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Generative Al systems are increasingly relied on and are already actively
reshaping how we think about privacy and data protection law. Models ingest and
process vast amounts of personal and sensitive data, challenging assurances of
compliance with legal frameworks like the General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act (CCPA) with increasing
intensity. Machine unlearning is an emerging tool in practitioners’ attempts to
address these challenges: the act of selectively removing or suppressing specific
data, such as personal data that a data subject requests be deleted, from Al models
as means of complying with legal obligations or policy goals. This Article’s much-
needed analysis of unlearning’s technicalities and uses builds on recent critical
scholarship that examines unlearning’s limitations at the technical and policy level.
It delves deeper into machine unlearning’s implications for privacy and data
protection law by situating it within privacy law’s broader ecosystem and
proposing actionable pathways for integrating unlearning into enforcement and
policy. Specifically, this Article evaluates whether privacy laws’ legal, remedial,
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and normative aspirations can be reconciled with the technical realities of machine
unlearning in generative Al systems. It also contributes to the privacy profession
by proposing a framework for integrating machine unlearning into broader
privacy-preserving interventions. In doing so, the Article positions machine
unlearning as both a vital new tool as well as a site of contestation in the evolving
landscape of privacy and Al governance while providing a forward-looking
roadmap for aligning machine unlearning with privacy law’s goals.
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L. INTRODUCTION

Don’t you forget about me. The Simple Minds anthem that once closed The
Breakfast Club framed teen identity as an anxious negotiation with memory and
erasure. Four decades later, that refrain reverberates in a very different hallway, one
patrolled not by lockers but by large-scale generative Al models that never
graduate, never sleep, and never forget.

As machine learning systems become integral to decision-making,
personalization, and content generation, a growing chorus of users, regulators, and
privacy advocates is voicing an opposite request: forget about me.! When chatbots
can effortlessly reproduce passages from a college student’s blog or an X-ray
technician’s résumé scraped many years ago, “forgetting” is no longer a teenage
dread; it has become a normative imperative grounded in the core commitments of
privacy law—autonomy, dignity, and control over one’s personal information.?
These values animate legal instruments such as the General Data Protection
Regulation’s (GDPR) “right to be forgotten” and emerging U.S. data-deletion
rights, which reflect the idea that individuals should not be indefinitely defined by
digital traces beyond their control.® Forgetting, in this sense, is not merely a
technical safeguard but a recognition of the individual’s ongoing interest in
temporal and contextual integrity, the right to have one’s past data lose its hold over
one’s present identity. Yet the tools available to regulators—delete the record, shred
the disk, empty the recycle bin—presume data sits in tidy rows, ready to be

I See, e.g., Yonghao Tang et al., Ensuring User Privacy and Model Security via Machine
Unlearning: A Review, 77 COMPUTERS, MATERIALS & CONTINUA 2646, 2646 (2023) (explaining
that users increasingly request that Al systems forget specific data to mitigate privacy risks and
comply with data-protection laws); A. Feder Cooper et al., Machine Unlearning Doesn’t Do What
You Think: Lessons for Generative AI Policy, Research, and Practice, ARX1V 1, 2-3 (Oct. 31, 2025),
https://arxiv.org/pdf/2412.06966 [https://perma.cc/SCKG-P66N] (observing that unlearning has
become central to legal and policy debates over how to operationalize deletion rights in Al systems).

2 See generally Lillian R. BeVier, Information About Individuals in the Hands of Government:
Some Reflections on Mechanisms for Privacy Protection, 4 WM. & MARY BILL RTS. J. 455, 458
(1995); Jerry Kang, Information Privacy in Cyberspace Transactions, 50 STAN. L. REV. 1193, 1202-
03 (1998); Daniel J. Solove, 4 Taxonomy of Privacy, 154 U. PA. L. REV. 477, 534 (2006).

3 See, e. g., Cooper et al., supranote 1, at 2-3 (articulating the gap between machine unlearning’s
technical methods and privacy law’s normative goals of autonomy and control); Tang et al., supra
note 1, at 2646 (describing the GDPR’s right to be forgotten as the legal impetus for unlearning
research); see also Min Chen et al., When Machine Unlearning Jeopardizes Privacy, 2021 PROC.
ACM SIGSAC CoONF. ON CoMPUT. & COMMC’NS SEC. 896, 896-97 (Nov. 15-19, 2021),
https://dl.acm.org/doi/pdf/10.1145/3460120.3484756 [https://perma.cc/FN7S-4VUC] (linking
unlearning to GDPR’s and CCPA’s right to be forgotten).
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vacuumed away.* Modern Al is messier: once personal data is baked into billions
of parameters, deletion feels less like hitting the backspace key and more like trying
to remove one drop of paint from an entire mural.

To address this emerging challenge, researchers in computer science have
proposed a set of methods collectively referred to as “machine unlearning.”>
Machine unlearning encompasses various techniques aimed at modifying a trained
model to selectively remove or reduce the influence of specific data points.® These
methods range from structural removal’, which attempts exact deletion of data and
its influences from the model architecture, to approximate retraining and output
suppression®, which seeks to dull the data’s influence or make it unavailable to end
users. Each method varies in efficacy, complexity, and computational demand, as
well as its theoretical compliance with privacy regulations.

While the promise of machine unlearning is compelling, its integration into
privacy law and policy has not been thoroughly explored. This leaves critical gaps
in both scholarship and practice. Legal literature has only recently begun to grapple
with how technical possibilities align or conflict with normative privacy goals.’
Consequently, privacy regulators, practitioners, and scholars face uncertainty
around whether machine unlearning can truly fulfill the rights and obligations set
forth in current privacy laws.

This Article addresses that critical gap. It evaluates the technical literature on
methodologies of machine unlearning, maps these techniques onto existing legal
standards and normative privacy principles, and examines how machine unlearning
aligns or conflicts with core privacy law objectives such as lawful collection,
purpose limitation, data minimization, rectification, and erasure. In this way, this
Article provides a clear, structured analysis of machine unlearning’s potential—
and its limitations—in addressing privacy concerns raised by generative Al.

4 See Cooper et al., supra note 1, at 13-15 (discussing how data-deletion and “right-to-be-
forgotten” obligations under privacy law motivate interest in machine-unlearning methods and
analyzing the technical and legal challenges of implementing such remedies).

3 See Avinth Thudi et al., On the Necessity of Auditable Algorithmic Definitions for Machine
Unlearning, 31 USENIX SEC. SYMP. 4007, 4008--09 (August 10-12, 2022), https://www.usenix.or
g/system/files/sec22-thudi.pdf [https://perma.cc/73MM-XN4F].

6 1d.

7 Also called “exact unlearning.” See Hanon Yan et al., ARCANE: An Efficient Architecture for
Exact Machine Unlearning, 31 PROC. INT’L JOINT CONF. ON A.l. 4006, 4007 (2022),
https://www.ijcai.org/proceedings/2022/556 [https://perma.cc/HARL-QVSQ]; see generally Lucas
Bourtoule et al., Machine Unlearning, 2021 IEEE SympP. ON SEC. & PRrIv. 141, 141-43,
https://ieeexplore.ieee.org/document/9519428 [https://perma.cc/9SST-6Y6U] (introducing and
categorizing foundational approaches to machine learning, including structural-removal methods).

8 See H. Yan et al., supra note 7, at 4007.

9 See, e. g., Cooper et al. supra note 1; Saskia Keskpaik, Machine Unlearning, EUR. DATA PROT.
SUPERVISOR: TECHSONAR REP. 2025, at 19 (Nov. 15, 2024), https://www.edps.europa.eu/system/f
iles/2024-11/24-11-15_techsonar 2025 en.pdf [https://perma.cc/CD7Y-9ALG] (discussing
emerging privacy implications of machine unlearning techniques).


https://www.edps.europa.eu/system/files/2024-11/24-11-15_techsonar_2025_en.pdf
https://www.edps.europa.eu/system/files/2024-11/24-11-15_techsonar_2025_en.pdf
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Importantly, this analysis recognizes that machine unlearning is not a panacea.
While certain methods offer strong theoretical guarantees, practical limitations
remain significant.!? This is particularly true in terms of scalability, computational
costs, and robustness against adversarial attacks.!! For instance, structural methods
provide rigorous deletion guarantees yet often require substantial computational
resources.!? In contrast, approximate methods and output suppression techniques
are more scalable and cost-effective but frequently lack the precision necessary to
fully satisfy stringent legal standards, including the GDPR’s “right to be forgotten,”
under which data subjects may request their personal information be deleted. '3

In addition to machine unlearning’s technical constraints, conceptual tensions
also emerge. Privacy laws were traditionally crafted with discrete databases in
mind; compliant data deletion meant straightforward removal. '* However,
generative Al models do not simply store data; they generalize from it. Successful
unlearning, in the technical sense, means that a model’s post-unlearning behavior
is statistically indistinguishable from that of a model trained without the deleted
data.!’ Yet even when this benchmark is met, unlearning may leave latent traces:
residual patterns, correlations, or representational artifacts that continue to shape a
model’s outputs or enable reidentification of the affected individual. '® These
residual influences frustrate the normative goals of privacy law, which center on
individual autonomy, control over personal information, and protection from
reputational and relational harms.!” When personal data continues to inform a
model’s generative behavior even indirectly, individuals lose meaningful control
over how they are represented or remembered, thus undermining the spirit of rights
like the GDPR’s “right to be forgotten” and the CCPA’s deletion right.!® Recent
empirical research underscores these risks: even after unlearning, adversaries can
infer or reconstruct supposedly “forgotten” data through membership inference,

10 ee Thudi et al., supra note 5, at 4009 (“However, even after the speedup [of unlearning
methods], the costs may still be too high for some.”).

11 See discussion infra Section IL.D.

12 See e. g., Bourtoule et al., supra note 7, at 156 (“Costs Associated with Storage”).

13 See Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 (General Data Protection Regulation) [hereinafter GDPR], art. 17, 2016 O.J. (L 119) 1.

14 See Cooper et al., supra note 1, at 13-15.

135 See Tang et al., supra note 1, at 2650-51 (defining “exact unlearning” as the condition where
a model behaves as though the deleted data were never used for training).

16 See M. Chen et al., supra note 3, at 896 (demonstrating that unlearned models may still leak
information about deleted data through discrepancies between original and unlearned models).

17 See, e.g., Cooper et al., supra note 1, at 13-16; M. Chen et al., supra note 3, at 897
(“[R]emoving information from a model’s parameters does not guarantee that this model could
never produce related information at generation time.”).

18 1d.; see also GDPR, art. 17 (establishing a right to erasure of personal data); CAL. C1v. CODE
§ 1798.105 (2023) (granting consumers the right to request deletion of personal information
collected by businesses).
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model inversion, or prompt-based exploitation, exposing the limits of current
unlearning methods. !

To navigate these complexities, this Article advocates for a nuanced regulatory
approach. Machine unlearning can meaningfully bolster privacy governance when
it is treated as a partial remedy layered alongside data-minimization,
purpose-limitation, differential privacy, and rigorous oversight.?® As such, this
Article asserts that machine unlearning should be integrated into a broader privacy
governance framework, encompassing both preventive measures and reactive
remedies. Specifically, the Article proposes a multifaceted enforcement strategy
aligned with the authority of regulatory bodies such as the Federal Trade
Commission (FTC), Department of Justice (DOJ), and state Attorneys General.
This approach emphasizes proportionality as a guiding legal principle, meaning that
unlearning-based remedies should be calibrated to the nature and gravity of the
underlying harm or unlawful data use.?' In other words, the severity of the
intervention (for example, targeted unlearning versus full model disgorgement)
should correspond to the degree of risk to individuals’ rights or the extent of the
non-compliance, ensuring remedies are both effective and practicable within
existing enforcement structures.?

This Article contributes significantly to privacy law scholarship by bridging the
technical realities of machine unlearning with legal and regulatory objectives. It
provides policymakers, legal practitioners, and scholars with a clear-eyed
assessment of machine unlearning’s capabilities when situated as a crucial tool
within a diversified privacy protection arsenal rather than as a standalone solution.
In doing so, it lays the foundation for informed policy development and
enforcement strategies that can effectively safeguard privacy in the age of
generative Al.

This Article proceeds in four Parts. Following this Introduction, Parts II through
IV each aim to bridge the technical capabilities of machine unlearning with the

19 See M. Chen et al., supra note 3, at §96-97 (reporting that membership inference attacks can
outperform classical baselines post-unlearning); see also Cooper et al., supra note 1, at 12 (noting
that generative models can reintroduce forgotten information through prompts, a phenomenon
termed “ununlearning”). See generally llia Shumailov et al., UnUnlearning: Unlearning Is Not
Sufficient for Content Regulation in Advanced Generative Al, ARXIV 1 (June 27, 2024),
https://arxiv.org/pdf/2407.00106 [https:/perma.cc/WEUN-CMTG].

20 See Cooper et al., supra note 1, at 3 (“Unlearning methods are imperfect and may serve as
only one approach of many that could, in some cases, contribute to addressing aspects of issues that
are of interest to policymakers.”).

21 See also GDPR, recital 129 (noting that remedies and sanctions must be effective,
proportionate and dissuasive). See generally Alessandro Achille et al., A1 Model Disgorgement:
Methods  and  Choices, 121 PROC. NAT'’L ACAD. ScI. (Apr. 19, 2024),
https://www.pnas.org/doi/10.1073/pnas.2307304121 [https://perma.cc/N9V6-NUDG] (explaining
that model disgorgement and unlearning can be applied proportionally to the severity of harm or
data misuse).

22 See Achille et al., supra note 21, at 3-4 (proposing that regulators select among technical
remedies such as retraining, selective forgetting, or differential-privacy retraining based on the scale
of the data defect and resulting harm).
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normative and operational demands of privacy law. Part II synthesizes the emerging
computer science literature on machine unlearning and categorizes the leading
techniques into families of structural removal methods, approximate retraining, and
output suppression. It explains how each method functions, highlights respective
trade-offs, and identifies key technical limitations, including persistent counter-
privacy risks such as the ability to re-identify data through model outputs.?? By
clarifying both the potential and the limitations of machine unlearning, Part II
equips legal practitioners and policymakers with a grounded understanding of the
technique’s functional contours.

Part III analyzes how machine unlearning aligns with and frequently challenges
existing privacy law frameworks. It examines how machine unlearning maps onto
foundational legal principles like lawful collection, purpose limitation, data
minimization, the right to rectification, and the rights to object or withdraw
consent.”* While machine unlearning may appear to satisfy some legal obligations
in form, this Part argues that it often fails to meet their normative intent, particularly
when latent data influence or residual outputs continue to implicate individual
privacy. Part III also considers how machine unlearning could augment existing
remedies (such as full model deletion and algorithmic disgorgement) in
highlighting the risks of substituting meaningful accountability with incomplete
technical fixes.

Part IV proposes a regulatory and enforcement framework for operationalizing
machine unlearning as one component of a broader privacy intervention strategy.
Drawing on the authority of the Federal Trade Commission under Section 5 of the
Federal Trade Commission Act?, the Department of Justice’s consumer protection
toolkit?®, state Attorneys General enforcement powers?’, and emerging global
norms?3, this Part outlines how machine unlearning can be implemented alongside
preventive or reactive remedies. These include privacy-preserving model design,
output filtering, model deletion, and algorithmic disgorgement. It evaluates how
such approaches could be tailored to practical realities like computational cost,
scalability, and the tradeoff between forgetting efficacy and model performance.
Finally, this Part warns against overly technocratic “compliance-by-design”
approaches—frameworks that treat privacy protection primarily as a technical or
procedural matter to be engineered into systems ex ante rather than as a substantive,

23 See generally Shumailov et al., supra note 19.

24 See, e.g., GDPR; CAL. CIv. CODE §§ 1798.100-.199.100 (2018) [hereinafter CCPA] (as
amended by the California Privacy Rights Act of 2020).

23 See Federal Trade Commission Act [hereinafter FTC Act] § 5, 15 U.S.C. § 45 (2023).

26 See Consumer Protection Branch, U.S. DEP’T OF JUST., https://www .justice.gov/archives/c
ivil/consumer-protection-branch [https://perma.cc/E563-SYF7] (last visited Nov. 8, 2025).

27 See Center for Consumer Protection, NAT’L ASS’N OF ATT’YS GEN., https://www.naag.org
/our-work/center-for-consumer-protection/ [https://perma.cc/7H9B-DP2U] (last visited Nov. 8,
2025, at 17:33 EST).

28 See, e.g., GDPR, art. 17; CCPA §§ 1708.100-.199.100.
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ongoing obligation—and instead calls for a multifaceted, dynamic governance
strategy that centers substantive privacy protections over procedural adequacy.

II. SYNTHESIZING THE COMPUTER SCIENCE LITERATURE ON MACHINE
UNLEARNING

Part II synthesizes the emergent computer science literature on machine
unlearning.? This includes analyses of structural removal methods, approximate
retraining methodologies, and suppression techniques, each which have varying
levels of effectiveness in removing or obscuring personal data. By clarifying how
these techniques function and where they fall short, this Part helps legal
practitioners and policymakers understand the possibilities and the limitations of
machine unlearning.

