix the seemingly 
ailing mathematics education system and alleviate pub-
lic concern. The group’s 1980 Agenda for Action, which 
broadened the aims of mathematics education both 
from a curricular and professional perspective, took on 
new meaning and application in the wake of A Nation at 
Risk (Fey & Graeber, 2003). 

This was later followed by the 1989 NCTM Curriculum 
and Evaluation Standards for School Mathematics (NCTM, 
1989), which served as the first nationally recognized 
and widely implemented official standards-based doc-
ument of the Standards Era. Kilpatrick (2014) notes that 
this document was unique and historically significant 
since it was produced by a professional organization, 
rather than a governmental agency without outside 
funding. Further, it was one of the first documents of its 
kind that “attempted to go beyond local, state and pro-
vincial boundaries in laying out recommendations for 
curriculum and evaluation” (p. 331) in an especially sen-
sitive time. This seminal document was followed by the 
Professional Standards for Teaching Mathematics (NCTM, 
1991) and Assessment Standards for School Mathematics 
(NCTM, 1995), which, when taken together, formed a 
core structure for standards at all levels of mathemat-
ics curriculum, instruction, and assessment. These were 
later refined and formed the widely implemented next 
installment of the NCTM Standards, the NCTM Princi-
ples and Standards for School Mathematics (NCTM, 2000).

The standards set forth by NCTM were historically 
significant for several reasons. First, they were presum-
ably the first of their kind in mathematics education. 
Since this time, standards-based initiatives have perme-
ated and become a central component to mathematics 
education policy, research, and practice (Schoenfeld, 
2016). Second, the standards deviated, in a significant 
way, from previous “top-down” reform initiatives of 

the 1900’s and instead focused on “those very close to 
decisions about mathematics curriculum—teachers, 
supervisors, and developers of instructional material” 
(Ferrini-Mundy, 2000, p. 38). Third, as mentioned pre-
viously, the standards transcended local boundaries 
and became the first nationally recognized curriculum 
reform document. As a result, this work “took on a life 
of its own” (Ferrini-Mundy, 2000, p. 38) and began to 
influence national science standards; the local and state 
development of additional curricular standards; and 
were reflected in independent instructional materials 
and textbooks. This was partly due to the attractive 
nature of standards in providing a common language 
for professionals to communicate desired outcomes and 
adjust their practice.  

The Standards and Standardization: 
Connections to Today

The push for greater accountability coupled with the 
perceived success of standards-based reform initiatives 
has fueled a reemergence of scientism and standardized 
assessment in the United States at all levels of education 
(Schoenfeld, 2014). Arguably the most influential—and 
detrimental, according to many scholars—reform initia-
tive in modern education was the 2001 No Child Left 
Behind Act (NCLB) (Beck et al., 2002; Ferrini-Mundy, 
2000; Schoenfeld, 2014, 2016). According to Schoen-
feld (2014), NCLB “epitomized” (p. 53) the standards 
movement and completed the connection between stan-
dards-based reform and accountability. The focus on 
assessment for accountability, Schoenfeld (2014) writes, 
created the pervasive idea that “students, schools, dis-
tricts, and states must meet certain standards or suffer 
the consequences” (p. 53). In addition to the goal of 
generally improving education, NCLB also targeted the 
achievement gap, which scholars have notably criticized 
as an educational focus due its potential to perpetuate 
negative and inequitable narratives with respect to race 
and achievement (Gutiérrez, 2008).

Originally aimed at improving American education, 
NCLB instead became a gatekeeper of federal funding 
for education and proliferated standardized assessment 
for accountability. Therefore, the modern era of high-
stakes, standardized assessment on which many evalu-
ations of teacher, school, and district performance and 
the distribution of national funds relies was in many 
ways cemented with NCLB (Reys, 2014). Moreover, the 
central yet lofty goal of having 100% of all students be 
proficient in mathematics by 2014 was not obtained and 
created substantial anxiety for schools, dishonesty in 
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reporting, and an antithetical lack of consistency and 
accountability at all levels of education (Resnick et al., 
1992; Reys, 2014). NCLB was ultimately deemed a failure 
and was later replaced by the Every Student Succeeds 
Act of 2015. However, the lasting effect of NCLB on 
standards-based assessment for accountability remains.