In practice, a single deletion tool should not be relied upon to improve data
privacy. Providers of machine learning services, and thus corresponding unlearning
services, should pair “heavier,” that is, exact or certified3? unlearning routines
(those used for legally significant takedown requests) with “lighter” filters and
prompts (those used for day-to-day safety). The heavier methods supply a
defensible record for potential data protection, privacy, or compliance audits while
the lighter weight methods keep daily-used inference latency low, meaning a
responsive and seamless “unlearned” data experience on the user end.?!' That
providers understand this layered approach is important as subsequent sections in
Part II map to individual layers of the real-world technology stack, including
structural techniques that rewrite the model, approximate updates that tweak its
weights, and suppression methods that guard the interface.3? The comparative
analysis at the end of Part II therefore posits not which method is best but which
blend of methods meets the legal and operational needs of a given context.

A. Structural Removal Methods

Structural approaches for removing data start from the premise that the only
way to “truly” forget a record is to rebuild the learner itself.>* Afterwards, the model

29 Throughout this Article, the terms “machine unlearning” and “unlearning” will be used
interchangeably.

30 See Chuan Guo et al., Certified Data Removal from Machine Learning Models, 119 PROC.
MACH. LEARNING RSCH. 3832 (2020) (describing an approach that has “a very strong theoretical
guarantee that a model from which data is removed cannot be distinguished from a model that never
observed the data to begin with”); Thudi et al., supra note 8, at 4014 (describing an approach that
has “the advantage of providing rigorous guarantees at the model level”).

31 See Thudi et al., supra note 5, at 4007 (“We thus conclude that . . . an entity’s only possible
auditable claim to unlearning is that they used a particular algorithm designed to allow for external
scrutiny during an audit.”).

32 See generally Bourtoule et al., supra note 7 (describing the SISA framework techniques of
sharding, isolating, slicing, and aggregating).

33 See, e. g., id. at 141 (“A naive way to have such models provably forget is to retrain them
from scratch.”); Thudi et al., supra note 5, at 4009 (“Exact unlearning for DNNs is based on
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behaves as if the record never existed.?* This Section explains and proposes various
structural removal methods and assesses the strength of their guarantees of the
requested data’s deletion. It also addresses practical concerns regarding deletion
requests’ technical impact on the models themselves, such as known impacts on
outputs and predictions, the required compute power to execute the deletions, and
relevant time constraints.

Researchers first demonstrated structural removal with Sharded, Isolated,
Sliced, Aggregated (SISA) training.®> SISA is a technique that divides the original
dataset into many independent pieces called shards.’® A small sub-model is then
trained on each shard before averaging the sub-models to obtain final predictions.’’
With SISA, when a data subject asks for their information to be erased, only the
sub-model that ever saw that data is rebuilt; the other sub-models are left
untouched.?® Importantly, SISA significantly decreases the computation required
for data deletion as compared with ‘starting over’ with an entirely and holistically
retrained model.*

Relevant to privacy concerns, SISA also results in before-and-after snapshots
of the model that differ in predictable ways, making comparisons easier for
confirming the deletion.*® Because of this, privacy professionals can compare the
two points to confirm the deletion has occurred. This can be done because SISA’s
update rule is fixed: if you repeat the same deletion on the same shard, you get the
same new weights in the final model every time.*' Thus, an auditor who holds both
versions can determine with better-than-chance accuracy whether the record had in
fact been present and subsequently deleted before the model was retrained.*?

retraining. In detail, the model owner needs to discard the old model, remove the data points that
are required to be unlearned, and train a new model on the modified dataset.”).

34 See, e.g., Bourtoule et al., supra note 7, at 141; Thudi et al., supra note 5, at 4009.

33 See Bourtoule et al., supra note 7, at 142.

36 See id.

37 See id.

38 See id.

39 See id. at 141-42.

40 See Thudi et al., supra note 5, at 4010-11; Thanh Tam Nguyen et al., 4 Survey of Machine
Unlearning, ARX1IV 1, 5 (Sept. 17, 2024), https://arxiv.org/pdf/2209.02299 [https://perma.cc/6 WSE-
KTNZ] (“The goal of unlearning verification methods is to certify that one cannot easily distinguish
between the unlearned models and their retrained counterparts.”). See generally Bourtoule et al.,
supra note 7 (explaining how SISA training's implementation can be audited to confirm data
removal).

41 See Bourtoule et al., supra note 7, at 154 (“One could imagine that authorities relevant to the
enforcement of the right to be forgotten could audit the code base to validate the implementation of
SISA training”).

42 Thudi et al., supra note 5, at 4009 (“Reproducing the alleged computation is synonymous to
showing its plausibility.”); Nguyen et al., supra note 40, at 3 (“[A] verification (or audit) is needed
to prove that the model actually forgot the requested data and that there are no information leaks.”).
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Later scholarly work realized that the shard need not be defined by where the
data are stored.*®’ Instead, it can be defined by what the data describe.** Another
structural data removal method, ARCANE,* builds dozens of narrow “expert”
networks, each specializing in one class or topic, and only stitches them together at
inference time (when the networks, combined, generate outputs from data-based
inferences).*® If the deletion-requested record lives solely in the expert network of
a particular topic, the system can retrain that expert network alone before it re-sews
it into the overall network used for inferences (outputs). 4’ This does mean,
however, that ARCANE relies on preemptive bookkeeping. ¥ The machine
learning service provider must maintain a precise map of which expert network
touched a given record so that the correct sub-networks can be retrained when a
new data deletion request arrives.*’

A benefit to privacy professionals using ARCANE architecture is the increased
speed of data deletion while maintaining model accuracy: experiments on
benchmark image collections, that is, first-pass collections of images used to train
an individual expert network, have shown that ARCANE cuts the selected data’s
deletion time from nearly three-quarters of an hour for naive retraining to roughly
three minutes, while accuracy on the untouched classes falls by less than a
percentage point.>® By aggressively limiting the scope of the privacy-necessary
retraining, ARCANE demonstrates that organizations can guarantee data deletion
backed with practical and reasonable turnaround times, particularly for everyday
takedown requests. >

Classical statistical models such as logistic regression and soft-margin support-
vector machines have a special property: they are “single-solution” learners.’? As
such, researchers can write an exact algebraic formula that scrubs out a single
training record while keeping every other weight intact.>® For any given training
set, there is only one set of weights that minimizes the margin of error; thus, the
error always rises smoothly as you move away from that point.>* Because the
landscape is so well-behaved, there are no hidden pockets or second-best valleys.>?

43 See, e.g., H. Yan et al., supra note 7, at 4007.
4 See, e. g., id. (“Instead of uniform division, we divide the dataset by class . . ..”).

45 ARCANE has a confusing formal acronym (Architecture foR exaCt mAchine uNIEarning);
the acronym is rather used as a descriptive name for a specific architecture for exact machine
unlearning. See id.

46 See id.
47 See id. at 4008.
48 See id.
49 See id.

30 See id. at 4010-11 (“When large data unlearning . . . the accuracy of ARCANE would not
degrade too much [and] the training and unlearning of ARCANE is much faster than SISA.”).

Shid.

32 See Guo, supra note 30, at 3837-38.
33 See id. at 3832-34.

34 See id.

55 See id.
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After removing the requested data, the model’s predictions on all other (undeleted)
data stay the same, so the model’s overall accuracy is unchanged.’® Researchers
Neel et al. (2021) have expanded the math to cope with thousands of deletion
requests in a row without the model’s runtime spiraling problematically upward.>’
The resulting deletion guarantee is strong.>® Given only the final weights, no
statistical test, however sophisticated it may be, can tell whether the erased record
was ever in the training set.’° Although this technique applies only to these ‘single-
solution’ learners, it sets the conceptual upper bound for what perfect unlearning
looks like.

Contemporary production models, however, are rarely ‘single-solution,’ thus
presenting a different challenge to privacy professionals seeking to comply with
deletion requests.% Contemporary production models differ from classical models
in that they often employ transformer backbones or operate in federated settings
where data never leave the user’s device.®! It is important to know that because of
these dispersed controllers and data processors, a single data warehouse cannot
locate the records requested for deletion.®? Recent research therefore targets these
contexts directly.®® This area of research is of growing importance because health
and finance apps increasingly train models in this federated way.%*

36 See id.

37 See Seth Neel et al., Descent-to-Delete: Gradient-Based Methods for Machine Unlearning,
132 PROC. MACH. LEARNING RSCH. 931, 932 (2021), http://proceedings.mlr.press/v132/neel21a/n
eel2la.pdf [https://perma.cc/92E2-WKMS].

38 See id. at 932-33.

%9 See id at 931.

60 See Ziyao Liu et al., Privacy-Preserving Federated Unlearning with Certified Client
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The transformer backbone context offers deletions completed with low
compute costs, maintenance of model integrity, and user-level deletion guarantees
that may be appealing to privacy professionals requesting data removal. In
transformer backbone contexts, vision-transformer studies have shown that a small
low-rank patch applied to a pretrained image classifier can wipe out an entire
ImageNet class in under ten GPU-minutes, and the remaining classes scarcely
notice the surgery (data removal).% In the federated sphere, the FedEraser protocol
reconstructs a global model by replaying the history of every client except the
deletion-requested one, letting the central server erase a hospital’s data
contribution, for example, with roughly one quarter of the compute previously
required.®® Similarly, researchers have proposed a client-level protocol that allows
individual smartphones to erase local contributions while the distant server replays
only uncontaminated updates.®” The FedEraser protocol reduces central compute
by a factor of four, meaning that the same deletion task can be completed using
roughly one-quarter of the energy, hardware, and processing time previously
required.®® Such efficiency gains are non-trivial: they make large-scale unlearning
more economically and environmentally viable and thus more likely to be adopted
by firms and considered proportionate by regulators when evaluating compliance
burdens under privacy and data-protection law.% For privacy professionals and
regulators, these technical advances illustrate that unlearning is no longer purely
theoretical. They demonstrate that data-deletion obligations can be operationalized
at scale whether at the model layer (through efficient, low-rank updates) or the
system layer (through federated unlearning protocols). In other words, the
technology is beginning to make selective, legally compliant ‘forgetting’ feasible
and proportionate, offering practical tools to satisfy erasure or withdrawal-of-
consent rights without dismantling entire models.

Even with such optimizations, structural unlearning consumes significant
hardware.” The staggering hardware requirements may make structural unlearning
tasks unreasonable to undertake. Machine learning service providers also face a
trade-off where the nearer that the method gets to absolute data record erasure, the

https://arxiv.org/pdf/2507.23267 [https://perma.cc/M4LK-PDFG] (“Predictive models form the
underpinnings of many systems at financial institutions, such as risk prediction, product
recommendations, and fraud detection . . . financial institutions have access to large amounts of user
data . . . leveraging this data effectively remains challenging.”).
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70 See, e.g., Bourtoule et al., supra note 7, at 150 (conducting experiments using high-end
hardware, including Intel Xeon Silver 4110 CPUs).
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more electricity and scheduling complexity it demands.”! The original SISA study,
for example, showcases the financial and compute-power burdens of unlearning:
its largest ImageNet experiment still needed eight Nvidia V100 GPUs (graphics
processing units) for each retrained shard, a figure that rises quickly when the
underlying model is a multi-billion-parameter language model. 7> For added
perspective, Eldan and Russinovich (2023) note that their 7-billion-parameter
baseline consumed 184,000 GPU-hours (the total time the GPU spends computing)
during its initial training run; a full exact retrain of even a modest slice would still
land in the same order of magnitude.” That reality explains why many machine
learning service providers default to using less rigorous, but far cheaper,
approximate or suppressive techniques.’® The next two Sections analyze these
techniques.

B. Approximate Retraining Methods

Approximate unlearning methods trade perfect fidelity for speed. They begin
with a fully trained network and apply a limited number of weight updates designed
to blunt, rather than eliminate, the influence of a chosen record.” This is done by
adjusting gradients.”® A gradient is the mathematical direction that most steeply
changes the model’s error, so climbing the gradient for the offending data makes
the network “unlearn” that contribution.”” The flagship technique is Descent-to-
Delete, which performs a handful of carefully scaled gradient-ascent steps on the
record marked for removal and an equal number of gradient-descent steps on the
records that should remain.’® Empirical tests show that on logistic and small
convolutional models, three to five such steps can mimic a full model retrain while
costing less than one percent of the original training time.” For privacy lawyers,

1 See, e. g., id. at 142 (requiring greater scheduling complexity for better performance); see
also Ronen Eldan & Mark Russinovich, Who'’s Harry Potter? Approximate Unlearning in LLMs,
ARXIV 1, 1 (Oct. 4, 2023), https://arxiv.org/pdf/2310.02238 [https://perma.cc/QM2A-LSQF].

72 See Bourtoule et al., supra note 7, at 150.

3 Eldan & Russinovich, supra note 71, at 1.

4 See, e.g., OpenAl, Moderations, APPLICATION PROGRAMMING INTERFACE REFERENCE,
https://platform.openai.com/docs/api-reference/moderations [https://perma.cc/EG62-PG9J] (last
visited Nov. 9, 2025) (providing a simple moderation tool to “unlearn”); Long Ouyang et al.,
Training Language Models to Follow Instructions with Human Feedback, 36 PROC. INT’L CONF.
ON NEURAL INFO. PROCESSING SYS. 27730, 27730 (Nov. 28, 2022), https://proceedings.neurips.cc
/paper_files/paper/2022/file/blefde53be364a73914f58805a00173 1-Paper-Conference.pdf
[https://perma.cc/ WVSA-LWTT] (asserting that bigger models do not necessarily make them better
at following user intent).

75 Zhehao Huang et al., Unified Gradient-Based Machine Unlearning with Remain Geometry
Enhancement, ARX1V 1, 2-3, (Sept. 29, 2024), https://arxiv.org/pdf/2409.19732 [https://perma.cc/
HW8R-G7KZ].
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the appeal of this method is that the provider can respond to many erasure requests
overnight instead of launching a week-long retraining job.

Other research suggests removing the requested information by injecting noise
calibrated to each associated weight’s importance rather than by adjusting the
relevant gradients. 8 Fisher-scrubbing, a technique sometimes called “Eternal
Sunshine of the Spotless Net,” makes use of the Fisher information matrix, which
is a mathematical tool measuring how important each weight is for the model’s
predictions. 3! The Fisher-scrubbing algorithm then adds just enough random
variation to the most sensitive weights determined by the Fisher information matrix
to obscure any statistical trace of the targeted record while leaving other predictions
intact.?? In practice this means that, within a tight margin, the post- Fisher-scrub
weights behave as though the record had never been present in the model.®* This is
true despite that the network retains over ninety-nine percent of its baseline
accuracy on the rest of the data.?* Because the method needs no access to the
original training set, it is attractive for cloud providers that have already deleted or
archived raw data pursuant to a retention policy. The drawback is that the privacy
guarantee is probabilistic; a sophisticated auditor might still extract faint traces of
the deletion-requested record if they run enough queries through the model.®

A practical variant to Fisher-scrubbing is targeted fine-tuning, where the
provider trains the model for a brief period on “anti-examples™ that teach it to
down-weight the requested data.®® Because the rest of the weights stay untouched,
the system keeps its performance on unrelated tasks, which may be a key
consideration for organizations’ achieving proportionality in compliance with
privacy laws or remedies.?” This technique is attractive in that it uses less compute
power. 38 To illustrate, recall the earlier mentioned experiment by Eldan and
Russinovich, which found retraining a model using structural methods resulted in
184,000 GPU-hours needed for the original training run, which presented an issue
were use of that technique to be scaled.?® Using the Fisher-scrubbing technique
instead, they found it possible to force a seven-billion-parameter model to “forget”
every line of the Harry Potter books in just ome GPU-hour, a significant
improvement in speed.”® They first identified the tokens most associated with the

80 1d.

81 Aditya Golatkar et al., Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep
Networks, 2020 IEEE/CVF CONE. ON COMPUT. VISION & PATTERN RECOGNITION 9301, 9301-02
(Aug. 5, 2020).
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books. They then replaced them with neutral equivalents so that the model’s
logits—the raw scores before they become probabilities—no longer spiked on
‘Potter phrases.”!

There are other types of fine-tuning that service providers could use, although
with varying degrees of successful data erasure. One newer variant of fine-tuning
called Langevin Unlearning adds calibrated noise during this short fine-tune period
to provide a probabilistic certificate that the erased data cannot be reconstructed. >
However, Shumailov et al. (2024) showed that forensic attacks can still recover
snippets if the noise budget is too small.”3

A third approach, Amnesiac Machine Learning, erases classes or individual
examples.” It does so by first pruning the network into a sparse skeleton by setting
many weights to zero, which disentangles the internal representation and reduces
the memory capacity for any single record. It then finetunes only that compact
core.”> Once the network is sparse, a brief noise-infused fine-tuning centered on the
‘forget’ set neutralizes the residual influence.”® It does so far more effectively than
the same procedure applied to a dense model and delivers a reported five-fold
speed-up over naive methods while losing less than half a percentage point of
accuracy.”’ The upsides of this tactic is that it is a more cost-effective technique,
making it appealing to smaller firms.’® Additionally, service providers can comply
with large batches of deletion demands on limited hardware.?® The legal downside
is residual risk.!% Because the method offers no formal proof of deletion, regulators
may still insist on more rigorous post-hoc audits or complementary front-end
filters.!?! Consequently, practitioners often pair approximate retraining with routine
privacy audits or differential-privacy noise to narrow the exposure window created
by partial forgetting.!%?

o 1d at 4-5.

92 Eli Chien et al., Langevin Unlearning: A New Perspective of Noisy Gradient Descent for
Machine Unlearning, ARX1V 1, 1 (Jan. 18, 2024), https://arxiv.org/pdf/2401.10371 [https://perma.
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94 Laura Graves et al., Amnesiac Machine Learning, 35 PROC. AAAI CONF. ON A.L. 11516,
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Differential privacy (DP) often surfaces in policy conversations as an
alternative to unlearning, but the two safeguards (unlearning and differential
privacy) serve different purposes. It is important to distinguish the two from each
other. DP adds carefully calibrated noise during training so that any single record’s
changes to the model’s outputs is limited to be only within a narrow statistical band,
thus limiting what can be inferred.!®> However, DP does not remove the record’s
influence; it merely masks it, which is why Ginart et al. (2019) coined the phrase
“data removal after learning” to argue that DP alone cannot satisfy a strict erasure
order.!% Recent large language model experiments show that combining DP with
a lightweight approximate unlearning step yields stronger privacy than either
technique on its own.!% This is because the noise limits membership inference
while the extra gradient steps blunt memorized text.!%® Mattern and co-authors
(2023) reach a similar conclusion in their study of client-side voice assistants.'?’
Their research showed that a lightweight DP mask followed by a Descent-to-Delete
styled two gradient-ascent steps on the ‘forget’ set cuts membership inference
success from 46 percent to near-chance levels while adding under one percentage
point of word-error rate. !

C. Output Suppression Techniques

Output suppression methods focus on censoring what the model says (output)
rather than changing what it has learned.'” The approach is attractive because it
needs a modest amount of additional training time and does not require access to
the original data.!'” Notably, its guarantee is purely behavioral, which means it is
effective only so long as the refusal policy is not bypassed.'!!

for potential privacy leaks, and employing privacy-enhancing technologies. . . . Most existing
approximate unlearning algorithms rely on differential privacy to provide formal unlearning
guarantees.”).
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9-14, 2023), https://aclanthology.org/2023.findings-acl.719.pdf [https://perma.cc/D4T6-NXR7].

108 Id

109 Cooper et al., supra note 1, at 1-2.

10 74 at 10-11.

11 yukai Zhou et al., Don'’t Say No: Jailbreaking LLM by Suppressing Refusal, 2025 FINDINGS
ASS’N FOR COMPUTATIONAL LINGUISTICS 25224, 25224-25 (July 27-Aug. 1, 2025),
https://aclanthology.org/2025.findings-acl. 1294.pdf [https://perma.cc/Q8B6-A52N].



130 COLUM. SCI. & TECH. L. REV. [Vol. 27:114

The most influential technique in this category is reinforcement learning from
human feedback, often abbreviated RLHF.!"> In an RLHF workflow, human
annotators score model answers and then train a separate reward model on these
scores so that the system begins to prefer answers that align with policy goals (such
as refusing to reveal personal data).!'> RLHF only teaches the model to produce a
safe user-facing refusal message like “l am sorry but I cannot help with that
request.” Ouyang and colleagues found that an InstructGPT model trained with
RLHF reduced toxic or biased language compared with the original GPT-3 and was
even preferred over larger, more powerful baselines for helpfulness and
truthfulness. !

A lighter-weight form of suppression relies on carefully written prompts or
instructions that steer the model away from sensitive content at inference time.'!
A system prompt can instruct, “Do not reveal any personally identifying
information or copyrighted text,” and that single line can be deployed instantly
across thousands of replicas without retraining. !

The technique is popular for its speed, but it is vulnerable to what researchers
call prompt injection, an attack that tricks the model into ignoring the safety
instruction by embedding conflicting directions in the user prompt.'!” Because the
prompt layer has no cryptographic separation from user input, a determined
adversary can iterate through phrasing variations until the filter cracks.!'® Zou and
collaborators catalogued a library of adversarial prompts that bypassed multiple
commercial filters and forced models to reveal disallowed outputs with high
reliability. ''® The result is that prompt-based suppression may satisfy low-risk
consumer use cases yet offers little comfort where a regulated entity must show to
regulators that disclosure is impossible or improbable rather than merely
discouraged.
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38RW-EVDQ] (discussing the creation of adversarial suffixes designed to be embedded in the user
input to conflict with and circumvent the model’s primary safety instruction).
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External filtering, sometimes called a moderation layer, is a suppression
technique that treats the large model like a black box—meaning its internal
parameters and decision processes are not directly observable or modifiable—and
instead screens its inputs or outputs with a separate classifier. > OpenAl’s
Moderation Application Programming Interface (API) illustrates this design: it
receives a candidate response, assigns a probability of violating categories such as
“hate” or “sexual,” and blocks or edits the text if the score crosses a threshold.?!
Researchers have proposed introducing specialized watchdogs (code that is
responsible for making sure that certain particular parameters or standards are
obeyed) that recognize personal identifiers or toxic speech with higher recall in
order to reliably redact or replace the offending span before it reaches the end
user.!?? The strength of external filters lies in their modularity.!?* Filters can be
improved or replaced without touching the original model and can be customized
for different legal domains by inserting industry- and other data-specific filters (for
example, a medical named-entity recognizer).'?* The weakness of external filtering
is in its “whack-a-mole” character: the filters may let novel disclosure patterns slip
through or they may over-block legitimate content.!?> Importantly, the filters do not
eliminate the underlying data.!?® They merely conceal it at the interface level,
leaving the model’s internal representations unchanged. '?” Shumailov and co-
authors showed that if an attacker gains direct access to the model weights, every
data the filter hides can still be extracted, confirming that suppression controls do
not qualify as unlearning in the strict legal sense.!?® In privacy law terms,
unlearning in the strict sense requires that the data and its functional influence be
erased, not just hidden so that the model behaves as though the data were never
processed at all.!?
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D. Effectiveness vs. Practical Constraints

Each variation of unlearning methods has strengths, weaknesses, and trade-offs
in its privacy guarantees, computational cost, scalability, and robustness.

1. Strict Compliance and Effectiveness at Removing Personal Data

Of the three types of unlearning techniques discussed above, structural
unlearning provides the most convincing evidence that personal data have truly
been erased in compliance with a deletion request. When an exact method succeeds,
statistical tests cannot distinguish the unlearned model (from which the data was
removed) from one trained fresh without the record (in which the data was never
inputted). This property was formally proved for certified-removal algorithms, such
as that of Guo et al.’s closed-form update for logistic regression.'*? This level of
fidelity matters in high-stakes settings; for example, when a hospital must guarantee
that a facial-recognition system no longer recognizes a former patient or when firms
must prove more definitively to regulators that they have satisfied data subjects’
deletion requests.

Approximate retraining methodologies, on the other hand, simply narrow rather
than close the gap. For instance, Fisher-scrubbing eliminates the direct
memorization of select data so that probing the model’s weights reveals no obvious
trace of the “forgotten” data.!3! Yet influence that has diffused into hidden features
can persist and the data can still be identified after the fact. Several studies show
that membership inference attacks, which tests whether a specific record was in the
training set by querying the model and looking for over-confidence, can guess
whether a particular “forgotten” point was in the initial training set with better-than-
chance accuracy'3?>—a situation that may increase privacy compliance risks. Thus,
audits should be common if this method is deployed as means of legal compliance
or to satisfy deletion requests. Evidence from the Data Provenance Initiative, which
links fifty-four million web documents to which passages have been memorized by
state-of-the-art language models, '3 underscores why such audits matter. The study
showed extensive verbatim copying of copyrighted and personal text, exhibiting
that providers’ claims of “forgetting” are hard to verify without provenance-level
tracing. '3

or output-level suppression does not constitute data erasure under Article 17 GDPR and that true
compliance requires the model to eliminate both the data and its influence); see also Case C-131/12,
Google Spain SL v. Agencia Espafiola de Proteccion de Datos (AEPD), ECLI:EU:C:2014:317, 493
(May 13, 2014) (holding that erasure requires making personal data inaccessible and preventing
further processing); GDPR, art. 17.

130 See Guo et al., supra note 30, at 3833-34.
131 See Golatkar et al., supra note 81, at 9301-02.
132 See Thudi et al., supra note 5, at 4009-4020.

133 Shayne Longpre et al., A Large-Scale Corpus for Benchmarking Memorization in Language
Models, 6 NATURE MACH. INTEL. 975, 976-77 (Aug. 2024).

134 See id. at 975-76, 980-83.
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Finally, output suppression, by design, never touches the internal weights nor
the inputted data.!3 As such, it offers no protection if an attacker colloquially looks
“under the hood” of the model or discovers a prompt that slips past filters.!?¢ As
already mentioned, relying on output suppression methods alone to demonstrate
compliance with deletion requests is precarious. 37 Output suppression is thus
likely best used in conjunction with other and more legally-reliable unlearning
techniques.

Given the above considerations, for regulators who interpret the data subject’s
erasure rights literally, only structural or other certified methods provide a
defensible assurance that the data is gone.

2. Computational Cost and Scalability

Exact unlearning asks the provider to repeat a sizeable fraction of the original
training job, so its bills scale with model size and with the volume of deletion
requests. Privacy professionals will need to weigh the compute and financial costs
of structural unlearning against the alternative approximate unlearning and output
suppression models to find what best fits their organizations’ needs. To reiterate the
issue of scalability, remember how in Bourtoule et al.’s ImageNet experiments, a
single SISA shard retrain still occupied eight NVIDIA V100 GPUs for several
hours; a large vision model might require dozens of shards, each retrained
separately before re-aggregating their outputs.'3® Even where Yan et al. report that
ARCANE’s one-class experts cut runtime dramatically compared with full
retraining, purging a mid-size ResNet still meant training twenty-plus sub-networks
and transferring gigabytes of checkpoint data back into a central aggregator.'?’
And, these compute costs compound in production because the system must also
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CONFIDENCE COMPUTING J. at 1, 5 (June 2025) (explaining that output filtering merely masks data
and cannot constitute true deletion under data-protection law); see also Juliussen et al., supra note
129, at 7-9 (explaining that behavioral or output-level suppression does not constitute data erasure
under Article 17 GDPR and that true compliance requires the model to eliminate both the data and
its influence).

138 See Bourtoule et al., supra note 7, at 141-142 (reporting that SISA retraining on ImageNet
required multiple shard-level retrains, each using eight NVIDIA V100 GPUs for several hours,
illustrating the scalability challenges of machine unlearning).

139 See H. Yan et al., supra note 7, at 4007-11 (reporting that ARCANE’s one-class experts
substantially reduce retraining time compared with full retraining, yet unlearning still requires
training twenty-plus sub-networks and transferring checkpoint data to a central aggregator).
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track which record touched which shard, store historical checkpoints for audit
purposes, and schedule GPU time around other product priorities.'*® Consider also
how Neel et al. show that certified removal for convex models keeps runtime
bounded even after thousands of deletion requests, but they acknowledge that an
equivalent procedure for a 70-billion-parameter transformer would need petaflop-
days of compute, a workload measured in tens of thousands of dollars on current
cloud pricing.'#! These are indeed serious tradeoffs between exact unlearning and
the financial and compute realities that privacy professionals must consider. !*?

Approximate retraining, on the other hand, slashes those numbers: recall how
the Harry-Potter experiment erased copyrighted text from a seven-billion-
parameter model in roughly one GPU-hour, a reduction of five orders of magnitude
compared with the 184,000 GPU-hours spent on the original pre-training.'4 Output
suppression is cheaper still because a new system prompt or an updated moderation
classifier can be pushed to every replica within minutes.!* Unlike retraining or
structural unlearning, this process runs entirely on standard processors (CPU) rather
than high-cost graphics processors (GPUs) during model use (“inference”),
meaning it adds only minimal computational expense and delay.!* Additional GPU
resources are needed only if the filter itself relies on a separate neural network. 46
This efficiency makes output suppression attractive to companies and regulators
alike, since compliance updates can be deployed rapidly without the energy or
hardware demands of full retraining.

The hierarchy is therefore stark. At the top are structural removal methods, such
as SISA retraining and ARCANE-style modular rewrites, which deliver the highest
level of certainty that data and its influence are erased, but they are computationally

140 14 at 4007-11 (discussing ARCANE’s requirement to track sub-datasets, save and reuse
training states, and aggregate sub-model outputs, illustrating the systemic overhead that compounds
compute costs in production).

141 See Neel et al., supra note 57, at 2, 8 (explaining that certified removal methods for convex
models keep runtime bounded even after thousands of deletions, but scaling to large non-convex
models would require massive compute resources, potentially costing tens of thousands of dollars).

142 See H. Yan et al., supra note 7, at 4006 (explaining that exact unlearning introduces
substantial computational and time overhead, underscoring the trade-offs that privacy practitioners
must balance between rigorous deletion guarantees and feasible resource use).

143 See Eldan & Russinovich, supra note 71, at 2-3 (demonstrating that their “approximate
unlearning” method erased Harry Potter—related content from the 7B-parameter LLaMA?2 model in
roughly one GPU-hour, compared with 184,000 GPU-hours for pretraining).

144 Ruichen Qiu et al., 4 Survey on Unlearning in Large Language Models, ARX1V 1, 11-12
(Oct. 29 2025), https://www.arxiv.org/pdf/2510.25117 [https://perma.cc/5J6H-D67Y] (“[Inference
time unlearning] significantly reduces the computational requirements and enables broader
applicability across different scenarios.”); Sungmin Cha et al., Towards Robust and Cost-Efficient
Knowledge Unlearning for Large Language Models, ARX1V 1 (Apr. 24, 2025),
https://arxiv.org/pdf/2408.06621 [https://perma.cc/CS2Q-MCIJR].

145 Cha et al., supra note 144.

146 1q.
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expensive and scale poorly to large foundation models. ¥’ In the middle sit
approximate retraining methods, including Fisher scrubbing, targeted fine-tuning,
and amnesiac machine learning, which can reach frontier-scale systems at a
tolerable cost but leave residual traces of the deleted data.'*® At the bottom are
suppression techniques, like RLHF and external moderation filters, that scale
effortlessly across replicas and updates yet achieve only behavioral concealment,
not true deletion.!* In short, the trade-off runs from certainty to scalability: the
more complete the forgetting, the higher the computational and financial price.

3. Adversarial Robustness

From a security perspective, structural unlearning again leads the pack,
provided the protocol includes randomness or differential-privacy noise to mask
telltale weight changes.!>® When those safeguards are present, an adversary who
inspects the weights cannot tell whether any given record was ever included, which
blocks extraction attacks except with negligible probability. 3! Deterministic
schemes such as the original SISA are less robust because an attacker can compare
(or industry terms, “diff””) two model snapshots to detect who was deleted.!?

Approximate retraining has no formal guarantee, so shadow-model audits often
succeed in spotting partial deletions, and careless fine-tunes can even create new
privacy leaks by overfitting to the remaining data.!>3 Suppression methods fare
worst against a motivated adversary. Even state-of-the-art systems such as
OpenAl’s GPT-4 have proven vulnerable: researchers have reversed its RLHF
safety tuning with only a few hundred example pairs, fully restoring disallowed

147 See H. Yan et al., supra note 7, at 4006-08 (explaining that exact unlearning methods such
as ARCANE and SISA retraining offer the strongest deletion guarantees but impose substantial
computational and time overhead, making them difficult to scale to large foundation models).

148 See generally Golatkar et al., supra note 81, at 9303-04 (describing Fisher-information-
based selective forgetting as an efficient post-training method that reduces retraining cost but leaves
measurable residual information in model weights, illustrating the limits of approximate
unlearning).

149 See Ouyang et al., supra note 74, at 27733 (discussing characteristics of RLFH and its
application to aligning language models on distribution tasks).

150 See generally Guo et al., supra note 30 (masking residual via random loss perturbation to
achieve certified removal and indistinguishability); Dwork & Roth, supra note 103 (formalizing DP
noise mechanisms that render per-record inclusion undetectable).

151 See Guo et al., supra note 30, at 3837-39 (demonstrating that certified removal with loss-
perturbation or differential-privacy noise makes the post-unlearning model statistically
indistinguishable from one trained without the deleted record, preventing membership-inference or
extraction attacks except with negligible probability).