More recent standards-based initiatives such as the 
Common Core State Standards for Mathematical Con-
tent (CCSSM) have been implemented to improve the 
quality of mathematics curricula and teaching in an 
attempt to provide a unified, national set of standards 
(NGA, 2010). Sponsored by the National Governors 
Association (NGA) and Council of Chief State School 
Officers, the CCSSM was aided by a substantial federal 
investment in its implementation, resulting in the major-
ity of all states adopting the original, or a modified form 
of the standards (Hill et al., 2019; Porter et al., 2011). 
The NGA note that the standards were developed to 
make the mathematics curriculum in the United States 
“substantially more focused and coherent in order to 
improve mathematics achievement” as well as “answer 
the challenge” of “a curriculum that is ‘a mile wide and 
an inch deep’” (NGA, 2010, p. 3).

For some, the CCSSM were notable for building on 
the successes of the NCTM standards and establishing 
a state and federally supported push for a national cur-
riculum. However, critics have noted that the CCSSM 
seems to share the same characteristics of NCLB (Hess 
& McShane, 2013) and that the CCSSM merely “pro-
vides the basis for a new generation of standardized 
tests” (Tampio, 2018, p. 8). In addition to these tests, 
in accordance with the Every Students Succeeds Act 
of 2015, several states require perhaps the most tradi-
tionally debated standardized assessment in the Unit-
ed States, the SAT, as a federally required assessment, 
which has in turn has become an assessment utilized 
to assess learning with CCSSM. Currently, the grow-
ing sentiment is that the initiative has resulted in yet 
another standards-based installment that, like its pre-
decessors, is difficult to implement, monitor, and con-
sistently modify. More recently, it has been noted that 
the development of state and local school mathematics 
standards is effectively “signaling the end of Common 
Core” (Lee, 2021).

Regardless of the latest reform trend, it currently 
seems as if standards-based curriculum and standard-
ized assessment are as common in modern schooling as 
brick and mortar. This is a consequence of their mutual 
historical development as intimately linked components 
of educational reform. Since this piece provides only a 

brief and general discussion of some of the intricate and 
interrelated factors of this complex history, more com-
prehensive and informative works on these topics cited 
here should certainly be consulted for further reading. 
This paper merely serves to recall several important 
moments in the history of mathematics education histo-
ry to provide another lens through which to view mod-
ern mathematics education in the United States.

It should also be noted in closing that the efforts of 
reformers and other stakeholders in education for more 
than a century have resulted in a great many improve-
ments to the quality of curriculum and instruction in 
mathematics and have benefitted both the educational 
enterprise and the children learning within it. Howev-
er, it is also clear that the waves of educational reform 
discussed here have, despite best intentions, created a 
lasting place for standards-based curriculum and stan-
dardized assessment in the field of mathematics educa-
tion. There is growing evidence that the assessment and 
accountability movement has had detrimental effects on 
the growth and success of education in the United States, 
which has even led to a growing countermovement of 
standardized test refusal (Braun & Marion, 2022; Pérez, 
2018; Resnick et al., 1992; Tampio, 2018). Additionally, 
despite the high value placed on these tests for academ-
ic decision making, from evaluations of school districts 
to college admissions, recent longitudinal studies have 
shown that characteristics inherently unmeasurable 
through standardized assessments of crystallized learn-
ing are more influential and meaningful predictors of 
collegiate academic success, retention, and graduation 
and success in the mathematics classroom (Ben-Avie & 
Darrow, 2019).

Nevertheless, it is a dubious proposition at best that 
the current educational enterprise will shed the trap-
pings of assessment and accountability that have become 
solidified over the course of the past century. From 
standardized college admissions tests such as the SAT 
to Advanced Placement Examinations in high school to 
yearly standardized grade-level examinations across 
the country, standards-based, standardized assessment 
continue to be bound within the educational experience 
in America. Although more work is certainly needed to 
evaluate both the successes and failures of the past ini-
tiatives discussed here, it is perhaps more important to 
inform future change through the recognition and con-
sultation of the historical development of the current era 
of educational reform. For if the aim is to meaningfully 
reform education for future progress, the past to which 
it is inextricably linked cannot be overlooked. 
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