152 See Thudi et al., supra note 5, at 4016-17 (showing that deterministic unlearning methods
like SISA can be “forged” because an adversary may compare or “diff” two model checkpoints and
reconstruct which records were deleted, revealing that such schemes lack robustness against audit
or adversarial inspection).

153 Yuechun Gu et al., Auditing Approximate Machine Unlearning for Differentially Private
Models, ARX1V 1, 2 (Aug. 26, 2025), https://arxiv.org/pdf/2508.18671v1 [https://perma.cc/ZJ59-
UNLF].
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outputs.!>* Prompt-injection studies catalog entire libraries of “jailbreak” phrases
that bypass static filters, and attackers now automate the search for new exploits
using other language models.'* In short, output suppression assumes a cooperative
user, approximate retraining assumes an honest but resource-constrained adversary,
and structural removal is the only line of defense that remains credible if the model
itself leaks.

Real-world systems therefore mix and match. A provider might run a certified
unlearning protocol when a court or regulator orders deletion, then layer prompt
rules and an external moderation API on top for everyday safety and speed. The
research record shows that no single method solves all privacy problems, but
continued progress suggests that the toolbox is widening. Aligning technique to
legal requirements is the central design choice: if the goal is strict compliance,
structural or at least certified unlearning is mandatory; if the goal is rapid iteration
with acceptable risk, approximate and suppressive methods can fill the gap while
more rigorous processes run in the background.

A final consideration is the life of the data after it leaves the original model. If
that model has been distilled into a smaller clone or incorporated into downstream
products, deleting the source weights does not retract the derivative systems.!>°
Therefore, any practical unlearning policy must inventory and, if necessary,
extinguish all downstream models or issue retuning patches so those derivatives no
longer embed the contested information. Otherwise, perfect unlearning at the
source leaves a compliance gap the size of the product ecosystem.

I11. SYNTHESIZING THE REQUIREMENTS OF PRIVACY AND DATA
PROTECTION LAW

Part IIT examines how these technical mechanisms align with, yet often
challenge, requirements of existing privacy laws. Here, the Article critically
examines the conceptual and practical gaps between machine unlearning’s
technical methodologies and privacy law’s normative goals. This article considers
these gaps in relation to common core levers of privacy law, including lawful
collection, purpose limitation, data minimization, the right to correction
(rectification), and the rights to object to or withdraw consent for processing.!7 It
argues that unlearning may satisfy some legal requirements in letter but not in spirit,
particularly when latent (learned) knowledge or model outputs still compromise
individual privacy. It also argues how machine unlearning could complement or
strengthen emerging privacy remedies advocated by legal scholars and consumer

154 See Hackett et al., supra note 136, at 101-03, 105-07.
135 See Zou et al., supra note 117, at 10-12.

156 See Cooper et al., supra note 1, at 8-13 (explaining that unlearning cannot propagate to fine-
tuned, distilled, or downstream models, so deleting the source weights does not retract derivative
systems built from them).

157 See GDPR, arts. 5-7, 16.
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protection enforcers, such as model deletion and algorithmic disgorgement'®, by
providing a more granular, technically feasible mechanism for removing the
influence of unlawfully obtained or inaccurate data without requiring the
destruction of an entire model.

A. Overview of Privacy Law’s Normative Goals

Modern privacy laws rest on a set of core principles governing the collection,
use, and management of personal data.'>® At the point of collection, data must be
gathered lawfully and fairly, typically referred to as a “legitimate” legal basis for
collection'® (e.g., the data subject’s informed consent, contract necessity, or other
legally permitted ground).'®! There must also be transparency about how the data
will be used and processed.'®? Once collected, personal information should be used
only for these specific and explicitly stated purposes, and not repurposed in any
ways incompatible with those original objectives (“purpose limitation™).!% Hand-
in-hand with purpose specification and limitation is data minimization: the

158 See Tiffany C. Li, Algorithmic Destruction, 75 SMU L. REV. 479 (2022); Jevan Hutson &
Ben Winters, America's Next ‘Stop Model!’ Model Deletion, 8 GEO. L. TECH. REV. 124 (2024); see
also Daniel Wilf-Townsend, The Deletion Remedy, 103 N.C. L. REV. 1809 (2025); Achille et al.,
supra note 21; FED. TRADE COMM’N, STATEMENT OF COMMISSIONER ROHIT CHOPRA IN THE
MATTER OF EVERALBUM AND PARAVISION COMMISSION, at 1, 2 (Jan. 8, 2021), https://www.ftc.go
v/system/files/documents/public_statements/1585858/updated final chopra statement on_ everal
bum_for_circulation.pdf [https://perma.cc/67ER-EQKK] (“It will be critical for . . . regulators . . .
to pursue additional enforcement actions [beyond algorithmic disgorgement] to hold accountable . .
. technology [providers] who make false accuracy claims and engage in unfair, discriminatory
conduct.”).

159 Note that the entity or individual which collects, determines use and processing, and makes
decisions regarding or otherwise controls the personal data collected is often referred to as the “data
controller” or “controller” in alignment with the language of the GDPR. This is reflected herein. See
GDPR, art. 5.

160 See GDPR, recital 40; GDPR, recital 41.

161 See GDPR, art. 6; FED. TRADE COMM’N, supra note 158, at 2 (“Commissioners have voted
to enter into scores of settlements that address deceptive practices regarding the collection, use, and
sharing of personal data. There does not appear to be any meaningful dispute that these practices
are illegal”).

162 See Shumailov et al., supra note 19; GDPR, art. 5(1)(a); GDPR, recital 58; Rebecca Kelly
Slaughter, Algorithms and Economic Justice: A Taxonomy of Harms and a Path Forward for the
Federal Trade Commission, 23 YALE J.L. & TECH. (SPECIAL ISSUE 1), Aug. 2021, at 1, 40,
https://yjolt.org/sites/default/files/23 yale j.l. tech. special issue 1.pdf [https://perma.cc/S8CE2-
RZA3] (“The [FTC] can also use its deception authority . . . where marketers of products or services
represent that they can use machine-learning technology in unsubstantiated ways . . . .””); Joshua A.
Goland, Algorithmic Disgorgement Destruction of Artificial Intelligence Models as the FTC'’s
Newest Enforcement Tool for Bad Data, 29 RICH. J. L. & TECH. 1, 9, https://jolt.richmond.edu/file
$/2023/03/Goland-Final.pdf [https://perma.cc/2PFC-MTMJ] (“In most states, companies can use,
share, or sell any data they collect . . . without notifying . . . that they’re doing so.” (quoting Thorin
Klosowski, The State of Consumer Data Privacy Laws in the US (And Why It Matters), N.Y. TIME
S: WIRECUTTER (Sept. 6, 2021), https:/www.nytimes.com/wirecutter/blog/state-of-privacy-laws-
in-us/ [https://perma.cc/X8XN-NE7U))).

163 See GDPR, arts. 5(1)(b), 6(3)(2), 6(4); FTC Act § 5(a)(1) (“[D]eceptive acts or practices in
or affecting commerce[] are hereby declared unlawful.”).
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principle that data controllers should collect and retain only the minimum data
necessary to achieve the stated purpose rather than stockpiling personal information
indefinitely or for a yet undetermined use. !%* Privacy regimes impose storage
limitations, requiring that data not be kept longer than needed, and mandate
appropriate security safeguards against unauthorized access.'® Crucially, modern
privacy laws empower individuals with rights to control their information and its
use. Data subjects can access the data held about them, request its correction, seek
its deletion (colloquially, the “right to be forgotten”) and object to or withdraw
consent for certain processing.'®® One privacy pillar, for example, is data accuracy
and quality. This is captured in individuals’ right to correction (also called
“rectification”): if the personal data is used in the controller’s or in algorithmic
decision making, data subjects have the right to update or correct inaccuracies in
their own identifying information (for instance, an incorrect spelling of or out-of-
date name).!%’

These principles, often termed Fair Information Practice Principles (“FIPPs”),
are embedded in comprehensive frameworks worldwide (note: even where there is
no U.S. national privacy standard, e.g. The Department of Homeland Security’s
privacy policy framework).!®® For example, the EU’s General Data Protection
Regulation (GDPR) codifies lawful collection and fairness, purpose limitation, data
minimization, accuracy, storage limitation, and integrity and confidentiality in its
Article 5 principles, and it grants robust individual rights including access,
rectification, erasure, portability, and the right to object or restrict processing.'®
The GDPR further operationalizes these norms by requiring Data Protection Impact
Assessments and “privacy by design and default” measures.!” In the United States,
the California Consumer Privacy Act (CCPA) and follow-on state laws have
embraced many of these concepts by providing rights to know, delete, and opt out
of certain data uses—even if the U.S. generally has historically relied on upfront
notice and choice instead of broad purpose limitations. 7' Overall, despite
variations in scope and enforcement, global privacy laws share the normative goals

164 See Shumailov et al., supra note 19; see also GDPR, art. 5(1)(c).

165 See Shumailov et al., supra note 19; see also GDPR, art. 5(1)(e).

166 Soe Shumailov et al., supra note 19; see also GDPR, arts. 7(3), 15-17.

167 See, e.g., GDPR, arts. 5(1)(d), 16; GDPR, recital 65.

168 See, e.g., DEP’T OF HOMELAND SEC., THE FAIR INFORMATION PRACTICE PRINCIPLES (Dec.
29, 2008), https://www.dhs.gov/publication/privacy-policy-guidance-memorandum-2008-01-fair-
information-practice-principles [https://perma.cc/23KG-H43X]; DEP’T OF HOMELAND SEC.,
PrIvACY PoLICY GUIDANCE MEMORANDUM 2008-02, DHS POLICY REGARDING PRIVACY IMPACT
ASSESSMENTS (Dec. 30, 2008), https://www.dhs.gov/sites/default/files/publications/privacy polic
yguide 2008-02_0.pdf [https://perma.cc/68VQ-ZAQT].

169 See GDPR, art. 5.

170 See, e.g., GDPR, arts. 25, 35. For more on “privacy by design,” see WOODROW HARTZOG,
PRIVACY’S BLUEPRINT: THE BATTLE TO CONTROL THE DESIGN OF NEW TECHNOLOGIES (Harvard
Uni. Press, 2018).

171 See California Consumer Protection Act of 2018, CAL. C1v. CODE §§ 1798.115, 1798.105,
1798.120.
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of giving individuals control over personal data and ensuring organizations handle
that data in a limited, fair, and accountable manner.

B. Conceptual & Practical Tensions with Unlearning

Machine unlearning has emerged as a technical approach to align Al models
with the above privacy principles.'”? In theory, unlearning allowing a model to
“forget” specific personal data that should no longer be used, making it appealing
as a privacy-preserving mechanism.'”? In practice, however, unlearning techniques
face profound conceptual and practical limitations that complicate their alignment
with privacy law’s aims.

One major challenge is that removing data from a training dataset does not fully
erase its influence on a trained model.'”* Once a model has been trained, the data’s
imprint remains entangled in the model’s parameters and learned patterns.
Technical studies confirm that simply excising one person’s data after the fact is
insufficient to scrub all traces of it from a complex model’s knowledge.!”> The
model may have abstracted general latent patterns or rules from that data, especially
if the information overlaps with other training examples.!'’® Accordingly, current
unlearning methods can target the observed data (the exact records used in training)
but struggle to remove more diffuse latent knowledge that the model inferred from
those records.!”” Illustratively, a generative model might be “unlearned” on a
specific document containing a person’s private facts, yet the model could still
reproduce parts of those personal facts or answer questions about the data subject
by relying on residual patterns, synonyms, or related context learned elsewhere. As
one group of researchers put it, there is “no clear way to remove” higher-level
concepts that a model has generalized from the data; a small removal cannot
reliably make the model unknow a broader idea.!'”® In sum, a model that has
“consumed” personal data cannot simply de-digest as if it were never there; that
data, once digested into the model’s weights, is akin to an irretrievable ingredient
in a recipe.!” This reality creates tension with privacy regimes’ clear expectations

172 See, e.g., Li, supra note 158; Hutson & Winters, supra note 158, at 129 (2024); Wilf-
Townsend, The Deletion Remedy, supra note 158, at 1854; Achille et al., supra note 21, at 2.

173 Slaughter, supra note 162, at 39 (discussing algorithmic disgorgement).

174 See Rishav Chourasia & Neil Shah, Forget Unlearning: Towards True Data-Deletion in
Machine Learning, ARXIV 1 (Feb. 14, 2024), https://arxiv.org/pdf/2210.08911 [https://perma.cc/B
27N-CM2Z].

175 Shumailov et al., supra note 19, at 1; M. Chen et al., supra note 3, at 8§96.

176 K ostantinos Papadamou et al., Disturbed YouTube for Kids: Characterizing and Detecting
Inappropriate Videos Targeting Young Children, 14 PROC. INT’L AAAI CONF. ON WEB & SOC.
MEDIA 522, 523 (2020), https://ojs.aaai.org/index.php/ICWSM/article/view/7320/7174 [https://per
ma.cc/563T-ZGP8].

177 Cooper et al., supra note 1, at 2.

178 Id

179 See Ken Ziyu Liu, Machine Unlearning in 2024, STAN. A.l. LAB’Y BLOG (May 2024),
https://ai.stanford.edu/~kzliu/blog/unlearning) [https://perma.cc/DSEB-AYDE)].
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that a person’s data can be erased, including eliminating its influence, upon
request.'80

Moreover, machine unlearning does not guarantee that the model’s outputs will
never again reflect the removed information. Even after purging a data point from
the training set and adjusting the model to remove or diminish its influence, the
system might still generate content that reveals sensitive details by coincidence or
through other knowledge. Or, it might produce information that so closely
resembles the forgotten data that it risks identifying the data subject.!'®! Generative
Al models are probabilistic and combinatorial; they can “transcend the information
exactly contained in their training data” by synthesizing pieces of knowledge into
new outputs.'8? Thus, as a recent study noted, even if all instances of, for example,
a copyrighted image or a person’s documents have been successfully removed from
a model’s training corpus, it may not be “impossible for the model to generate
outputs that resemble” that image or text later on.!83 A clever user prompt can
sometimes reintroduce the ostensibly unlearned information and coax the model to
produce it.'8* In the privacy context, this means that a model might still divulge a
person’s data, or a close approximation of it, even after an unlearning procedure
purports to forget that data. One analogy is that a human “forgetting” a fact may
still recall it later when prompted differently; the knowledge is not truly gone, just
not immediately accessible. This undermines the spirit of data privacy erasure
rights: if a model can regenerate someone’s personal information despite deletion,
has it really been erased from the processing ecosystem?!83

In addition to these completeness problems, unlearning techniques encounter
practical feasibility issues that can dilute their privacy value. Fully retraining a large
Al model from scratch to forget a handful of data subjects can be computationally
prohibitive. Modern models have hundreds of billions of parameters, and retraining
them even once costs enormous time and resources. '3 Consequently, many
machine unlearning methods are instead approximate: they try to estimate and

180 See, e. g., Wilf-Townsend, supra note 158, at 1854; FED. TRADE COMM’N, DISSENTING
STATEMENT OF COMMISSIONER ROHIT CHOPRA /N RE GOOGLE LLC & YOUTUBE, LLC, at 1, 2 (Sept.
4, 2019), https://www.ftc.gov/system/files/documents/public_statements/1542957/chopra_google
youtube_dissent.pdf [https://perma.cc/BW8V-GSPS] (“I believe [that in allowing Google to keep
its algorithms] the Commission is contravening clear Congressional intent to substantially penalize
violators of children’s privacy beyond their ill-gotten gains.”); GDPR, art. 17; GDPR, recital 66
(“[T]he right to erasure should also be extended in such a way . . . to erase any links to, or copies or
replications of those personal data.”).

181 Cooper et al., supra note 1, at 13.

182 1q.

183 1d. at 2.

184 14 at 8.

185 See, e. g., GDPR, art. 17; GDPR, recital 66 (“[T]he right to erasure should also be extended
in such a way . . . to erase any links to, or copies or replications of those personal data.”).

186 Achille et al., supra note 21, at 2.
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subtract a data point’s influence on the model without rebuilding the model entirely
as a means of saving cost.!'®’

But with such approximations come uncertainties about whether the data’s
influence is truly gone. Indeed, scholars note that there is still no agreed upon metric
or test to confirm that a model has completely forgotten a given datapoint.!®® An
“unlearned” model might behave almost identically to a model that has been
retrained from scratch without the data included—the gold standard for forgetting.
Yet subtle differences could still persist between an unlearned and re-trained model;
these differences can furthermore create new privacy risks.

Beyond structural retraining, several approximate unlearning techniques aim to
reduce residual influence without rebuilding a model end-to-end.'®® One family
adds calibrated noise to parameters most sensitive to the targeted record (often
guided by the Fisher information), thereby blurring the record’s statistical footprint
while preserving overall utility. Although attractive where raw training data are
unavailable (e.g., due to retention limits), these probabilistic guarantees mean faint
traces may persist under intensive probing—useful in practice, but not a perfect
substitute for erasure.!'®® A pragmatic variant is targeted fine-tuning on “anti-
examples” that down-weight specific facts or classes, limiting collateral effects on
unrelated tasks—often critical for proportional compliance when only narrow
content must be forgotten.'”! Related amnesiac approaches prune networks to
sparse “cores” and then run brief, noise-infused updates centered on the forget set,
yielding material speed-ups over naive retraining with modest accuracy trade-
offs.!9? These methods illustrate a spectrum: greater efficiency and responsiveness,
but weaker formal assurances against leakage. Finally, differential privacy (DP)
and unlearning serve distinct roles.!”> DP constrains any single record’s marginal
influence ex ante; unlearning removes influence ex post. '°* Each alone is
incomplete for strict deletion rights, but used together they can reduce membership-
inference risk (DP) while blunting memorized content (lightweight unlearning). !

187 See Jiawei Liu et al., Efficient Machine Unlearning via Influence Approximation. ARXIV 1,
5 (July 31, 2025), https://www.arxiv.org/pdf/2507.23257 [https://perma.cc/4YLZ-TX2X].

188 See Tang et al., supra note 1, at 2649-53.

189 See, e.g., Neel et al., supra note 57 (creating a data deletion system by leveraging techniques
from convex optimization and reservoir sampling); Golatkar et al., supra note 81, at 9302 (proposing
a method of data deletion through shifting the weights of a model’s probing function); Eldan &
Russinovich, supra note 71, at 2 (introducing a novel technique for unlearning a subset of training
data without retraining from scratch); Graves et al., supra note 94 (presenting unlearning and
amnesiac unlearning as alternatives to training new models from scratch).

190 Seoe Neel et al., supra note 57; Golatkar et al., supra note 81.

191 §oe Eldan & Russinovich, supra note 71, at 8-10.

192 See Graves et al., supra note 94, at 11518, 11522.

193 See Ginart et al., supra note at 104, at 3519; see also Dwork & Roth, supra note 103, at
214-15.

194 See Ginart et al., supra note at 104, at 3519.

195 See Cooper et al., supra note 1, at 3 (arguing that differential privacy and machine
unlearning are complementary but individually insufficient to satisfy strict data-erasure rights, since
each addresses distinct aspects of privacy risk).
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For lawyers and regulators, DP should be treated as complementary to—not
interchangeable with—unlearning, with combined deployment improving practical
privacy outcomes while acknowledging residual uncertainty.

Researchers have demonstrated membership inference attacks that exploit the
before-and-after difference in a model’s predictions to detect that a particular
person’s data was in the original training set but removed in the newer version.!'%°
In fact, such an attack can, in some cases, more confidently identify that a person
was included (and then removed) than an attack on the original model alone.!’
Analogously, it is like identifying someone who has not donated DNA by their
family members who have. In other words, the act of unlearning can leave a telltale
“shadow” of the data, inadvertently flagging that individual’s data as existing in the
training set.!*® Clearly, this is a perversely counterproductive outcome for privacy.
These findings reinforce that machine unlearning, as currently conceived, often
cannot fully align with the absolute notion of erasure envisioned by privacy laws.!
If there remain lingering data imprints and leakage avenues, then a person’s data is
not entirely forgotten. This raises difficult questions about what it means to comply
with obligations like the GDPR’s “right to be forgotten” in an AI context.?%

C. Applying Machine Unlearning to Core Privacy Levers

Despite its limitations, machine unlearning is frequently discussed as a way to
bolster compliance with specific provisions of data privacy laws. It is useful to
examine how unlearning might apply to several core legal requirements and
whether it truly fulfills them or merely offers a partial workaround.?"!

1. Lawful Collection

Privacy laws require that personal data be collected and used on a lawful basis
and prohibit using data in ways that violate those conditions.?’> Suppose a dataset
was gathered without a valid legal basis (for example, scraped from a website in
violation of terms or without required consent, as was the case, for example, in

196 See M. Chen et al., supra note 3, at 896.

197 See id. at 906.

198 See, e.g., id. at 896; Shumailov et al., supra note 19, at 2.

199 See Cooper et al., supra note 1, at 2.

200 See, e.g., Cooper et al., supra note 1, at 4-6; GDPR, art. 17; GDPR, recital 66.

201 See Slaughter, supra note 162, at 58 (“The FTC’s tools [including algorithmic disgorgeme
nt] are still capable of addressing some of the problems posed by algorithms and AI . . . [b]ut
confronting the challenges of algorithmic decision-making will also require new tools and
strategies.”).

202 See, e.g., GDPR, art. 6; OFFICE OF THE PRIV. COMM’R OF CANADA, PIPEDA FAIR
INFORMATION PRINCIPLES (2025), https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-
canada/the-personal-information-protection-and-electronic-documents-act-pipeda/p_principle/
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Canada’s Joint Investigation of Clearview AI).?** Unlearning theoretically
remediates illegally obtained data from the model and stops further unlawful use of
the unlawfully collected information. Indeed, regulators and courts might demand
disgorgement of ill-gotten data from Al models as a remedy, akin to an order to
“forget” data that was unlawfully collected.?**

The critical question is whether unlearning, as a remedy, actually cures the
original harm of unlawful collection. On one hand, unlearning can be an attempt to
“rewind” the model to a state where the improper data had never been included,
thereby preventing the violator from continuing to benefit from the “fruits” of an
illegal data grab.?%5 On the other hand, if traces of that data (or its influence) remain
in the model even with the data ‘unlearned,” the model owner may still indirectly
profit from the illicit collection, undermining the deterrent purpose of data
protection rules.?%® Accordingly, providers should adopt a layered deletion stack:
“heavier” exact or certified unlearning for legally significant takedowns (creating
a defensible audit trail), paired with “lighter” front-end suppression and prompt
filters for day-to-day safety and latency needs, so the system both withstands audits
and delivers responsive user-facing “forgetting.”"’

Scholars have warned of this exact dynamic. If an Al system has already learned
from improperly obtained data, simply deleting the source data (or even naively
claiming to unlearn it) may have “no impact on an already trained model,” leaving
behind an “algorithmic shadow:” a persistent imprint of the misused data in the

203 See OFFICE OF THE PRIV. COMM’R OF CANADA, PIPEDA FINDINGS #2021-001: JOINT
INVESTIGATION OF CLEARVIEW Al, INC. (2021), https://www.priv.gc.ca/en/opc-actions-and-decisi
ons/investigations/investigations-into-businesses/202 1/pipeda-2021-001/ [https://perma.cc/XD7S-
MRALY] (last visited Nov. 24, 2025).

204 See, e.g., Cooper et al., supra note 1, at 11; Decision and Order, Everalbum, Inc., FTC
Docket No. C-4743 (2021), https://www.ftc.gov/system/files/documents/cases/1923172 - everalb
um_decision_final.pdf [https://perma.cc/4AHH3-GFVD]; Slaughter, supra note at 162, at 39.

205 See Slaughter, supra note 162, at 39; FED. TRADE COMM’N, FTC REPORT TO CONGRESS ON
PRIVACY AND SECURITY at 1, 4 (Sept. 13, 2021), https://www.ftc.gov/system/files/documents/repo
rts/ftc-report-congress-privacy-security/report _to congress_on privacy and data_security 2021.
pdf [https://perma.cc/FRJ4-7EFT]; FED. TRADE COMM’N, DISSENTING STATEMENT OF COMMISSIO
NER ROHIT CHOPRA /N RE GOOGLE LLC & YOUTUBE, LLC, supra note 180, at 6 (“[The settlement]
does not consider . . . any ill-gotten gains from data being used by Google’s other properties, the
increased value of its predictive algorithm trained by ill-gotten data (which will not be reversed),
and other considerable benefits from lawbreaking.”).

206 See Shumailov et al., supra note 19, at 2-3; FED. TRADE COMM’N, DISSENTING STATEMENT
OF COMMISSIONER ROHIT CHOPRA /N RE GOOGLE LLC & YOUTUBE, LLC, supra note 180, at 4-8.
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model’s parameters.?%® In such a scenario, the developer retains an unfair advantage
via the model’s enhanced capabilities or accuracy even after nominally purging the
offending data.? This creates a lack of incentive for companies to avoid unlawful
data collection in the first place: the benefit becomes “baked into the algorithm,”
so a company might still competitively flourish even when or if later forced to
remove or stop using the data.?!”

In summary, unlearning in this context operates as a technical workaround to
remediate past legal violations: it can support the goal of lawful collection by
preventing continued use of the specific illicit data, but it does not erase the fact
that data was illegally collected in the first place, nor can it always ensure the model
is free of the taint of that data.?!! Thus, while unlearning can be part of a compliance
strategy and may be ordered by regulators as a remedy, it functions more as a
mitigation measure than a guarantee that the law’s demand for ex ante lawful
collection of data has been fully honored.

2. Purpose Limitation & Data Minimization

The principles of purpose limitation and data minimization require that personal
data be collected and used only in line with specific, legitimate purposes and that
only the data actually needed for those purposes is collected, used, and retained.
Machine learning development often strains these principles, especially with regard
to large-scale models. Al companies tend to vacuum up enormous datasets (many
of them simply because they are available, and others because they are accessible
because the organization collected them for other purposes) and then repurpose this
data to train models for open-ended tasks. This “collect everything just in case”
approach is fundamentally at odds with privacy principles that reject the use of data
for new, incompatible purposes or the collection of more data than a given purpose
necessitates. The GDPR, for instance, requires a fresh legal basis or a showing of
compatibility with prior bases to use personal data in training a general Al model,
assuming that goes beyond the original purpose for which the data was gathered.?!?

Machine unlearning provides a possible way to reconcile Al practices with
these purpose limitation principles. If data used in training turns out to be beyond
the scope of the allowed purpose, or not actually necessary for the purpose, the
model developer could unlearn it from the model after the fact. From a developer
and business perspective, this is also often more computationally feasible and cost-

208 Li, supra note 158, at 490, 498; see also Daniel J. Solove & Woodrow Hartzog, The Great
Scrape: The Clash Between Scraping and Privacy, 113 CALIF. L. REV. 1521 (2025) (discussing the
ramifications of scraping); Shumailov et al., supra note 19, at 2.

209 See Shumailov et al., supra note 19, at 2-3; FED. TRADE COMM’N, DISSENTING STATEMENT
OF COMMISSIONER ROHIT CHOPRA IN RE GOOGLE LLC & YOUTUBE, LLC, supra note 180, at 4-8.

210 See Shumailov et al., supra note 19, at 2-3; FED. TRADE COMM’N, DISSENTING STATEMENT
OF COMMISSIONER ROHIT CHOPRA /N RE GOOGLE LLC & YOUTUBE, LLC, supra note 180, at 4-8.

211 See Shumailov et al., supra note 93, at 5.

212 GDPR, art. 5(1)(c) (“limited to what is necessary”) & (e) (“for no longer than is necessary
for the purposes”).
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effective than an absolute retraining of the model, which may encourage taking
privacy-preserving actions before remedial requirements demand so. Consider if a
language model was trained on users’ email data collected for the purpose of
providing an email service (and not for training a separate-use Al model). The
purpose limitation principle might be violated in this case. Thus, the service
provider might respond by unlearning those emails from the model once that
incompatibility is recognized. Similarly, complying with data minimization
principles might call for culling other extraneous personal data from the training
set and retroactively minimizing privacy-risking data exposure by unlearning any
other data that was not truly needed.

The question is whether such ex-post unlearning sufficiently meets the legal
standard. The essence of large Al models is purpose-agnostic or omni-purposeful
by design, meaning they are intentionally created to be capable of many tasks and
uses. This directly conflicts with the idea of collecting minimal data for a singular,
limited purpose. Privacy laws envision purpose limitation and minimization as
proactive constraints, that is, instructive on how one designs a data processing
activity. By contrast, unlearning is reactive and partial; it occurs after the model
has already ingested the data (and, notably, after the processor has likely derived
some benefit from it). In most cases, the “horse has left the barn”: the model has
generalized from the data in a way that cannot easily—or possibly—be re-
contained. Studies of generative Al have observed that it is “nearly impossible to
perform any meaningful purpose limitation (or data minimization)” once data has
trained into a broad Al model given that the model’s utility comes from mixing and
generalizing data in unpredictable ways. Unlearning a dataset that was used out-of-
purpose does not necessarily limit what the model can do with the other input data;
the model might still be capable of the same broad range of functions, perhaps just
slightly less or differently so. Likewise, removing some data points as a data
minimization step only marginally reduces the vast corpus the model holds; the
overall practice of training on maximal data remains.

To counter this problem, enforcement authorities have begun requiring
algorithmic disgorgement, that is, algorithmic destruction, in certain cases by
ordering the deletion of not only the data itself but also any models or algorithms
derived from it.2!3 For example, in the FTC’s Everalbum case, a company that built
facial recognition models on unlawfully retained user photos was required to delete
“any models or algorithms” developed with that data.?!* This kind of remedy goes
beyond technical unlearning as means of addressing any ill-gotten gains that must
be eliminated.?!>

213 Decision and Order, Everalbum, Inc., supra note 204.

214 14 at2 (defining “affected work product™), 5 (detailing order compliance requirements).

215 Fgp. TRADE COMM'N, Al Companies: Uphold Your Privacy and Confidentiality
Commitments, OFFICE OF TECHNOLOGY BLOG (Jan. 9, 2024), https://www.ftc.gov/policy/advocacy-

research/tech-at-ftc/2024/01/ai-companies-uphold-your-privacy-confidentiality-commitments
[https://perma.cc/7G3X-RZWR] (“[T]he FTC has required businesses that unlawfully obtain
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Even where ex post unlearning is necessary, ex ante minimization can
materially reduce remedial burden. Incorporating differential privacy during
training bounds per-record influence and, when coupled with lightweight
unlearning on the out-of-purpose subset, can lower re-identification and
memorization risk while aligning with purpose-limitation goals. 2! The two
safeguards are functionally distinct—DP masks influence; unlearning removes it—
but combined, they better approximate the spirit of minimization than either alone
and make subsequent removals less destabilizing.

However, blanket deletion of models can be a severe measure. If only a small
portion of a model’s training data was collected unlawfully (say one individual’s
data among billions of training points), deleting the entire model would be an
extreme and arguably disproportionate step. Unlearning offers a more tailored
alternative: rather than throwing out the proverbial barrel of wine because of one
drop of poison, developers can remove just that drop and adjust the brew. If
unlearning can reliably eliminate the influence of unlawfully obtained data, it might
serve as a legally acceptable remedy that effectively “cleans out” the data from the
model so that it is fit for lawful use moving forward. The challenge is ensuring that
the cure is effective.?!” Given the difficulty of precisely removing all traces of a
datum, one could argue unlearning is at best a partial fix that mitigates ongoing
unlawful processing but is not a true absolution of the initial violation.?!® The initial
unlawful collection or use still occurred; depending on the jurisdiction, the
controller may still face penalties for that unlawful act regardless of unlearning as
an available, albeit partial, remedy.?!”

That said, unlearning could still demonstrate a good-faith effort to honor
purpose limitation and minimization on a micro level. Consider if a user withdraws
consent for a secondary use of their data. The company might unlearn that
individual’s data from any models, thereby ceasing that incompatible use going
forward. This could align with purpose limitation requirements to cease using the
data for unconsented purposes, and could, in theory, be done relatively quickly after
the objection is raised. From a regulatory perspective, such targeted unlearning
might be deemed better than doing nothing. However, it is important to note that it
still may not fully satisfy the spirit of the law.??°

Regulatory scrutiny may remain. Even if a model is later forced to ‘forget’ data
due to purpose limitation requirements, the unlearning could be deemed an after-
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the-fact bandage on what may have already been a violation of lawful collection,
use, retention, or other privacy principles. Complicating regulators’ compliance
assessments is that a partially unlearned model might still retain insights that
originated from now-disallowed data (this is because, as discussed, the influence
can linger in latent form). In strict legal theory, continuing to use those lingering
insights could be viewed as continuing the data processing and use beyond the
allowed purpose despite any unlearning efforts made. Each of these scenarios will
differ in the facts, and it is likely that regulators will ultimately need to determine
when unlearning is or is not an appropriate remedy on a case-by-case basis. In
practice, regulators might be pragmatic: if the model no longer directly reproduces
or targets the disallowed data, and the developer can show they made substantial
efforts to remove it, then unlearning may be deemed sufficient to meet the
controller’s purpose limitation or minimization obligation.

Yet tensions remain. Unlearning is a clunky fit for privacy principles that were
meant to guide data usage from the ground up. The very nature of unlearning
highlights a need for more dynamic interpretations of those principles when it
comes to Al This may include treating unlearning as a partial compliance
mechanism while recognizing that truly purpose-limited, minimal-data Al
development would require a very different approach (perhaps using smaller, more
context-specific training datasets or other privacy-preserving training techniques
rather than mass-scraping online data and later trying to forget some pieces of it).??!

3. Rights to Correction & Erasure

Two of the most powerful individual rights in data protection law are the right
to rectification (correction of inaccurate data) and the right to erasure (deletion of
data, often called the right to be forgotten).??? Although applying these rights in the
context of machine learning models presents unique challenges, unlearning could
be a key method for complying with such requests.

First, consider the right to rectification. If a traditional database contains an
incorrect birthdate for a user, as an example, rectification means updating that field
to the true value. But if a large language model has learned an incorrect fact about
someone, there is not a single “field” that can be edited to fix the error. The incorrect
information is diffused across the model’s neural weights. One approach to
correction would be to supply and train the model outright with the truthful
information. Or, developers could fine-tune the model so that it unlearns the false
data and “relearns” (is input with) the correct data. This is essentially a combination
of unlearning and new learning, sometimes referred to as model editing.’** As
illustration, developers might design a special fine-tuning step that makes the model
forget a defamatory statement about a person and replace it with accurate
information. Because rectification-aimed unlearning that is executed only by

221 See Shumailov et al., supra note 19 at 5.
222 See GDPR arts. 16, 17.
223 See Liu, supra note 179.
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removing the tainted data and then retraining the model might not guarantee the
model’s outputs are subsequently correct, rectification in Al often requires
affirmative correction mechanisms beyond ‘just forgetting.” This currently remains
an active research area with some experimental successes in “model editing”
algorithms. In practice, model-editing pipelines often blend targeted fine-tuning
(anti-examples that demote the erroneous content) with amnesiac steps (structured
pruning + brief noise-infused updates) to damp residuals and limit collateral drift.??*
While these edits do not guarantee perfect rectification, they offer measurable,
localized corrections that better effectuate rectification than deletion alone. Legally,
this raises the question of, if a model continues to output an incorrect statement
about someone, whether the controller is in violation of the obligation to rectify.
Furthermore, if the only way to fix this issue is to retrain or significantly alter the
model, whether that might be deemed necessary for compliance. Thus, while
unlearning can assist with rectification by “wiping out” incorrect datasets (e.g.,
telling the model to forget everything it learned from a particular erroneous
document), it may need to be paired with additional training on corrected data to
truly comply with the right to rectification. Summarily, unlearning is one tool in
that toolbox, but it is not a complete solution to “correcting” a model’s knowledge.

The right to erasure (or “right to be forgotten™) is where machine unlearning
has been most directly invoked. When an individual exercises the right to erasure,
a data controller must delete that person’s personal data and cease further
processing of it, barring some exceptions. In the context of a trained Al model, this
implies the person’s data should also no longer have any effect on the model’s
outputs—essentially, the model should forget the person. As discussed above, one
brute-force way to honor such a request is to delete the model entirely since the
model is, in part, a product of that personal data.??> Deleting an entire model
because one individual wants to be forgotten is usually impractical and arguably
beyond what the law requires in most cases.??¢ Scholars and regulators have stated
that interpreting the right to be forgotten to require complete model erasure would
be “extreme” and could unduly impair the rights of others or the utility of the
model. 227 This is precisely why machine unlearning research is coming into
prominence: it is a less draconian way to selectively remove one person’s influence
on a model without either retraining from scratch or throwing out the whole
system.??® If unlearning works as intended, the model after unlearning should
perform as if it never saw the forgotten individual’s data in the first place.??’ In
other words, unlearning aims to produce a model functionally equivalent to a fresh
model trained on a dataset with that person’s data omitted.?° If achieved, this

224 See Eldan & Russinovich, supra note 71, at 1-5; see also Graves et al., supra note 94, at
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would legally satisfy both the letter and the spirit of the right to erasure: the
individual’s data is not just eliminated from the training database, but also has no
appreciable impact on the AI’s behavior going forward.?!

The efficacy of unlearning vis-a-vis erasure rights, however, must be
scrutinized. A core requirement of the right to be forgotten is that “any influence of
the data on the model disappears.”?3? Unlearning methods strive for this, but as we
have seen, complete disappearance is hard to guarantee. There is a legal gray area
here. If a model cannot absolutely guarantee that none of its outputs or internal
representations reflect a deleted individual’s data, is the controller in compliance
with an erasure request? Or is a reasonable best effort enough? Where full retraining
is infeasible, Fisher-guided “scrubbing” can probabilistically obscure a record’s
footprint by perturbing the most sensitive weights.?*3 This approach is appealing
when original training data are no longer accessible, but its probabilistic nature
complicates claims of total erasure; a sophisticated auditor may still extract faint
signals, underscoring the need for verification protocols discussed below.

Data protection authorities have not yet provided definitive guidance on how
perfect the “forgetting” must be within Al contexts. It is conceivable that regulators
may accept a standard of “reasonable effort”—e.g., the controller used state-of-the-
art unlearning methodologies and the model no longer deliberately or predictably
outputs the person’s information—even if a remote chance that the model could
reveal traces of information remains. Conversely, if it is shown that an AI model
can still produce someone’s reportedly deleted personal data (say, the person’s
exact home address as equivalent to what was included in the training data) after
an unlearning process takes place, regulators would likely deem that non-compliant
as the data clearly persists in the model. One empirical complication is that proving
a model has forgotten something is difficult (which ties into verification issues
discussed later?**). The controller might argue the model will not output “X,” but
how can the individual or a regulator be sure?

Comparing unlearning with outright model deletion highlights a trade-off
between precision and certainty. Deleting the entire model guarantees that the
individual’s data can no longer influence any outputs (full certainty of compliance)
but sacrifices all the useful knowledge gleaned from other data. Conversely,
unlearning surgically tries to remove only the forbidden data and its influence,
preserving the rest of the model’s knowledge (maximizing utility) but with less
certainty that nothing remains of the target data. If unlearning tools become highly
reliable, they could offer a way to honor erasure rights in a manner that is
proportionately compliant with the request—avoiding the “nuclear option” of
destroying a model trained on thousands of people’s data just because one person
opted out.?* However, until such methods are proven effective, organizations run
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a risk: a model that has been subject to a deletion request but not fully purged could
be a ticking time bomb of non-compliance if it ever divulges the supposedly erased
information. In the EU, non-compliance with erasure rights can lead to severe
penalties.?*® This puts pressure on Al developers to err on the side of caution. In
borderline cases, some may choose to retrain models from scratch (true deletion)
or heavily restrict what the model can do, rather than rely on unlearning alone.

In sum, unlearning is an imperfect but pragmatic tool for responding to data
deletion demands. It seeks to balance the individual’s right to be forgotten against
the practical reality that one person’s data is intertwined with a model built on many
people’s information. Whether it achieves an equivalent level of privacy protection
is case-specific, and so far, it appears that pure unlearning rarely matches the
completeness of full model deletion. Thus, from a legal perspective, unlearning
helps effectuate the rights to correction and erasure, but it may need to be
supplemented with other steps (like model edits, additional training, or usage
constraints) to fully realize those rights in practice.

4. Right to Object to or Withdraw Consent from Processing

Data privacy laws often give individuals the right to object or withdraw their
consent to certain processing of their personal data, after which the organization
must stop using their data for those purposes.?’’ In the Al training context, this
creates a scenario similar to that of the right to erasure: if someone originally
allowed their data to be used to train a model, or if the data was used under an
assumption of lawful basis, and later the data subject objects or rescinds their
consent, the data controller should cease processing of that person’s data. For a
deployed machine learning model, “ceasing processing” logically means the
person’s data should no longer affect the model’s operations. Short of turning the
model off entirely, the way to achieve this is to remove the person’s data from the
model (i.e., to unlearn it). Thus, unlearning is directly relevant as a mechanism to
honor objections or withdrawn consent. It enables a model owner to prospectively
exclude an individual’s data from further influence, without having to discard the
model in entirety that was built only in part on that data. In effect, unlearning is a
form of “update” to the model when the legal basis for using certain data has
evaporated.

While this sounds relatively straightforward, there are hurdles in practice. One
issue is timing. Laws like the GDPR require that when consent is withdrawn or an
objection is lodged, the controller must stop the processing within a reasonable
timeframe.?3® If a user opts out of a dataset today, a company cannot wait a year
before effectuating that removal (at least, not in the traditional personal data

236 See Case C-131/12, Google Spain SL v. Agencia Espafiola de Proteccion de Datos (AEPD),
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context).?* Yet retraining or unlearning in a massive model is not instantaneous. It
might be infeasible to do a fresh training run for each individual withdrawal request
in close to real-time.?*° Production ecosystems compound timing challenges:
transformer-based services stitched from multiple components and federated
settings where data never leave devices mean there is no single warehouse to
purge. 2*! Unlearning may require coordinated updates across dispersed
controllers/processors, elongating timelines and complicating proof of completion.
As such, some scholars have suggested batching unlearning requests and updating
models periodically (say, retraining every few months or on an annual cycle).?*?
For example, a service could accumulate all deletion/withdrawal requests and
incorporate them in a scheduled model update, thereby efficiently handling many
removals at once.?*?

Regulators might tolerate a brief delay if it’s reasonable under the
circumstances (considering technical difficulty), but there is an overarching legal
grey area around how quickly a model must forget someone who has revoked
permission (GDPR Art. 7, notably, gives not even a general timeframe for
compliance with withdrawn consent compliance).?** If compliance without “undue
delay” is expected, as it is with the right to erasure,?® and if this is interpreted
strictly, companies may need to develop faster unlearning pipelines or use
architectures that allow quicker updates. Otherwise, firms risk non-compliance by
virtue of technical slowness. Policymakers may eventually need to clarify
expectations here, possibly by explicitly allowing batched or periodic compliance
updates for Al models so long as they occur within a certain timeframe.?4¢

Another challenge is providing proof to the individual (or regulator) that the
data truly no longer influences the model. Essentially, it must be demonstrated that
the objection or withdrawal consent request has been honored. In a simple database,
proof is shown by evidence that the record has been deleted. In a complex model,
one might need a certificate of unlearning or other similar, validated proof.
Architectures that enable deterministic, shard-level retraining can improve
verifiability. For example, sharded-isolation (SISA)-style designs produce
predictable before/after weight snapshots for a given deletion, enabling auditors
who hold both versions to confirm that the same deletion yields the same retrained
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weights—a practical audit hook when certifying that a record’s influence has been
removed.?*’

However, researchers and commentators assert that generating a verifiable
“proof of unlearning” is not always possible with current techniques.?*® Unlearning
processes might be heuristic and not leave a clear audit trail that can be externally
validated. This complicates the right to object to or withdraw consent. The
individual might reasonably ask, “How do I know my data isn’t still somewhere in
that model?” while the state-of-the-art contemporary techniques still do not yet
offer easy answers. One could imagine tools in the future, though, that output an
unlearning report or quantitative measure of data influence removed. But for now,
trust is required. In regulatory terms, this issue of proof could be handled via
oversight provisions (e.g., requiring companies to submit models for third-party
testing if challenged, or to use reliably provable unlearning methods once they do
mature). Until then, the exercise of objection/withdrawal rights in Al contexts will
rely on the controller’s representations and the general robustness of their
unlearning compliance program.

In summary, machine unlearning is poised to become a key method by which
companies attempt to effectuate individuals’ rights to stop certain data uses, and it
is a useful mechanism that translates a legal right (“don’t use my data anymore”)
into a technical change in an Al model (“the model no longer uses your data”). It
certainly facilitates the exercise of these rights by offering alternatives to shutting
down an entire model that was partly trained on objectors’ data. However,
unlearning also complicates these rights because it introduces uncertainty into what
it means to stop “using” data in an Al setting. If the model cannot be perfectly
purged or if verifying data deletion is impossible, then asserting the right to
withdraw consent may not guarantee the outcome that an individual expects. This
is another illustration of how existing privacy norms strain under the weight of AI’s
complexities: the rights remain the same on paper but fulfilling them requires new
technical and possibly legal innovations.

D. Unlearning as Complement or Enhancement to Existing Remedies

Given the above tensions, one might ask if machine unlearning can be a
replacement for traditional privacy remedies or if it should simply be a complement
to them. The scholarly and practical consensus is that unlearning is best viewed as
a useful augment to existing data protection measures and not a panacea on its
own.?* Put otherwise, unlearning can and should be used to enhance privacy
compliance and accountability in the Al context, but it optimally works in tandem
with other strategies and with its limitations acknowledged. Operationally,

247 See Bourtoule et al., supra note 7, at 142; Thudi et al., supra note 5, at 4009 (“Reproducing
the alleged computation is synonymous to showing its plausibility.”); See also Nguyen et al., supra
note 40, at 3 (“[A] verification (or audit) is needed to prove that the model actually forgot the
requested data and that there are no information leaks.”).

248 iy, supra note 179, “Section 3: Evaluating unlearning.”

249 Cooper et al., supra note 1, at 11.
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unlearning could be implemented as a layered stack: (i) exact/certified forgetting
for legally significant takedowns; (ii) approximate edits (targeted fine-tuning,
amnesiac pruning, Fisher-style perturbations) to localize repair; (iii) front-end
output suppression to prevent resurfacing; and (iv) DP-aware training to cap per-
record influence ex ante.?® This stack offers granularity and proportionality,
preserving lawful utility while addressing specific defects.

On the remedial front, compare unlearning to stricter remedies such as
algorithmic disgorgement and full model deletion, which are blunt but decisive
remedies used to address data misuse. Algorithmic disgorgement (as ordered by the
FTC In the Matter of Everalbum, Inc.>>') requires a company to entirely delete
models derived from unlawful data, ensuring that ill-gotten gains or benefit is not
retained.?*? By destroying the learned knowledge entirely, the intended privacy
protection-through-remedy is achieved. Unlearning, by contrast, attempts a more
surgical strike: remove just the pieces of learned knowledge that are problematic
(e.g., derived from a specific person’s data) while keeping the rest of the model
intact.>

The strength of unlearning lies in this precision. It is far more targeted than
retraining from scratch or deleting whole models. Studies have shown that, as such,
certain unlearning techniques or model designs can forget a data point at a tiny
fraction of the computational cost of total retraining.>>* For example, one method
partitioned a model into components such that a data deletion affected only a small
subset, achieving forgetting with about 0.3% of the training cost of rebuilding the
entire model.?*® This efficiency makes unlearning a practical tool for ongoing
compliance: a company can respond to removal requests or rectify its training set
without incurring the massive expense (and downtime) of full model
redevelopment. In that sense, unlearning complements other legal enforcement
methods by providing a means to carry out corrective orders that would otherwise
be onerous. Unlearning procedures give companies a way to comply with
regulators’ demands without losing the benefit of other (lawfully retained) data.
Unlearning also offers a measure of proportionality: it can be scaled to the scope of
the violation (forget one user, not punish all users).

Unlearning’s targeted nature can also enhance privacy-by-design. If developers
anticipate the need to remove data, they can design models in modular ways or keep
track of data influence, making future unlearning easier and more exact. This could
be seen as an improvement on traditional data governance. Instead of treating
trained models as ‘black boxes’ that are forever and mysteriously influenced by
whatever is put in, developers could better maintain the ability to edit and purify
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models more precisely and as needed for compliance. Additionally, unlearning
methods can be combined with other privacy-enhancing techniques. For instance,
some research suggests using differential privacy during training to limit each data
point’s influence, which in turn makes any single-point removal less disruptive and
more provably effective. ¢ In that way, unlearning (removing data) plus
differential privacy (adding noise to mask a data’s impact) together could yield Al
models where regulators and users can be more confident that no individual’s data
is embedded in an irremovable way. Unlearning can also work alongside
contractual and organizational measures, €.g., a company might promise in its
privacy policy to use unlearning if a user exercises their rights, thus adding an extra
layer of privacy accountability (failure to do so could be deemed a breach of
contract or deceptive trade practice).

A related privacy-preserving strategy is output suppression, which constrains
what the model says rather than altering what it knows. Techniques such as
reinforcement learning from human feedback (RLHF) train a reward model to favor
compliant or refusal-style answers (for instance, declining to reveal personal data)
without changing the underlying parameters that still contain that data.?>’” While
attractive because it needs modest retraining and no access to the original corpus,
RLHF provides only a behavioral guarantee: it curbs disclosure so long as the
refusal policy is not circumvented. Lawyers should understand that the model’s
weights (and thus the information they encode) remain intact; RLHF merely teaches
the system to respond, “I’m sorry, but I can’t help with that request,” rather than
truly to forget. Hence, RLHF mitigates exposure risk but does not satisfy deletion
or erasure rights in the strict legal sense.

Beyond in-model alignment, firms often deploy external filtering layers, stand-
alone classifiers that screen prompts or outputs for prohibited content before
delivery to end users.?>® OpenAI’s Moderation API exemplifies this architecture:
the filter flags responses with high probabilities of containing personal identifiers
or other sensitive categories and then blocks or edits them. These modular
“watchdogs” can be improved or domain-tuned (e.g., medical-record filters)
without retraining the base model, a practical advantage for sector-specific
compliance.?’ Yet the approach remains whack-a-mole: filters can miss novel
disclosure patterns or over-block lawful speech, and they leave the underlying data
untouched. As Shumailov et al. (2024) demonstrate, a determined attacker with
weight-level access can still extract the hidden information. ?®° Accordingly,
external filters and moderation APIs are risk-mitigation—not deletion—tools; they
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should accompany, not substitute for, genuine unlearning when legal erasure is
required.

Together, RLHF and external filtering illustrate the behavioral flank of privacy
protection: they manage outputs but not memory, underscoring why subsequent
enforcement frameworks must distinguish suppression from unlearning.

As much as unlearning improves flexibility, it has notable weaknesses and
should not be solely relied upon for compliant privacy protection. A key weakness
of unlearning is the incompleteness of data removal as latent traces can persist. In
scenarios where absolute assurance is required (for example, removal of illicit
contraband data like child abuse images), unlearning alone could be deemed too
uncertain, and a combination of model inspection, output monitoring, and perhaps
partial architecture changes could be needed to really eliminate the influence.?®!
Another weakness is its technical complexity and potential model degradation.
Repeatedly unlearning data points from a model could lead to accumulated error or
reduced performance, especially if the unlearning methods are not exact. A model
might become less accurate or exhibit anomalies after many deletion operations,
which might conflict with other legal obligations like fairness or accuracy in
automated decision-making. In extreme cases, if a huge number of removals are
required, it may actually be simpler and more reliable to retrain from scratch as
unlearning is not infinitely scalable. Thus, unlearning complements, but does not
fully replace, the fallback option of full retraining when needed.

Realistically, some large Al models, like today’s giant GPT-style models, are
already so complex that current unlearning techniques struggle to handle them at
scale. The feasibility of unlearning in models with billions of intertwined data
points is still being tested. One piece of scholarship on this topic bluntly noted that
these models contain “an arbitrarily high number of data dimensions and statistical
correlations,” making it very difficult to determine the specific effect of any given
training example on the model.?%? In such cases, the only sure way to remove a data
point’s effect might be to rebuild the model without it included—precisely the
costly process unlearning is meant to avoid. Future research may invent either new
methods or architectures that are more traceable, but until then, unlearning for the
largest models may be more theoretical than practical. In short, unlearning is a
promising technique to enhance existing privacy remedies. It can make compliance
more attainable and less damaging to useful Al functionality, but it is not a magic
wand. Policymakers and practitioners increasingly recognize that unlearning
methods are imperfect and may serve as only one approach of many in a privacy
protection toolkit.?%3 It is best deployed as part of a layered strategy: for instance,
use privacy-by-design to minimize data usage up front, employ unlearning to
handle individual deletions and corrections, and retain the option of stronger

261 Cooper et al., supra note 1, at 2.
262 Achille et al., supra note 21, at 1.
263 Cooper et al., supra note 1, at 3.



156 COLUM. SCI. & TECH. L. REV. [Vol. 27:114

measures (like model deletion or output gating) if sensitive residuals still pose a
risk.

Machine unlearning sits at the intriguing intersection of cutting-edge Al
engineering and fundamental principles of privacy law. This section has explored
the central tension: while unlearning techniques aim to satisfy core legal
requirements on paper—allowing Al models to forget unlawful data, limit
processing to intended purposes, and honor individual rights like erasure and
objection—in practice, these techniques often fall short of the law’s expectations
for complete privacy protection. Residual traces of “forgotten” data in model
parameters and the possibility of reconstructive outputs mean that a model may
continue to leak personal information even after unlearning has occurred.?%* Thus,
an organization might technically comply with an erasure request by running an
unlearning algorithm, yet the individual’s privacy could still be compromised if the
model retains an algorithmic shadow of the data. This gap between formal
compliance and actual risk reveals a need for additional safeguards. Moving
forward, both policy and technical developments will be crucial to bridge this gap.
Regulators may need to set clearer standards for what counts as ‘“adequate”
unlearning and develop oversight mechanisms to ensure genuine data removal,
such as requiring proof or certifications of the unlearning process.?® On the
technical side, researchers are exploring hybrid approaches—from differential
privacy guarantees to more transparent model architectures—to reinforce
unlearning and prevent the emergence of new privacy vulnerabilities when models
are updated.?%® Ultimately, machine unlearning should be seen not as a silver-bullet
solution but as one emerging tool that, combined with robust privacy governance
and possibly new legal norms, can help uphold individuals’ rights in the age of
AI.267

The next part of this Article will build on these insights. It considers how law
and policy might adapt to support the effective deployment of unlearning
techniques and what alternative or complementary measures might be necessary to
truly “forget” personal data in machine learning contexts.

IV. OPERATIONALIZING MACHINE UNLEARNING FOR THE ENFORCEMENT OF
PRIVACY AND DATA PROTECTION LAW

Part IV introduces a framework for operationalizing machine unlearning in
privacy law’s enforcement, with unlearning proposed as one component of a
broader privacy intervention spectrum. It considers a range of measures specifically
aligned with the enforcement and rulemaking authority of the Federal Trade
Commission under Article 5 of the FTC Act, Department of Justice Consumer
Protection Division’s policy and litigation stratagem, enumerated powers of states
Attorneys General, and emerging global standards. For example, it proposes

264 Cooper et al., supra note 1, at 2; M. Chen et al., supra note 3, at 896.
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preventive measures which may be included in agencies’ published industry
guidelines, such as incorporating privacy-preserving techniques into training
models (e.g., differential privacy), as well as reactive measures like output
suppression model deletion and algorithmic disgorgement to be used in settlements
and litigation remedies. The framework explores when, where and how such
approaches could be operationalized despite mismatches between technicalities in
unlearning and broader privacy concepts. It does so by addressing practical
concerns such as computational cost, scalability, and tensions between efficiency
and accuracy in its recommendations. This Part emphasizes that privacy
governance for generative Al must be multifaceted and dynamic, reflect the diverse
harms and risks posed by these systems, and avoid reinforcing “compliance-by-
design” approaches that prioritizes technical fixes over substantive accountability.
We treat unlearning not as a single tool but as a graduated stack—heavyweight
certified forgetting for legally dispositive removals and lightweight suppression for
everyday safety?®—so agencies can calibrate remedies to risk and feasibility.

U.S. privacy enforcement involves multiple actors, namely the Federal Trade
Commission (FTC) under Section 5 of the FTC Act, the Department of Justice
(DOJ) Consumer Protection Branch, and state Attorneys General enforcing state
consumer protection and privacy statutes.?®® Each can pursue companies for
privacy-invasive practices, including misuse and deceptive use of personal data in
Al training.?’° For example, the FTC has ordered deletion of algorithms developed
with ill-gotten data (so-called “algorithmic disgorgement”) in settlements like /n
the Matter of Everalbum, where a photo app had to delete facial recognition models
built on users’ images.?’! The DOJ, often in tandem with the FTC, has enforced
data privacy laws like COPPA in court, as in United States v. Kurbo Inc. (requiring
deletion of models trained on children’s data).?’? State AGs likewise bring actions
under state law for data misuse, sometimes leading to injunctions or fines. Globally,
data protection regulators enforce analogues to these rights under regimes such as
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the EU’s GDPR, which empowers authorities to order deletion of unlawfully
processed personal data and even restrict model use derived from such data. Indeed,
the GDPR’s right to erasure?’® and similar laws (California’s CCPA, Canada’s
PIPEDA, etc.) have legally solidified this right to be forgotten in the machine
learning context.?’*

Because privacy harms from Al are multifaceted, regulators require a range of
interventions beyond machine unlearning alone. Technical unlearning—i.e.,
removing personal data from a model—is just one remedial tool. Enforcement
bodies also emphasize broader measures: penalties to deter misconduct, mandates
for better data governance, and ongoing oversight of Al systems. Purely technical
fixes cannot address all privacy risks. For instance, deleting a piece of training data
may not fully erase its “algorithmic shadow” —the persistent imprint that data
leaves on a model’s behavior. 27> Privacy regulators therefore blend ex ante
guidance with ex post remedies. They recognize that robust privacy protection
requires preventive steps (to avoid problematic data use in the first place) and
multiple remedial options (to fully redress harms), rather than over-reliance on any
single technique like unlearning. The next sections examine how agencies
operationalize this mix, situating machine unlearning within a broader enforcement
toolkit alongside comparative insights from the GDPR.

A. Preventive Measures in Published Guidelines

Regulators increasingly use published guidelines and promulgated rules to urge
organizations to adopt privacy-preserving practices before problems arise.?’® This
can reduce the burden on later unlearning or deletions in Al contexts. The FTC’s
business guidance and consent orders often require the implementation of
comprehensive data governance programs, which implicitly further these goals by
mandating internal review and deletion of data that should not be retained (thereby
preventing it from ever influencing a model).?”” Global regulators echo these
expectations; for instance, the GDPR obligates controllers to implement data
protection by design and by default, which includes data minimization and the
ability to purge personal data on request—effectively front-loading the capacity to
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remove data and its downstream effects.?’® In general, key preventive measures
include data minimization (collecting and retaining only what is necessary) and
privacy by design principles baked into model development. For example, agencies
may recommend rigorous dataset vetting to exclude data that cannot be lawfully
used or that might trigger removal requests down the line. In practice, this means
robust dataset audits—reviewing training data for compliance (consent, legality,
relevance) and documenting provenance—as a standard compliance step. But by
catching problematic data early, companies can avoid having to “unlearn” it later
under regulatory pressure. Guidance should also encourage “ready-to-forget”
architectures. Expert-mixture designs (ARCANE-style) segment learning into
narrow specialists that can be retrained surgically when a deletion request targets a
confined topic, while SISA-like sharding produces deterministic retrains that
double as verification mechanisms.?” Both approaches shrink blast radius and
increase auditability, aligning ex ante design with foreseeable erasure duties.

Technical literature reinforces that prevention can ease remedial burdens.
Researchers have proposed designing ML models from the start to accommodate
future deletion. One approach is compartmentalization of training data: splitting
data into disjoint shards with separate sub-models, so that if a particular subset must
be removed, only that shard’s sub-model needs retraining. ?%° This proactive
“sharding” strategy, recommended in computer science research on machine
unlearning, can dramatically cut the cost of later deletions—one study showed
forgetting a data shard could take as little as 0.3% of the time of full retraining,
albeit with a slight accuracy trade-off.?8! Agencies like NIST have highlighted such
techniques in their Al risk management frameworks, and we can imagine guidelines
encouraging firms to adopt “ready-to-forget” architectures. Other preventive tools
include embedding differential privacy during training, which injects noise to
statistically obscure individual data contributions. By limiting each data point’s
influence on the model, differential privacy can ensure that removing any single
individual’s data has negligible impact—effectively aligning with the principle of
minimization and making compliance with deletion requests more manageable.???
Regulators may cite these techniques in guidance documents or future rules as best
practices (especially for high-risk Al uses) because they reduce reliance on after-
the-fact unlearning. In sum, through guidelines and soft law, enforcement bodies
promote upstream privacy safeguards—minimizing sensitive data use, securing
opt-in consent for training data, using privacy-preserving model methods—to
lessen the need for drastic remedies later. Prevention, in the form of sound data
hygiene and privacy engineering, serves as the first line of defense.
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B. Reactive Remedies and Model-Based Obligations

When preventive measures fail or violations occur, regulators turn to reactive
remedies. Increasingly, these remedies focus not just on deleting raw data, but on
the models and algorithms that have absorbed that data. In the context of Al
enforcement, this has given rise to novel obligations at the model level—
effectively compelling organizations to unlearn illicit data and its effects. We
outline three categories of such reactive interventions: (1) model deletion or
algorithmic disgorgement; (2) targeted output suppression and selective unlearning;
and (3) operationalizing these remedies in enforcement actions.

1. Model Deletion & Algorithmic Disgorgement

Model deletion, also termed algorithmic disgorgement or algorithmic
destruction, is the strongest form of machine unlearning remedy, requiring a
company to eliminate not only the offending data but also any Al models or
algorithms trained on that data.?®? Recent scholarship frames this as an essential
new enforcement tool to address the “algorithmic shadow” problem—the idea that
once personal data has been ingested by an Al, simply deleting the source data is
insufficient, because the model retains a latent imprint of that data.?8* Tiffany Li
(2022) introduced algorithmic destruction as a privacy remedy precisely to tackle
these residual harms, arguing that regulators must sometimes force the deletion or
retraining of models built on misused personal information.?® This remedy has
already started to appear in enforcement: the FTC’s orders in Everalbum (2021)
and related cases required the company to delete “any models or algorithms”
developed with improperly obtained data.?%¢ Scholars Jevan Hutson and Ben
Winters (2024) hail such model deletion as a way to meaningfully sanction
companies whose Al products are tainted by unlawful data collection, ensuring that
businesses causing algorithmic harm face deletion—effectively destruction—of
significant portions of their AI/ML work products including trained models and
datasets.?®” Proponents note this remedy can improve privacy and deter misconduct
by stripping wrongdoers of any unfair advantage gained from misused data.?®

However, scholars also urge caution and nuance. Daniel Wilf-Townsend (2024)
observes that in its current form, algorithmic disgorgement can be a grossly
disproportionate penalty if applied inflexibly.?®® For instance, deleting an entire
large-scale model (representing millions in research and development) because a
tiny fraction of training data was problematic might overshoot, causing undue
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collateral damage.?*® Wilf-Townsend argues for a balanced doctrine that considers
factors like the degree of a defendant’s culpability, how much the tainted data
contributed to the model, and the availability of less drastic alternatives.?! In other
words, model deletion should be applied proportionately. Current scholarship thus
frames algorithmic disgorgement as a powerful yet blunt tool, one that can be
refined by “surgical” unlearning techniques. Machine unlearning research offers
ways to selectively remove a data point’s influence without scrapping the entire
model. By incorporating such techniques, regulators and courts could require
partial model purging in lieu of total deletion, achieving compliance while
mitigating the remedy’s severity. Indeed, Achille et al. (2024) highlight methods to
pinpoint and eliminate a particular dataset’s influence on a model (sometimes
termed selective forgetting). > These innovations suggest that model-based
remedies need not be all-or-nothing—unlearning can complement disgorgement by
allowing more granular deletions (e.g. re-training only certain layers or
components). In sum, model deletion is emerging as a key legal tool for Al
accountability, and machine unlearning techniques stand to both bolster its
effectiveness and temper its overbreadth.

2. Targeted Output Suppression & “Selective Unlearning”

Not all post-harm interventions require retraining or destroying a model;
regulators might also seek output-focused remedies. These involve directing an Al
system to stop producing certain content derived from tainted data—essentially a
form of selective unlearning at the output level. If a generative model was
improperly trained on a person’s personal information or a copyrighted work, for
example, authorities could mandate measures to prevent the model from ever
generating that specific personal data or work again. This can be achieved through
targeted output suppression techniques. One approach is deploying filters or
wrappers around the model. As recent research notes, developers can implement
system-level filters that intercept and block disallowed content either in the input
(user prompt) or output stage.?®® For instance, a regulator might require a large
language model to have an integrated filter that recognizes and omits a particular
data subject’s name or other personal facts in its responses. Such filters are already
used to enforce content policies (blocking hate speech, certain biometrics, etc.), and
they could be repurposed as privacy remedies—ensuring that “certain undesirable
generations” never reach end-users.>**

Where full retraining is unwarranted, agencies can require targeted fine-tuning
to down-weight disallowed content and, where training data are unavailable,
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Fisher-guided perturbations to attenuate residual signal.?®> These selective edits
operationalize proportionality—narrow fixes for narrow harms—while consent
orders can pair them with output filters to prevent resurfacing.

Another tactic is partial model adjustment without full retraining. This could
involve fine-tuning the model on a clean dataset (with the problematic data
removed) just enough to blunt its capacity to reproduce the offending information.
Sometimes called selective retraining, this method aims to forget a narrow piece of
knowledge. In computer vision and natural language processing (NLP) research,
algorithms for selective forgetting can remove or alter a model’s memory of
specific classes or entries.??® Regulators could, for example, require a company to
run a targeted unlearning procedure so that a facial recognition Al “unlearns” a
particular person’s face embeddings, rather than deleting the entire model. This
kind of remedy falls between pure model deletion and doing nothing—it surgically
remedies the issue by suppressing the illicit output. We might analogize it to a recall
or patch: the model remains mostly intact but is patched not to output or utilize the
specific data at issue.

Regulators can also require behavioral suppression measures such as RLHF or
external moderation filters when full retraining is disproportionate.?®” RLHF aligns
model behavior with policy norms (e.g., refusing to output personal data), while
moderation APIs act as independent classifiers that block prohibited material.?*8
Both improve consumer-facing safety but do not erase underlying representations;
consequently, decrees relying on them should make clear that such measures satisfy
output-control obligations, not formal deletion duties. A well-crafted order might
pair RLHF or filtering with documentation of residual-risk testing to ensure that
suppression does not masquerade as compliance.

Agencies and courts are beginning to contemplate such selective remedies. For
instance, in settlements involving misuse of data for Al training, the FTC has
mandated companies to abstain from using certain outputs or functionalities until
compliance steps are taken (effectively shutting off parts of a system) in addition
to deletion of associated models.?®® Looking ahead, an FTC consent decree or a
state AG injunction could foreseeably specify that a generative Al service must
filter out any output containing a complainant’s personal information, or that a
company must retrain portions of its model to eliminate a forbidden pattern (e.g. a
specific copyrighted artwork style). These measures amount to “selective
unlearning” obligations—more granular than wholesale model destruction, and

295 Neel et al., supra note 57, at 933; Golatkar et al., supra note 81, at 9301; Eldan &
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often more technically feasible in the short term. They do, however, require
technical capabilities on the part of the company. A concern is that even this
approach has limits: as researchers have pointed out, to reliably filter out a piece of
information (say, all occurrences of “Spiderman” in a model’s output), the system
itself needs to know about “Spiderman” in order to catch it.3%° Thus, paradoxically,
some information might remain embedded so the filter can function. Despite such
nuances, output suppression and selective unlearning tools provide regulators with
flexible options. These remedies focus on preventing harm (e.g., stopping a
privacy-violating disclosure by the AI) without necessarily demanding the
expensive step of rebuilding the model from scratch.

3. Operationalizing These Remedies

Translating the above remedies into enforceable orders requires careful crafting
and monitoring. U.S. regulators have already included model-focused obligations
in consent decrees, signaling how such remedies are operationalized. A prime
example is the FTC’s order in Everalbum, which not only compelled deletion of
infringing algorithms but also imposed ongoing obligations to ensure
compliance.?’! The company had to delete affected models and document that
deletion, subject to FTC oversight. Similarly, in United States v. Kurbo, a DOJ
action for a COPPA violation, the settlement mandated destruction of any models
or training data derived from children’s personal information and required regular
reporting of compliance.3?> These cases illustrate a model for injunctive relief:
regulators don’t simply trust companies to unlearn on their own. Instead, they
include provisions for verification, such as requiring companies to maintain records
of what was deleted or to train staff in data removal protocols. Orders should
specify verifiable procedures (e.g., shard-deterministic retrains (SISA-style)) that
yield reproducible before/after weights, logged alongside unlearning manifests and
output-filter rule sets.33 This layered obligation (heavy model edits + light front-
end suppression) provides both ex ante documentation and ex post monitoring
suitable for third-party assessment.3%*

Future consent decrees may go further. We could see orders that require
companies to build the capability for data unlearning on request. A settlement might
stipulate, as illustration, that if any consumer exercises a deletion right, the
company must not only erase the raw data but also update or retrain relevant models
to remove the data’s influence within thirty days. This essentially operationalizes
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machine unlearning as an ongoing compliance duty. Regulators might also require
dataset oversight committees or external audits to periodically review whether a
model’s training data includes any data that should have been purged (for legal or
policy reasons). If such data is found, the order could trigger a mandatory partial
retraining or unlearning process. In effect, these types of decrees function as live
governance tools, keeping the company on a short leash regarding its Al training
data.

There are also examples of tailored injunctive relief targeting outputs. A court
or agency order could, for example, enjoin a company from deploying an Al model
until it certifies that personal data of the complaining consumers has been scrubbed
from the model, or that the model will no longer produce specified outputs (with
penalties if prohibited outputs appear). One real-world parallel is in intellectual
property: in the Getty Images v. Stability Al copyright dispute, observers have
speculated that a settlement might require Stability Al to remove or disable the
generation of certain copyrighted images from its Stable Diffusion model.?% While
largely hypothetical, it shows how selective unlearning has the opportunity to be
compelled through legal agreement: the model might remain, but with enforced
blind spots.

Finally, regulators must account for the afterlife of data once a model has been
cloned, distilled, or embedded in downstream products. Deleting the source weights
alone does not neutralize derivatives that inherited the tainted information. Recent
enforcement confirms this expectation: in Everalbum the FTC required deletion not
only of unlawfully retained photos but also of any face-recognition models trained
on them.?% Accordingly, any unlearning or deletion order should extend to progeny
models and require firms to inventory, patch, or re-train all derivatives so that
contested data are fully excised from the product ecosystem. Otherwise, perfect
forgetting at the source leaves a compliance gap as wide as the downstream
marketplace. These derivative-model obligations illustrate why enforcement
frameworks must treat unlearning as a continuing duty, not a one-time event.

Overall, operationalizing unlearning remedies means writing enforcement
orders with clear, measurable requirements (delete these files, retrain this model
segment, filter these outputs) and follow-up mechanisms (compliance reports,
third-party assessments). The trend in U.S. enforcement suggests an increasing
comfort with these novel provisions. By embedding technical obligations into legal
orders, regulators can ensure that machine unlearning moves from theory to
practice in protecting consumers.

305 Generative Al in the Courts: Getty Images v. Stability AI, PENNINGTONS MANCHES COOPER
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C. Practical Tensions & Limitations

Even as machine unlearning and related remedies become more common,
several practical challenges temper their use. Policymakers and scholars have
identified the following tensions in making these remedies effective and
proportionate:

1. Computational Cost & Scalability

One major concern is the feasibility of repeatedly unlearning or retraining
models at scale. Modern Al models are expensive and time-consuming to train;
demanding frequent retraining or deletion in response to every data removal request
can be technically onerous. Alessandro Achille et al. note that with today’s massive
models, any defect in the training corpus “cannot be trivially remedied by retraining
the model from scratch™3%—it is just too costly and slow. While research into more
efficient unlearning methodologies (like compartmentalization) can reduce
overhead, there is still a non-trivial burden.?’® Even “exact” sharded retrains can be
hardware-intensive, with large-scale ImageNet-class experiments historically
requiring multiple V100-class GPUs per shard; language-model baselines in the
single-digit-billion parameter range can consume hundreds of thousands of GPU-
hours for initial training, placing exact re-trains in the same order of magnitude.3%
Expert-mixture designs mitigate this by retraining only the affected expert,
illustrating why agencies should permit architectural tailoring where consistent
with the remedy’s aims.

Regulators thus face a scalability issue in ordering remedies: it’s one thing to
require a small startup to rebuild a model, but ordering a tech giant to retrain a
multi-billion-parameter model on demand might be impractical.?!° If compliance
with deletion rights routinely forces companies to incur huge computational costs,
they may resist or lobby against such requirements. This tension suggests
unlearning will need to be targeted (used when truly necessary) and complemented
by those preventive measures that minimize how often full retraining is needed.

2. Technical-Legal Mismatch

Gaps commonly exist between what legal directives envision and what
technical remedies actually achieve. This is true also of unlearning. The law’s
requirement to delete personal data “in its entirety” is conceptually straightforward,
but a trained model does not operate like a database; it generalizes from data
clusters, causing traces of granular data to persist in multifaceted, indirect ways.
Scholars describe how a model can retain a latent imprint of data even after an
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unlearning procedure. Tiffany Li’s description of the “algorithmic shadow”
captures this: the “persistent imprint of training data” is such that simply deleting
data (or even performing the intended unlearning process) might not fully
extinguish the data’s influence from the model. 3!' Indeed, a 2021 study
demonstrated that machine unlearning can inadvertently create new privacy risks.
By comparing an original model and an unlearned model, an attacker could infer
whether a given data point had been in the initial training set, sometimes
determining this more accurately than could have been figured from that first set
alone—an ironic outcome.?!? Such findings where unlearning in letter still has left
detectable knowledge in fact underscore that unlearning is not a magic wand.
Regulators must understand the limitations: an order to “forget” data may need to
be paired with validations that the model truly can no longer output or rely on that
data. Technical experts may need to be involved in enforcement to bridge the
understanding. Otherwise, a company might claim compliance by running a route
unlearning algorithm, despite that the model could still indirectly reveal the
“forgotten” information. This mismatch between legal expectation and technical
reality is a call for careful oversight and possibly new standards (e.g., certification
of unlearning efficacy).

3. Potential Overreach

Finally, there is a risk of overreliance on technical remedies in lieu of deeper
accountability. If regulators lean too heavily on “compliance-by-design” mandates
(e.g., requiring every Al system to have a built-in unlearning switch), firms might
treat this as a box-checking exercise, focusing on the technical fix rather than the
root cause of the privacy violation. Moreover, emphasizing post-hoc unlearning
might divert attention from primary compliance obligations like obtaining valid
consent, ensuring data quality, and preventing breaches in the first place. In other
words, robust privacy governance might be overshadowed if organizations think
“we can always unlearn later.”

Similarly, mandating behavioral fixes like RLHF or external filtering without
deeper data governance may create the illusion of compliance; these tools mask,
but do not remove, the underlying data and therefore cannot alone discharge
statutory erasure obligations.

Overzealous use of model deletion could also chill innovation: as Wilf-
Townsend cautions, an uncalibrated deletion remedy can be disproportionate and
unjust, especially if applied without regard to harm caused by the deletion.3!3
Developers might fear that any minor data mistake could nuke an entire project.3'*
Overreach in mandating unlearning could also raise practical enforcement
dilemmas: for example, ordering deletion of a hugely popular algorithm (imagine
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forcing a public-facing Al service offline) could spark public backlash or have
unintended societal costs.?!3

These limitations suggest a need for moderation and clear guidelines on when
and which machine unlearning remedies are appropriate in a given remediation.
Until then, regulators must guard against these complexities by using unlearning as
part of a larger compliance toolkit, not a get-out-of-jail card for sloppy data
practices. The goal at the privacy level is unchanged: to encourage accountability
at every stage—from data collection to model deployment—rather than relying on
after-the-fact purges.

D. Proposed Framework

To integrate machine unlearning into privacy enforcement effectively, we
propose a flexible framework that spans the lifecycle of regulatory intervention.
This framework treats unlearning as one tool among many to be deployed
thoughtfully in investigations, settlements, and governance, and in coordination
with global norms.

1. Investigations & Enforcement

During investigations or regulatory oversight (such as an FTC inquiry or State
AG probe), agencies should leverage unlearning-related tools to assess compliance.
This could include mandated data audits that require organizations to divulge the
composition of training datasets and model inputs. By analyzing these, regulators
can identify if protected personal data or unlawfully obtained information was used
in training. If so, agencies may order interim relief such as a “data hold” (to prevent
further training on suspect data) or demand disclosure of the model’s unlearning
capabilities. For instance, the FTC could ask: Do you have the technical ability to
remove a consumer’s data from your model upon request? If not, why not? Such
questions not only signal expectations but also build a record of whether a company
prepared for regulatory compliance. Investigators should request: (i) the provider’s
unlearning stack (heavy vs light methods, triggers, SLAs); (ii) architectural
diagrams evidencing sharding/experts; (iii) determinism artifacts (e.g., SISA
reproducible retrain hashes); and (iv) filter policies linked to specific takedowns.
These materials allow agencies to test whether the system can actually forget and
prove it.

In enforcement actions, agencies can also use machine unlearning as a detection
tool. As an example, they could run their own experiments to see if a model
produces personal data, which thus might indicate a failure to properly delete or
“forget” it. U.S. regulators’ coordination with GDPR authorities can be valuable
here: EU data protection regulators might share helpful findings from audits (given
that GDPR requires documentation of processing). A united front in investigations
ensures that organizations operating internationally cannot present one face or

315 Id.
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argument to U.S. regulators and another to EU regulators; instead, they must meet
a high standard of data and model hygiene in all jurisdictions.

2. Settlements & Remedial Agreements

When it comes to resolving a case, unlearning can be a ‘surgical’ remedy
embedded in consent decrees or court orders. Rather than one-size-fits-all penalties,
regulators should tailor settlements to require unlearning methodologies specific to
the illegality of the data collection or use. For example, if a social media company’s
Al was trained on biometric data collected without consent, the settlement can
obligate the company to retrain or adjust its models to purge that biometric
influence rather than shutting down the Al entirely. Through its ability to pinpoint
the violation, unlearning becomes a proportional remedy: it addresses the specific
harm while allowing non-violative parts of the model to continue operating. Of
course, if the taint of the unlawful activity is widespread or if the company lacks
any mechanism to separate good from bad data, then broader model deletion may
be warranted. The key is flexibility. Agreements might say “fo the extent feasible,
remove X’s data from the model; if infeasible, then delete the model”—
incentivizing companies to develop feasible unlearning methods preemptively.
Consent orders should name permissible selective techniques (e.g., targeted fine-
tuning, Fisher-guided perturbations, amnesiac pruning) and pair them with
verification (e.g., pre/post benchmark suites; reproducible retrain manifests) and
front-end gating.3'® Where a provider cannot meet these obligations within set
timelines, fallback deletion (partial or full) should trigger, preserving
proportionality while ensuring effectiveness.

Settlements can also impose forward-looking obligations, such as a requirement
to honor any future deletion requests (perhaps under state privacy laws) by timely
unlearning, subject to penalties for non-compliance. To enforce this, a consent
order could last 20 years (as many FTC orders do) and include reporting provisions
each time the company executes an unlearning action. Notably, Wilf-Townsend’s
suggestion to incorporate equitable factors can be operationalized here: settlements
could explicitly take into account the company’s intent (e.g., negligent vs. willful
misuse of data) and adjust the stringency of the unlearning mandate accordingly.
Global alignment is also crucial. A U.S. settlement should ideally require actions
that satisfy GDPR expectations, too, so the company does not face inconsistent
directives. We might see transatlantic cooperation where a U.S. order’s remedial
steps (like model retraining) are recognized by EU authorities as fulfilling an EU
data erasure order, creating a more seamless compliance process for controllers.

3. Broader Governance

Beyond individual cases, integrating machine unlearning into the governance
of Al involves policy coordination and standard-setting. Regulators should work
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with organizations like the OECD and the Global Privacy Assembly to develop best
practice guidelines on machine unlearning. This might yield certification
frameworks for marking an Al system as “unlearning-compliant” (analogous to
privacy seal programs). Also, U.S. agencies should coordinate with European Data
Protection Authorities to issue joint guidance on how the GDPR’s right to be
forgotten can be fulfilled within an Al model context, providing necessary clarity
that spans jurisdictions. Such coordination would help avoid a scenario where a
company receives a deletion order in Europe but still faces uncertainty in the U.S.
about whether to delete model data (potentially affecting U.S. consumers, too). A
unified stance—or at least a mutual understanding—could be achieved through
information-sharing agreements between the FTC and EU authorities, as well as
through international fora. Additionally, unlearning should be part of industry
standards and audits. For instance, the NIST Al Risk Management Framework
could incorporate a guideline on data deletion and model update procedures.
Sector-specific regulators (for example, HHS for health data) should also integrate
unlearning principles into their promulgated rules for the Al systems under their
purview, ideally via joint statements or in collaboration with other authorities for
cross-sector consistency.

Ultimately, governance means setting the expectation that responsible Al
development includes the ability to forget. By weaving this expectation into global
policy documents and multi-agency strategies, regulators create a backdrop upon
which machine unlearning is normalized as a component of accountability. This
broader governance approach guards against regulatory arbitrage and helps foster
technological solutions (perhaps new tools and services that specialize in efficient
unlearning) that can serve many companies in complying with both U.S. and
international privacy mandates.

V. CONCLUSION

Machine unlearning is poised to play a significant role in privacy law
enforcement, but it must be understood as part of a broader privacy toolkit rather
than a silver bullet. Implementing unlearning, whether via model deletion, selective
retraining, or output suppression, can directly address the novel problem of Al
systems’ retaining personal data against individuals’ wishes. It operationalizes the
spirit of the “right to be forgotten” in the age of machine learning and offers
regulators a tangible way to make controllers undo some of the harm from unlawful
data collection and use. We have shown how it can complement traditional
remedies by augmenting data deletion requirements so that models, too, are
cleansed and how it can strengthen deterrence by preventing wrongdoers from
easily profiting off of data misuse. At the same time, we have cautioned against
over-reliance on these technical fixes. Unlearning should not become coverage for
lax data practices, nor an automatic one-size-fits-all punishment without regard to
its context. The goal of privacy-preserving machine unlearning should be to make
use of these methodologies in a balanced manner by integrating them when it truly
advances privacy interests and when the technical capability exists to do it
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effectively, or in tandem with other tools in the privacy law arsenal (fines, data use
bans, etc.).

While crafting regulatory approaches to Al, it is important to continue refining
the unlearning techniques themselves. Policymakers may need to invest in research
and standards that improve our confidence in what unlearning can achieve so that
legal mandates have the intended effect. Looking ahead, stronger collaboration
between legal experts and computer scientists is vital in developing certifiable
unlearning processes, much like data encryption has become a standard tool for
security compliance. Forget me not—the question behind unlearning—is here to
stay in privacy law. By operationalizing machine unlearning wisely within
enforcement mechanisms, regulators can better hold organizations accountable for
compliance with core privacy principles while ensuring that individuals’ data truly
fades from memory when required.
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